메뉴 건너뛰기




Volumn 38, Issue 3, 2017, Pages 169-177

Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest

Author keywords

docking; machine learning; protein ligand binding affinity; random forest; scoring function

Indexed keywords

ARTIFICIAL INTELLIGENCE; BENCHMARKING; BINDING ENERGY; BINS; DECISION TREES; DOCKING; HTTP; LEARNING ALGORITHMS; LEARNING SYSTEMS; LIGANDS; PROTEINS;

EID: 85000454204     PISSN: 01928651     EISSN: 1096987X     Source Type: Journal    
DOI: 10.1002/jcc.24667     Document Type: Article
Times cited : (231)

References (74)
  • 36
    • 85000848095 scopus 로고    scopus 로고
    • (accessed on April 20, 2016).
    • I. Wallach, M. Dzamba, A. Heifets, ePrint arXiv, 2015, arXiv:1510.02855. Available at: http://arXiv.org/abs/1510.02855 (accessed on April 20, 2016).
    • (2015) ePrint arXiv
    • Wallach, I.1    Dzamba, M.2    Heifets, A.3
  • 45
    • 85000585214 scopus 로고    scopus 로고
    • (accessed on April 20, 2016).
    • A. J. Wyner, M. Olson, J. Bleich, D. Mease, Available at: http://arXiv.org/abs/1504.07676 (accessed on April 20, 2016).
    • Wyner, A.J.1    Olson, M.2    Bleich, J.3    Mease, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.