-
1
-
-
84883247468
-
Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise
-
Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise J. Chem. Inf. Model. 2013, 53, 1893-1904 10.1021/ci300604z
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1893-1904
-
-
Koes, D.R.1
Baumgartner, M.P.2
Camacho, C.J.3
-
2
-
-
0031226772
-
Empirical Scoring Functions: I. the Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes
-
Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes J. Comput.-Aided Mol. Des. 1997, 11, 425-45 10.1023/A:1007996124545
-
(1997)
J. Comput.-Aided Mol. Des.
, vol.11
, pp. 425-445
-
-
Eldridge, M.D.1
Murray, C.W.2
Auton, T.R.3
Paolini, G.V.4
Mee, R.P.5
-
3
-
-
0028454828
-
The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure
-
Böhm, H. J. The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure J. Comput.-Aided Mol. Des. 1994, 8, 243-256 10.1007/BF00126743
-
(1994)
J. Comput.-Aided Mol. Des.
, vol.8
, pp. 243-256
-
-
Böhm, H.J.1
-
4
-
-
0036022960
-
Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction
-
Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
-
(2002)
J. Comput.-Aided Mol. Des.
, vol.16
, pp. 11-26
-
-
Wang, R.1
Lai, L.2
Wang, S.3
-
5
-
-
62449330667
-
Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS
-
Korb, O.; Stützle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS J. Chem. Inf. Model. 2009, 49, 84-96 10.1021/ci800298z
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 84-96
-
-
Korb, O.1
Stützle, T.2
Exner, T.E.3
-
6
-
-
12144289984
-
Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy
-
Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K. et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy J. Med. Chem. 2004, 47, 1739-49 10.1021/jm0306430
-
(2004)
J. Med. Chem.
, vol.47
, pp. 1739-1749
-
-
Friesner, R.A.1
Banks, J.L.2
Murphy, R.B.3
Halgren, T.A.4
Klicic, J.J.5
Mainz, D.T.6
Repasky, M.P.7
Knoll, E.H.8
Shelley, M.9
Perry, J.K.10
-
7
-
-
76149120388
-
AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
-
Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2009, 31, 455-461 10.1002/jcc.21334
-
(2009)
J. Comput. Chem.
, vol.31
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
8
-
-
77955800755
-
Mean-Force Scoring Functions for Protein-Ligand Binding
-
Huang, S. Y.; Zou, X. Mean-Force Scoring Functions for Protein-Ligand Binding Annu. Rep. Comput. Chem. 2010, 6, 280-296 10.1016/S1574-1400(10)06014-7
-
(2010)
Annu. Rep. Comput. Chem.
, vol.6
, pp. 280-296
-
-
Huang, S.Y.1
Zou, X.2
-
9
-
-
0033545622
-
A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach
-
Muegge, I.; Martin, Y. C. A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach J. Med. Chem. 1999, 42, 791-804 10.1021/jm980536j
-
(1999)
J. Med. Chem.
, vol.42
, pp. 791-804
-
-
Muegge, I.1
Martin, Y.C.2
-
10
-
-
0034645763
-
Knowledge-Based Scoring Function to Predict Protein-Ligand Interactions
-
Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-Based Scoring Function to Predict Protein-Ligand Interactions J. Mol. Biol. 2000, 295, 337-356 10.1006/jmbi.1999.3371
-
(2000)
J. Mol. Biol.
, vol.295
, pp. 337-356
-
-
Gohlke, H.1
Hendlich, M.2
Klebe, G.3
-
11
-
-
80054694711
-
GOAP: A Generalized Orientation-Dependent, All-Atom Statistical Potential for Protein Structure Prediction
-
Zhou, H.; Skolnick, J. GOAP: A Generalized Orientation-Dependent, All-Atom Statistical Potential for Protein Structure Prediction Biophys. J. 2011, 101, 2043-52 10.1016/j.bpj.2011.09.012
-
(2011)
Biophys. J.
, vol.101
, pp. 2043-2052
-
-
Zhou, H.1
Skolnick, J.2
-
12
-
-
26444468103
-
General and Targeted Statistical Potentials for Protein-Ligand Interactions
-
Mooij, W. T.; Verdonk, M. L. General and Targeted Statistical Potentials for Protein-Ligand Interactions Proteins: Struct., Funct., Genet. 2005, 61, 272-87 10.1002/prot.20588
-
(2005)
Proteins: Struct., Funct., Genet.
, vol.61
, pp. 272-287
-
-
Mooij, W.T.1
Verdonk, M.L.2
-
13
-
-
77952825581
-
A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
-
Ballester, P. J.; Mitchell, J. B. O. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169 10.1093/bioinformatics/btq112
-
(2010)
Bioinformatics
, vol.26
, pp. 1169
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
14
-
-
84964698564
-
Machine-Learning Scoring Functions for Identifying Native Poses of Ligands Docked to Known and Novel Proteins
-
Ashtawy, H. M.; Mahapatra, N. R. Machine-Learning Scoring Functions for Identifying Native Poses of Ligands Docked to Known and Novel Proteins BMC Bioinf. 2015, 16, S3 10.1186/1471-2105-16-S6-S3
-
(2015)
BMC Bioinf.
, vol.16
, pp. S3
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
15
-
-
75749126524
-
Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening
-
Sato, T.; Honma, T.; Yokoyama, S. Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for In Silico Screening J. Chem. Inf. Model. 2010, 50, 170-185 10.1021/ci900382e
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 170-185
-
-
Sato, T.1
Honma, T.2
Yokoyama, S.3
-
16
-
-
84883250593
-
SFCscore RF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
-
Zilian, D.; Sotriffer, C. A. SFCscore RF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes J. Chem. Inf. Model. 2013, 53, 1923-1933 10.1021/ci400120b
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
17
-
-
20444410410
-
Virtual Screening of Molecular Databases Using a Support Vector Machine
-
Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Support Vector Machine J. Chem. Inf. Model. 2005, 45, 549-561 10.1021/ci049641u
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
18
-
-
84945968229
-
Predicting Protein Function and Protein-Ligand Interaction with the 3D Neighborhood Kernel
-
Schietgat, L.; Fannes, T.; Ramon, J. Predicting Protein Function and Protein-Ligand Interaction with the 3D Neighborhood Kernel Discov. Sci. 2015, 9356, 221-235 10.1007/978-3-319-24282-8-19
-
(2015)
Discov. Sci.
, vol.9356
, pp. 221-235
-
-
Schietgat, L.1
Fannes, T.2
Ramon, J.3
-
19
-
-
1842740026
-
Predicting Protein-Ligand Binding Affinities using Novel Geometrical Descriptors and Machine-Learning Methods
-
Deng, W.; Breneman, C.; Embrechts, M. J. Predicting Protein-Ligand Binding Affinities using Novel Geometrical Descriptors and Machine-Learning Methods J. Chem. Inf. Comput. Sci. 2004, 44, 699-703 10.1021/ci034246+
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 699-703
-
-
Deng, W.1
Breneman, C.2
Embrechts, M.J.3
-
20
-
-
77958585233
-
NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein- Ligand Complexes
-
Durrant, J. D.; McCammon, J. A. NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein- Ligand Complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1865-1871
-
-
Durrant, J.D.1
McCammon, J.A.2
-
21
-
-
84876531629
-
Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints
-
Chupakhin, V.; Marcou, G.; Baskin, I.; Varnek, A.; Rognan, D. Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints J. Chem. Inf. Model. 2013, 53, 763-772 10.1021/ci300200r
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 763-772
-
-
Chupakhin, V.1
Marcou, G.2
Baskin, I.3
Varnek, A.4
Rognan, D.5
-
22
-
-
82355186299
-
NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function
-
Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function J. Chem. Inf. Model. 2011, 51, 2897-2903 10.1021/ci2003889
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
23
-
-
84918779199
-
Machine-Learning Techniques Applied to Antibacterial Drug Discovery
-
Durrant, J. D.; Amaro, R. E. Machine-Learning Techniques Applied to Antibacterial Drug Discovery Chem. Biol. Drug Des. 2015, 85, 14-21 10.1111/cbdd.12423
-
(2015)
Chem. Biol. Drug Des.
, vol.85
, pp. 14-21
-
-
Durrant, J.D.1
Amaro, R.E.2
-
24
-
-
85018551577
-
-
arXiv preprint:1610.07187
-
Gonczarek, A.; Tomczak, J. M.; Zareba, S.; Kaczmar, J.; Dabrowski, P.; Walczak, M. J. Learning Deep Architectures for Interaction Prediction in Structure-based Virtual Screening. arXiv preprint:1610.07187, 2016.
-
(2016)
Learning Deep Architectures for Interaction Prediction in Structure-based Virtual Screening
-
-
Gonczarek, A.1
Tomczak, J.M.2
Zareba, S.3
Kaczmar, J.4
Dabrowski, P.5
Walczak, M.J.6
-
26
-
-
78649517318
-
Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets
-
Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1961-1969
-
-
Kramer, C.1
Gedeck, P.2
-
27
-
-
84908242076
-
Beware of Machine Learning-Based Scoring Functions - On the Danger of Developing Black Boxes
-
Gabel, J.; Desaphy, J.; Rognan, D. Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black Boxes J. Chem. Inf. Model. 2014, 54, 2807-2815 10.1021/ci500406k
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2807-2815
-
-
Gabel, J.1
Desaphy, J.2
Rognan, D.3
-
28
-
-
84949978511
-
The Importance of the Regression Model in the Structure-Based Prediction of Protein-Ligand Binding
-
Cambridge, U.K. June 26-28
-
Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P. J. The Importance of the Regression Model in the Structure-Based Prediction of Protein-Ligand Binding. International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics, Cambridge, U.K., June 26-28, 2014; pp 219-230.
-
(2014)
International Meeting on Computational Intelligence Methods for Bioinformatics and Biostatistics
, pp. 219-230
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
30
-
-
84930630277
-
Deep Learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521, 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
31
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
32
-
-
84937522268
-
Going Deeper with Convolutions
-
Boston, MA, Jun 7-12
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, Jun 7-12, 2015; pp 1-9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
33
-
-
84942543577
-
Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands
-
Durrant, J. D.; Carlson, K. E.; Martin, T. A.; Offutt, T. L.; Mayne, C. G.; Katzenellenbogen, J. A.; Amaro, R. E. Neural-Network Scoring Functions Identify Structurally Novel Estrogen-Receptor Ligands J. Chem. Inf. Model. 2015, 55, 1953-1961 10.1021/acs.jcim.5b00241
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1953-1961
-
-
Durrant, J.D.1
Carlson, K.E.2
Martin, T.A.3
Offutt, T.L.4
Mayne, C.G.5
Katzenellenbogen, J.A.6
Amaro, R.E.7
-
34
-
-
84945557463
-
Deep Learning for Drug-Induced Liver Injury
-
Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 2085-2093
-
-
Xu, Y.1
Dai, Z.2
Chen, F.3
Gao, S.4
Pei, J.5
Lai, L.6
-
35
-
-
84880542260
-
Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
36
-
-
84965159799
-
Convolutional Networks on Graphs for Learning Molecular Fingerprints
-
MIT Press: Cambridge, MA, USA
-
Duvenaud, D. K.; Maclaurin, D.; Iparraguirre, J.; Bombarell, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp 2224-2232.
-
(2015)
Advances in Neural Information Processing Systems
, pp. 2224-2232
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Iparraguirre, J.3
Bombarell, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
37
-
-
84927735077
-
-
arXiv preprint:1502.02072
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. arXiv preprint:1502.02072, 2015.
-
(2015)
Massively Multitask Networks for Drug Discovery
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
38
-
-
85016436037
-
ANI-1: An Extensible Neural Network Potential with DFT Accuracy at Force Field Computational Cost
-
Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An Extensible Neural Network Potential with DFT Accuracy at Force Field Computational Cost Chem. Sci. 2017, 8, 3192 10.1039/C6SC05720A
-
(2017)
Chem. Sci.
, vol.8
, pp. 3192
-
-
Smith, J.S.1
Isayev, O.2
Roitberg, A.E.3
-
40
-
-
85012073983
-
Solving the Quantum Many-Body Problem with Artificial Neural Networks
-
Carleo, G.; Troyer, M. Solving the Quantum Many-Body Problem with Artificial Neural Networks Science 2017, 355, 602-606 10.1126/science.aag2302
-
(2017)
Science
, vol.355
, pp. 602-606
-
-
Carleo, G.1
Troyer, M.2
-
41
-
-
84876231242
-
Imagenet Classification with Deep Convolutional Neural Networks
-
Curran Associates Inc. New York, USA
-
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems; Curran Associates Inc.: New York, USA, 2012; pp 1097-1105.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
42
-
-
84986274465
-
Deep Residual Learning for Image Recognition
-
Las Vegas, NV, June 26-July 1
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, June 26-July 1, 2016; pp 770-778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
44
-
-
33750124980
-
Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes
-
Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes J. Med. Chem. 2006, 49, 6177-6196 10.1021/jm051256o
-
(2006)
J. Med. Chem.
, vol.49
, pp. 6177-6196
-
-
Friesner, R.A.1
Murphy, R.B.2
Repasky, M.P.3
Frye, L.L.4
Greenwood, J.R.5
Halgren, T.A.6
Sanschagrin, P.C.7
Mainz, D.T.8
-
45
-
-
0030255303
-
Scoring Noncovalent Protein-Ligand Interactions: A Continuous Differentiable Function Tuned to Compute Binding Affinities
-
Jain, A. N. Scoring Noncovalent Protein-Ligand Interactions: A Continuous Differentiable Function Tuned to Compute Binding Affinities J. Comput.-Aided Mol. Des. 1996, 10, 427-40 10.1007/BF00124474
-
(1996)
J. Comput.-Aided Mol. Des.
, vol.10
, pp. 427-440
-
-
Jain, A.N.1
-
46
-
-
84989159600
-
D3R Grand Challenge 2015: Evaluation of Protein-Ligand Pose and Affinity Predictions
-
Gathiaka, S.; Liu, S.; Chiu, M.; Yang, H.; Stuckey, J. A.; Kang, Y. N.; Delproposto, J.; Kubish, G.; Dunbar, J. B.; Carlson, H. A. et al. D3R Grand Challenge 2015: Evaluation of Protein-Ligand Pose and Affinity Predictions J. Comput.-Aided Mol. Des. 2016, 30, 651-668 10.1007/s10822-016-9946-8
-
(2016)
J. Comput.-Aided Mol. Des.
, vol.30
, pp. 651-668
-
-
Gathiaka, S.1
Liu, S.2
Chiu, M.3
Yang, H.4
Stuckey, J.A.5
Kang, Y.N.6
Delproposto, J.7
Kubish, G.8
Dunbar, J.B.9
Carlson, H.A.10
-
47
-
-
84883209345
-
CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series
-
Damm-Ganamet, K. L.; Smith, R. D.; Dunbar, J. B.; Stuckey, J. A.; Carlson, H. A. CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series J. Chem. Inf. Model. 2013, 53, 1853-1870 10.1021/ci400025f
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1853-1870
-
-
Damm-Ganamet, K.L.1
Smith, R.D.2
Dunbar, J.B.3
Stuckey, J.A.4
Carlson, H.A.5
-
48
-
-
85018566054
-
-
RDKit: Open-Source Cheminformatics. accessed September 4
-
RDKit: Open-Source Cheminformatics. http://www.rdkit.org, accessed September 4, 2015.
-
(2015)
-
-
-
49
-
-
80053512597
-
Open Babel: An Open Chemical Toolbox
-
O'Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open Babel: An Open Chemical Toolbox J. Cheminf. 2011, 3, 33 10.1186/1758-2946-3-33
-
(2011)
J. Cheminf.
, vol.3
, pp. 33
-
-
O'Boyle, N.M.1
Banck, M.2
James, C.A.3
Morley, C.4
Vandermeersch, T.5
Hutchison, G.R.6
-
50
-
-
80053333972
-
CSAR Benchmark Exercise of 2010: Selection of the Protein-Ligand Complexes
-
Dunbar, J. B.; Smith, R. D.; Yang, C.-Y.; Ung, P. M.-U.; Lexa, K. W.; Khazanov, N. A.; Stuckey, J. A.; Wang, S.; Carlson, H. A. CSAR Benchmark Exercise of 2010: Selection of the Protein-Ligand Complexes J. Chem. Inf. Model. 2011, 51, 2036-2046 10.1021/ci200082t
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2036-2046
-
-
Dunbar, J.B.1
Smith, R.D.2
Yang, C.-Y.3
Ung, P.M.-U.4
Lexa, K.W.5
Khazanov, N.A.6
Stuckey, J.A.7
Wang, S.8
Carlson, H.A.9
-
51
-
-
84864264343
-
Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking
-
Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking J. Med. Chem. 2012, 55, 6582-94 10.1021/jm300687e
-
(2012)
J. Med. Chem.
, vol.55
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
-
52
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
53
-
-
41349106542
-
Recommendations for Evaluation of Computational Methods
-
Jain, A. N.; Nicholls, A. Recommendations for Evaluation of Computational Methods J. Comput.-Aided Mol. Des. 2008, 22, 133-139 10.1007/s10822-008-9196-5
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, pp. 133-139
-
-
Jain, A.N.1
Nicholls, A.2
-
54
-
-
41349093326
-
What Do We Know and When Do We Know It?
-
Nicholls, A. What Do We Know and When Do We Know It? J. Comput.-Aided Mol. Des. 2008, 22, 239-255 10.1007/s10822-008-9170-2
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, pp. 239-255
-
-
Nicholls, A.1
-
55
-
-
85018535914
-
-
RF-Score. (accessed Feb 2)
-
Lee, H. RF-Score. https://github.com/HongjianLi/RF-Score (accessed Feb 2, 2017).
-
(2017)
-
-
Lee, H.1
-
56
-
-
85018611537
-
-
NNScore 1.0. (accessed Feb 2, 2017)
-
Durrant, J. NNScore 1.0. https://sourceforge.net/projects/nnscore/ (accessed Feb 2, 2017).
-
-
-
Durrant, J.1
-
57
-
-
20444422149
-
The PDBbind Database: Methodologies and Updates
-
Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind Database: Methodologies and Updates J. Med. Chem. 2005, 48, 4111-4119 10.1021/jm048957q
-
(2005)
J. Med. Chem.
, vol.48
, pp. 4111-4119
-
-
Wang, R.1
Fang, X.2
Lu, Y.3
Yang, C.-Y.4
Wang, S.5
-
58
-
-
84879897900
-
Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual Screening
-
Riniker, S.; Landrum, G. A. Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual Screening J. Cheminf. 2013, 5, 26 10.1186/1758-2946-5-26
-
(2013)
J. Cheminf.
, vol.5
, pp. 26
-
-
Riniker, S.1
Landrum, G.A.2
-
59
-
-
80051996206
-
Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets
-
Heikamp, K.; Bajorath, J. Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets J. Chem. Inf. Model. 2011, 51, 1831-1839 10.1021/ci200199u
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 1831-1839
-
-
Heikamp, K.1
Bajorath, J.2
-
60
-
-
65349136650
-
Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data
-
Rohrer, S. G.; Baumann, K. Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data J. Chem. Inf. Model. 2009, 49, 169-84 10.1021/ci8002649
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 169-184
-
-
Rohrer, S.G.1
Baumann, K.2
-
61
-
-
77952849162
-
ProBiS Algorithm for Detection of Structurally Similar Protein Binding Sites by Local Structural Alignment
-
Konc, J.; Janežič, D. ProBiS Algorithm for Detection of Structurally Similar Protein Binding Sites by Local Structural Alignment Bioinformatics 2010, 26, 1160-1168 10.1093/bioinformatics/btq100
-
(2010)
Bioinformatics
, vol.26
, pp. 1160-1168
-
-
Konc, J.1
Janežič, D.2
-
62
-
-
0028392483
-
Learning Long-Term Dependencies with Gradient Descent is Difficult
-
Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent is Difficult IEEE Transactions on Neural Networks 1994, 5, 157-166 10.1109/72.279181
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
63
-
-
84898989329
-
Deep Neural Networks for Object Detection
-
Curran Associates Inc. New York, USA
-
Szegedy, C.; Toshev, A.; Erhan, D. Deep Neural Networks for Object Detection. Advances in Neural Information Processing Systems; Curran Associates Inc.: New York, USA, 2013; pp 2553-2561.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2553-2561
-
-
Szegedy, C.1
Toshev, A.2
Erhan, D.3
-
64
-
-
80053308905
-
CSAR Scoring Challenge Reveals the Need for New Concepts in Estimating Protein-Ligand Binding Affinity
-
Novikov, F. N.; Zeifman, A. A.; Stroganov, O. V.; Stroylov, V. S.; Kulkov, V.; Chilov, G. G. CSAR Scoring Challenge Reveals the Need for New Concepts in Estimating Protein-Ligand Binding Affinity J. Chem. Inf. Model. 2011, 51, 2090-2096 10.1021/ci200034y
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2090-2096
-
-
Novikov, F.N.1
Zeifman, A.A.2
Stroganov, O.V.3
Stroylov, V.S.4
Kulkov, V.5
Chilov, G.G.6
-
65
-
-
70350501165
-
Critical Comparison of Virtual Screening Methods against the MUV Data Set
-
Tiikkainen, P.; Markt, P.; Wolber, G.; Kirchmair, J.; Distinto, S.; Poso, A.; Kallioniemi, O. Critical Comparison of Virtual Screening Methods against the MUV Data Set J. Chem. Inf. Model. 2009, 49, 2168-2178 10.1021/ci900249b
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 2168-2178
-
-
Tiikkainen, P.1
Markt, P.2
Wolber, G.3
Kirchmair, J.4
Distinto, S.5
Poso, A.6
Kallioniemi, O.7
-
66
-
-
84941044025
-
Platinum: A Database of Experimentally Measured Effects of Mutations on Structurally Defined Protein-Ligand Complexes
-
Pires, D. E.; Blundell, T. L.; Ascher, D. B. Platinum: A Database of Experimentally Measured Effects of Mutations on Structurally Defined Protein-Ligand Complexes Nucleic Acids Res. 2015, 43, D387-D391 10.1093/nar/gku966
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D387-D391
-
-
Pires, D.E.1
Blundell, T.L.2
Ascher, D.B.3
|