메뉴 건너뛰기




Volumn 57, Issue 4, 2017, Pages 942-957

Protein-Ligand Scoring with Convolutional Neural Networks

Author keywords

[No Author keywords available]

Indexed keywords

BINDERS; BINDING ENERGY; CONVOLUTION; DEEP LEARNING; LEARNING SYSTEMS; LIGANDS; PROTEINS;

EID: 85018558434     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.6b00740     Document Type: Article
Times cited : (673)

References (67)
  • 1
    • 84883247468 scopus 로고    scopus 로고
    • Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise
    • Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise J. Chem. Inf. Model. 2013, 53, 1893-1904 10.1021/ci300604z
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 2
    • 0031226772 scopus 로고    scopus 로고
    • Empirical Scoring Functions: I. the Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes
    • Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes J. Comput.-Aided Mol. Des. 1997, 11, 425-45 10.1023/A:1007996124545
    • (1997) J. Comput.-Aided Mol. Des. , vol.11 , pp. 425-445
    • Eldridge, M.D.1    Murray, C.W.2    Auton, T.R.3    Paolini, G.V.4    Mee, R.P.5
  • 3
    • 0028454828 scopus 로고
    • The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure
    • Böhm, H. J. The Development of a Simple Empirical Scoring Function to Estimate the Binding Constant for a Protein-Ligand Complex of Known Three-Dimensional Structure J. Comput.-Aided Mol. Des. 1994, 8, 243-256 10.1007/BF00126743
    • (1994) J. Comput.-Aided Mol. Des. , vol.8 , pp. 243-256
    • Böhm, H.J.1
  • 4
    • 0036022960 scopus 로고    scopus 로고
    • Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction
    • Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
    • (2002) J. Comput.-Aided Mol. Des. , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 5
    • 62449330667 scopus 로고    scopus 로고
    • Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS
    • Korb, O.; Stützle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS J. Chem. Inf. Model. 2009, 49, 84-96 10.1021/ci800298z
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 84-96
    • Korb, O.1    Stützle, T.2    Exner, T.E.3
  • 7
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
    • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2009, 31, 455-461 10.1002/jcc.21334
    • (2009) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 8
    • 77955800755 scopus 로고    scopus 로고
    • Mean-Force Scoring Functions for Protein-Ligand Binding
    • Huang, S. Y.; Zou, X. Mean-Force Scoring Functions for Protein-Ligand Binding Annu. Rep. Comput. Chem. 2010, 6, 280-296 10.1016/S1574-1400(10)06014-7
    • (2010) Annu. Rep. Comput. Chem. , vol.6 , pp. 280-296
    • Huang, S.Y.1    Zou, X.2
  • 9
    • 0033545622 scopus 로고    scopus 로고
    • A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach
    • Muegge, I.; Martin, Y. C. A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach J. Med. Chem. 1999, 42, 791-804 10.1021/jm980536j
    • (1999) J. Med. Chem. , vol.42 , pp. 791-804
    • Muegge, I.1    Martin, Y.C.2
  • 10
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-Based Scoring Function to Predict Protein-Ligand Interactions
    • Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-Based Scoring Function to Predict Protein-Ligand Interactions J. Mol. Biol. 2000, 295, 337-356 10.1006/jmbi.1999.3371
    • (2000) J. Mol. Biol. , vol.295 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 11
    • 80054694711 scopus 로고    scopus 로고
    • GOAP: A Generalized Orientation-Dependent, All-Atom Statistical Potential for Protein Structure Prediction
    • Zhou, H.; Skolnick, J. GOAP: A Generalized Orientation-Dependent, All-Atom Statistical Potential for Protein Structure Prediction Biophys. J. 2011, 101, 2043-52 10.1016/j.bpj.2011.09.012
    • (2011) Biophys. J. , vol.101 , pp. 2043-2052
    • Zhou, H.1    Skolnick, J.2
  • 12
    • 26444468103 scopus 로고    scopus 로고
    • General and Targeted Statistical Potentials for Protein-Ligand Interactions
    • Mooij, W. T.; Verdonk, M. L. General and Targeted Statistical Potentials for Protein-Ligand Interactions Proteins: Struct., Funct., Genet. 2005, 61, 272-87 10.1002/prot.20588
    • (2005) Proteins: Struct., Funct., Genet. , vol.61 , pp. 272-287
    • Mooij, W.T.1    Verdonk, M.L.2
  • 13
    • 77952825581 scopus 로고    scopus 로고
    • A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
    • Ballester, P. J.; Mitchell, J. B. O. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169 10.1093/bioinformatics/btq112
    • (2010) Bioinformatics , vol.26 , pp. 1169
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 14
    • 84964698564 scopus 로고    scopus 로고
    • Machine-Learning Scoring Functions for Identifying Native Poses of Ligands Docked to Known and Novel Proteins
    • Ashtawy, H. M.; Mahapatra, N. R. Machine-Learning Scoring Functions for Identifying Native Poses of Ligands Docked to Known and Novel Proteins BMC Bioinf. 2015, 16, S3 10.1186/1471-2105-16-S6-S3
    • (2015) BMC Bioinf. , vol.16 , pp. S3
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 15
    • 75749126524 scopus 로고    scopus 로고
    • Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening
    • Sato, T.; Honma, T.; Yokoyama, S. Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for In Silico Screening J. Chem. Inf. Model. 2010, 50, 170-185 10.1021/ci900382e
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 170-185
    • Sato, T.1    Honma, T.2    Yokoyama, S.3
  • 16
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore RF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
    • Zilian, D.; Sotriffer, C. A. SFCscore RF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes J. Chem. Inf. Model. 2013, 53, 1923-1933 10.1021/ci400120b
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 17
    • 20444410410 scopus 로고    scopus 로고
    • Virtual Screening of Molecular Databases Using a Support Vector Machine
    • Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Support Vector Machine J. Chem. Inf. Model. 2005, 45, 549-561 10.1021/ci049641u
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 18
    • 84945968229 scopus 로고    scopus 로고
    • Predicting Protein Function and Protein-Ligand Interaction with the 3D Neighborhood Kernel
    • Schietgat, L.; Fannes, T.; Ramon, J. Predicting Protein Function and Protein-Ligand Interaction with the 3D Neighborhood Kernel Discov. Sci. 2015, 9356, 221-235 10.1007/978-3-319-24282-8-19
    • (2015) Discov. Sci. , vol.9356 , pp. 221-235
    • Schietgat, L.1    Fannes, T.2    Ramon, J.3
  • 19
    • 1842740026 scopus 로고    scopus 로고
    • Predicting Protein-Ligand Binding Affinities using Novel Geometrical Descriptors and Machine-Learning Methods
    • Deng, W.; Breneman, C.; Embrechts, M. J. Predicting Protein-Ligand Binding Affinities using Novel Geometrical Descriptors and Machine-Learning Methods J. Chem. Inf. Comput. Sci. 2004, 44, 699-703 10.1021/ci034246+
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 699-703
    • Deng, W.1    Breneman, C.2    Embrechts, M.J.3
  • 20
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein- Ligand Complexes
    • Durrant, J. D.; McCammon, J. A. NNScore: A Neural-Network-Based Scoring Function for the Characterization of Protein- Ligand Complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 21
    • 84876531629 scopus 로고    scopus 로고
    • Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints
    • Chupakhin, V.; Marcou, G.; Baskin, I.; Varnek, A.; Rognan, D. Predicting Ligand Binding Modes from Neural Networks Trained on Protein-Ligand Interaction Fingerprints J. Chem. Inf. Model. 2013, 53, 763-772 10.1021/ci300200r
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 763-772
    • Chupakhin, V.1    Marcou, G.2    Baskin, I.3    Varnek, A.4    Rognan, D.5
  • 22
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function
    • Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function J. Chem. Inf. Model. 2011, 51, 2897-2903 10.1021/ci2003889
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 23
    • 84918779199 scopus 로고    scopus 로고
    • Machine-Learning Techniques Applied to Antibacterial Drug Discovery
    • Durrant, J. D.; Amaro, R. E. Machine-Learning Techniques Applied to Antibacterial Drug Discovery Chem. Biol. Drug Des. 2015, 85, 14-21 10.1111/cbdd.12423
    • (2015) Chem. Biol. Drug Des. , vol.85 , pp. 14-21
    • Durrant, J.D.1    Amaro, R.E.2
  • 26
    • 78649517318 scopus 로고    scopus 로고
    • Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets
    • Kramer, C.; Gedeck, P. Leave-Cluster-Out Cross-Validation Is Appropriate for Scoring Functions Derived from Diverse Protein Data Sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 27
    • 84908242076 scopus 로고    scopus 로고
    • Beware of Machine Learning-Based Scoring Functions - On the Danger of Developing Black Boxes
    • Gabel, J.; Desaphy, J.; Rognan, D. Beware of Machine Learning-Based Scoring Functions-On the Danger of Developing Black Boxes J. Chem. Inf. Model. 2014, 54, 2807-2815 10.1021/ci500406k
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 30
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521, 436-444 10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 34
    • 84945557463 scopus 로고    scopus 로고
    • Deep Learning for Drug-Induced Liver Injury
    • Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning for Drug-Induced Liver Injury J. Chem. Inf. Model. 2015, 55, 2085-2093 10.1021/acs.jcim.5b00238
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 2085-2093
    • Xu, Y.1    Dai, Z.2    Chen, F.3    Gao, S.4    Pei, J.5    Lai, L.6
  • 35
    • 84880542260 scopus 로고    scopus 로고
    • Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 38
    • 85016436037 scopus 로고    scopus 로고
    • ANI-1: An Extensible Neural Network Potential with DFT Accuracy at Force Field Computational Cost
    • Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An Extensible Neural Network Potential with DFT Accuracy at Force Field Computational Cost Chem. Sci. 2017, 8, 3192 10.1039/C6SC05720A
    • (2017) Chem. Sci. , vol.8 , pp. 3192
    • Smith, J.S.1    Isayev, O.2    Roitberg, A.E.3
  • 40
    • 85012073983 scopus 로고    scopus 로고
    • Solving the Quantum Many-Body Problem with Artificial Neural Networks
    • Carleo, G.; Troyer, M. Solving the Quantum Many-Body Problem with Artificial Neural Networks Science 2017, 355, 602-606 10.1126/science.aag2302
    • (2017) Science , vol.355 , pp. 602-606
    • Carleo, G.1    Troyer, M.2
  • 41
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet Classification with Deep Convolutional Neural Networks
    • Curran Associates Inc. New York, USA
    • Krizhevsky, A.; Sutskever, I.; Hinton, G. E. Imagenet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems; Curran Associates Inc.: New York, USA, 2012; pp 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 44
  • 45
    • 0030255303 scopus 로고    scopus 로고
    • Scoring Noncovalent Protein-Ligand Interactions: A Continuous Differentiable Function Tuned to Compute Binding Affinities
    • Jain, A. N. Scoring Noncovalent Protein-Ligand Interactions: A Continuous Differentiable Function Tuned to Compute Binding Affinities J. Comput.-Aided Mol. Des. 1996, 10, 427-40 10.1007/BF00124474
    • (1996) J. Comput.-Aided Mol. Des. , vol.10 , pp. 427-440
    • Jain, A.N.1
  • 47
    • 84883209345 scopus 로고    scopus 로고
    • CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series
    • Damm-Ganamet, K. L.; Smith, R. D.; Dunbar, J. B.; Stuckey, J. A.; Carlson, H. A. CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series J. Chem. Inf. Model. 2013, 53, 1853-1870 10.1021/ci400025f
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1853-1870
    • Damm-Ganamet, K.L.1    Smith, R.D.2    Dunbar, J.B.3    Stuckey, J.A.4    Carlson, H.A.5
  • 48
    • 85018566054 scopus 로고    scopus 로고
    • RDKit: Open-Source Cheminformatics. accessed September 4
    • RDKit: Open-Source Cheminformatics. http://www.rdkit.org, accessed September 4, 2015.
    • (2015)
  • 51
    • 84864264343 scopus 로고    scopus 로고
    • Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking
    • Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking J. Med. Chem. 2012, 55, 6582-94 10.1021/jm300687e
    • (2012) J. Med. Chem. , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 53
    • 41349106542 scopus 로고    scopus 로고
    • Recommendations for Evaluation of Computational Methods
    • Jain, A. N.; Nicholls, A. Recommendations for Evaluation of Computational Methods J. Comput.-Aided Mol. Des. 2008, 22, 133-139 10.1007/s10822-008-9196-5
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , pp. 133-139
    • Jain, A.N.1    Nicholls, A.2
  • 54
    • 41349093326 scopus 로고    scopus 로고
    • What Do We Know and When Do We Know It?
    • Nicholls, A. What Do We Know and When Do We Know It? J. Comput.-Aided Mol. Des. 2008, 22, 239-255 10.1007/s10822-008-9170-2
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , pp. 239-255
    • Nicholls, A.1
  • 55
    • 85018535914 scopus 로고    scopus 로고
    • RF-Score. (accessed Feb 2)
    • Lee, H. RF-Score. https://github.com/HongjianLi/RF-Score (accessed Feb 2, 2017).
    • (2017)
    • Lee, H.1
  • 56
    • 85018611537 scopus 로고    scopus 로고
    • NNScore 1.0. (accessed Feb 2, 2017)
    • Durrant, J. NNScore 1.0. https://sourceforge.net/projects/nnscore/ (accessed Feb 2, 2017).
    • Durrant, J.1
  • 57
    • 20444422149 scopus 로고    scopus 로고
    • The PDBbind Database: Methodologies and Updates
    • Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind Database: Methodologies and Updates J. Med. Chem. 2005, 48, 4111-4119 10.1021/jm048957q
    • (2005) J. Med. Chem. , vol.48 , pp. 4111-4119
    • Wang, R.1    Fang, X.2    Lu, Y.3    Yang, C.-Y.4    Wang, S.5
  • 58
    • 84879897900 scopus 로고    scopus 로고
    • Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual Screening
    • Riniker, S.; Landrum, G. A. Open-Source Platform to Benchmark Fingerprints for Ligand-Based Virtual Screening J. Cheminf. 2013, 5, 26 10.1186/1758-2946-5-26
    • (2013) J. Cheminf. , vol.5 , pp. 26
    • Riniker, S.1    Landrum, G.A.2
  • 59
    • 80051996206 scopus 로고    scopus 로고
    • Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets
    • Heikamp, K.; Bajorath, J. Large-Scale Similarity Search Profiling of ChEMBL Compound Data Sets J. Chem. Inf. Model. 2011, 51, 1831-1839 10.1021/ci200199u
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1831-1839
    • Heikamp, K.1    Bajorath, J.2
  • 60
    • 65349136650 scopus 로고    scopus 로고
    • Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data
    • Rohrer, S. G.; Baumann, K. Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data J. Chem. Inf. Model. 2009, 49, 169-84 10.1021/ci8002649
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 169-184
    • Rohrer, S.G.1    Baumann, K.2
  • 61
    • 77952849162 scopus 로고    scopus 로고
    • ProBiS Algorithm for Detection of Structurally Similar Protein Binding Sites by Local Structural Alignment
    • Konc, J.; Janežič, D. ProBiS Algorithm for Detection of Structurally Similar Protein Binding Sites by Local Structural Alignment Bioinformatics 2010, 26, 1160-1168 10.1093/bioinformatics/btq100
    • (2010) Bioinformatics , vol.26 , pp. 1160-1168
    • Konc, J.1    Janežič, D.2
  • 62
    • 0028392483 scopus 로고
    • Learning Long-Term Dependencies with Gradient Descent is Difficult
    • Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent is Difficult IEEE Transactions on Neural Networks 1994, 5, 157-166 10.1109/72.279181
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 64
    • 80053308905 scopus 로고    scopus 로고
    • CSAR Scoring Challenge Reveals the Need for New Concepts in Estimating Protein-Ligand Binding Affinity
    • Novikov, F. N.; Zeifman, A. A.; Stroganov, O. V.; Stroylov, V. S.; Kulkov, V.; Chilov, G. G. CSAR Scoring Challenge Reveals the Need for New Concepts in Estimating Protein-Ligand Binding Affinity J. Chem. Inf. Model. 2011, 51, 2090-2096 10.1021/ci200034y
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2090-2096
    • Novikov, F.N.1    Zeifman, A.A.2    Stroganov, O.V.3    Stroylov, V.S.4    Kulkov, V.5    Chilov, G.G.6
  • 66
    • 84941044025 scopus 로고    scopus 로고
    • Platinum: A Database of Experimentally Measured Effects of Mutations on Structurally Defined Protein-Ligand Complexes
    • Pires, D. E.; Blundell, T. L.; Ascher, D. B. Platinum: A Database of Experimentally Measured Effects of Mutations on Structurally Defined Protein-Ligand Complexes Nucleic Acids Res. 2015, 43, D387-D391 10.1093/nar/gku966
    • (2015) Nucleic Acids Res. , vol.43 , pp. D387-D391
    • Pires, D.E.1    Blundell, T.L.2    Ascher, D.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.