-
1
-
-
65749110436
-
Computational Intelligence Methods for Docking Scores
-
Hecht, D.; Fogel, G. B. Computational Intelligence Methods for Docking Scores Curr. Comput.-Aided Drug Des. 2009, 5, 56-68 10.2174/157340909787580863
-
(2009)
Curr. Comput.-Aided Drug Des.
, vol.5
, pp. 56-68
-
-
Hecht, D.1
Fogel, G.B.2
-
2
-
-
0002606755
-
Virtual Screening-An Overview
-
Walters, W.; Stahl, M. T.; Murcko, M. A. Virtual Screening-An Overview Drug Discovery Today 1998, 3, 160-178 10.1016/S1359-6446(97)01163-X
-
(1998)
Drug Discovery Today
, vol.3
, pp. 160-178
-
-
Walters, W.1
Stahl, M.T.2
Murcko, M.A.3
-
3
-
-
84862795414
-
Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review
-
Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S. Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review AAPS J. 2012, 14, 133-141 10.1208/s12248-012-9322-0
-
(2012)
AAPS J.
, vol.14
, pp. 133-141
-
-
Cheng, T.1
Li, Q.2
Zhou, Z.3
Wang, Y.4
Bryant, S.5
-
4
-
-
11144323163
-
Virtual Screening of Chemical Libraries
-
Shoichet, B. K. Virtual Screening of Chemical Libraries Nature 2004, 432, 862-865 10.1038/nature03197
-
(2004)
Nature
, vol.432
, pp. 862-865
-
-
Shoichet, B.K.1
-
5
-
-
33744551693
-
Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery
-
Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery Curr. Opin. Chem. Biol. 2006, 10, 194-202 10.1016/j.cbpa.2006.04.002
-
(2006)
Curr. Opin. Chem. Biol.
, vol.10
, pp. 194-202
-
-
Ghosh, S.1
Nie, A.2
An, J.3
Huang, Z.4
-
6
-
-
0034649618
-
Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations
-
Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations J. Med. Chem. 2000, 43, 4759-4767 10.1021/jm001044l
-
(2000)
J. Med. Chem.
, vol.43
, pp. 4759-4767
-
-
Bissantz, C.1
Folkers, G.2
Rognan, D.3
-
7
-
-
84901589516
-
Improvement of Virtual Screening Results by Docking Data Feature Analysis
-
Arciniega, M.; Lange, O. F. Improvement of Virtual Screening Results by Docking Data Feature Analysis J. Chem. Inf. Model. 2014, 54, 1401-1411 10.1021/ci500028u
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 1401-1411
-
-
Arciniega, M.1
Lange, O.F.2
-
8
-
-
84879242302
-
Combination of Ligand- and Structure-Based Methods in Virtual Screening
-
Drwal, M. N.; Griffith, R. Combination of Ligand-and Structure-Based Methods in Virtual Screening Drug Discovery Today: Technol. 2013, 10, e395-e401 10.1016/j.ddtec.2013.02.002
-
(2013)
Drug Discovery Today: Technol.
, vol.10
, pp. e395-e401
-
-
Drwal, M.N.1
Griffith, R.2
-
9
-
-
77950503976
-
Virtual Screening: An Endless Staircase?
-
Schneider, G. Virtual Screening: An Endless Staircase? Nat. Rev. Drug Discovery 2010, 9, 273-276 10.1038/nrd3139
-
(2010)
Nat. Rev. Drug Discovery
, vol.9
, pp. 273-276
-
-
Schneider, G.1
-
10
-
-
8844263008
-
Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications
-
Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
-
(2004)
Nat. Rev. Drug Discovery
, vol.3
, pp. 935-949
-
-
Kitchen, D.B.1
Decornez, H.2
Furr, J.R.3
Bajorath, J.4
-
11
-
-
84880552522
-
Comparing Neural-Network Scoring Functions and the State of the Art: Applications to Common Library Screening
-
Durrant, J. D.; Friedman, A. J.; Rogers, K. E.; McCammon, J. A. Comparing Neural-Network Scoring Functions and the State of the Art: Applications to Common Library Screening J. Chem. Inf. Model. 2013, 53, 1726-1735 10.1021/ci400042y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1726-1735
-
-
Durrant, J.D.1
Friedman, A.J.2
Rogers, K.E.3
McCammon, J.A.4
-
12
-
-
79952178127
-
A Machine Learning-Based Method to Improve Docking Scoring Functions and Its Application to Drug Repurposing
-
Kinnings, S. L.; Liu, N.; Tonge, P. J.; Jackson, R. M.; Xie, L.; Bourne, P. E. A Machine Learning-Based Method to Improve Docking Scoring Functions and Its Application to Drug Repurposing J. Chem. Inf. Model. 2011, 51, 408-419 10.1021/ci100369f
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 408-419
-
-
Kinnings, S.L.1
Liu, N.2
Tonge, P.J.3
Jackson, R.M.4
Xie, L.5
Bourne, P.E.6
-
13
-
-
77958585233
-
NNScore: ANeural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes
-
Durrant, J. D.; McCammon, J. A. NNScore: ANeural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1865-1871
-
-
Durrant, J.D.1
McCammon, J.A.2
-
14
-
-
77952825581
-
A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
-
Ballester, P. J.; Mitchell, J. B. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169-1175 10.1093/bioinformatics/btq112
-
(2010)
Bioinformatics
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.2
-
15
-
-
84879854889
-
Representation Learning: A Review and New Perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives Pattern Anal. Mach. Intell., IEEE Trans. 2013, 35, 1798-1828 10.1109/TPAMI.2013.50
-
(2013)
Pattern Anal. Mach. Intell., IEEE Trans.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
16
-
-
84930630277
-
Deep Learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521, 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
17
-
-
69349090197
-
Learning Deep Architectures for AI
-
Bengio, Y. Learning Deep Architectures for AI FNT Mach. Learn. 2009, 2, 1-127 10.1561/2200000006
-
(2009)
FNT Mach. Learn.
, vol.2
, pp. 1-127
-
-
Bengio, Y.1
-
18
-
-
85048241154
-
Multi-Task Neural Networks for QSAR Predictions
-
arXiv:1406.1231.
-
Dahl, G. E.; Jaitly, N.; Salakhutdinov, R. Multi-Task Neural Networks for QSAR Predictions. arXiv Preprint, 2014, arXiv:1406.1231.
-
(2014)
arXiv Preprint
-
-
Dahl, G.E.1
Jaitly, N.2
Salakhutdinov, R.3
-
19
-
-
84981496808
-
Deep Learning as an Opportunity in Virtual Screening
-
Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J. K.; Ceulemans, H.; Hochreiter, S. Deep Learning as an Opportunity in Virtual Screening. In Proceedings of the Deep Learning Workshop at NIPS, 2014.
-
(2014)
Proceedings of the Deep Learning Workshop at NIPS
-
-
Unterthiner, T.1
Mayr, A.2
Klambauer, G.3
Steijaert, M.4
Wegner, J.K.5
Ceulemans, H.6
Hochreiter, S.7
-
21
-
-
84927735077
-
Massively Multitask Networks for Drug Discovery
-
arXiv:1502.02072.
-
Ramsundar, B.; Kearnes, S.; Riley, P.; Webster, D.; Konerding, D.; Pande, V. Massively Multitask Networks for Drug Discovery. arXiv Preprint, 2015, arXiv:1502.02072.
-
(2015)
arXiv Preprint
-
-
Ramsundar, B.1
Kearnes, S.2
Riley, P.3
Webster, D.4
Konerding, D.5
Pande, V.6
-
22
-
-
84880542260
-
Deep Architectures and Deep Learning in Chemoinformatics: the Prediction of Aqueous Solubility for Drug-like Molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: the Prediction of Aqueous Solubility for Drug-like Molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
23
-
-
84965159799
-
Convolutional Networks on Graphs for Learning Molecular Fingerprints
-
Montreal, Canada, Dec. 7-12
-
Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gomez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints. In Advances in Neural Information Processing Systems 28 (NIPS 2015), Montreal, Canada, Dec. 7-12, 2015; pp 2215-2223.
-
(2015)
Advances in Neural Information Processing Systems 28 (NIPS 2015)
, pp. 2215-2223
-
-
Duvenaud, D.1
Maclaurin, D.2
Aguilera-Iparraguirre, J.3
Gomez-Bombarelli, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
24
-
-
82355186299
-
NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function
-
Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function J. Chem. Inf. Model. 2011, 51, 2897-2903 10.1021/ci2003889
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
25
-
-
84879566401
-
VAMMPIRE: a Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization
-
Weber, J.; Achenbach, J.; Moser, D.; Proschak, E. VAMMPIRE: a Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization J. Med. Chem. 2013, 56, 5203-5207 10.1021/jm400223y
-
(2013)
J. Med. Chem.
, vol.56
, pp. 5203-5207
-
-
Weber, J.1
Achenbach, J.2
Moser, D.3
Proschak, E.4
-
26
-
-
80053558787
-
Natural Language Processing (Almost) from Scratch
-
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P. Natural Language Processing (Almost) from Scratch J. Mach. Learn. Res. 2011, 12, 2493-2537
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
27
-
-
84870715081
-
Semantic Compositionality Through Recursive Matrix-Vector Spaces
-
Jeju Island, Korea, July 12-14, 2012 Association for Computational Linguistics Stroudsburg, PA
-
Socher, R.; Huval, B.; Manning, C. D.; Ng, A. Y. Semantic Compositionality Through Recursive Matrix-Vector Spaces. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, Jeju Island, Korea, July 12-14, 2012 Association for Computational Linguistics Stroudsburg, PA, 2012; pp 1201-1211.
-
(2012)
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
, pp. 1201-1211
-
-
Socher, R.1
Huval, B.2
Manning, C.D.3
Ng, A.Y.4
-
28
-
-
84898956512
-
Distributed Representations of Words and Phrases and their Compositionality
-
Lake Tahoe, NV, Dec. 5-10
-
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; Dean, J. Distributed Representations of Words and Phrases and their Compositionality. In Advances in Neural Information Processing Systems 26 (NIPS 2013), Lake Tahoe, NV, Dec. 5-10, 2013; 9 pp.
-
(2013)
Advances in Neural Information Processing Systems 26 (NIPS 2013)
, pp. 9
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
29
-
-
84932166511
-
Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts
-
Dublin, Ireland, Aug. 23-29
-
dos Santos, C. N.; Gatti, M. Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, Aug. 23-29, 2014; pp 69-78.
-
(2014)
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers
, pp. 69-78
-
-
Dos Santos, C.N.1
Gatti, M.2
-
31
-
-
0024634603
-
Phoneme Recognition Using Time-Delay Neural Networks
-
Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K. J. Phoneme Recognition Using Time-Delay Neural Networks IEEE Trans. Acoust., Speech, Signal Process. 1989, 37, 328-339 10.1109/29.21701
-
(1989)
IEEE Trans. Acoust., Speech, Signal Process.
, vol.37
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.J.5
-
32
-
-
0022471098
-
Learning Representations by Back-Propagating Errors
-
Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning Representations by Back-Propagating Errors Nature 1986, 323 ( 6088 ) 533-536 10.1038/323533a0
-
(1986)
Nature
, vol.323
, Issue.6088
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
33
-
-
84857819132
-
Theano: A CPU and GPU Math Expression Compiler
-
Bergstra, J.; Breuleux, O.; Bastien, F.; Lamblin, P.; Pascanu, R.; Desjardins, G.; Turian, J.; Warde-Farley, D.; Bengio, Y. Theano: A CPU and GPU Math Expression Compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), 2010; p 3.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
, pp. 3
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
34
-
-
33750991346
-
Benchmarking Sets for Molecular Docking
-
Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking Sets for Molecular Docking J. Med. Chem. 2006, 49, 6789-6801 10.1021/jm0608356
-
(2006)
J. Med. Chem.
, vol.49
, pp. 6789-6801
-
-
Huang, N.1
Shoichet, B.K.2
Irwin, J.J.3
-
35
-
-
77955656513
-
ElectroShape: Fast Molecular Similarity Calculations Incorporating Shape, Chirality and Electrostatics
-
Armstrong, M. S.; Morris, G. M.; Finn, P. W.; Sharma, R.; Moretti, L.; Cooper, R. I.; Richards, W. G. ElectroShape: Fast Molecular Similarity Calculations Incorporating Shape, Chirality and Electrostatics J. Comput.-Aided Mol. Des. 2010, 24, 789-801 10.1007/s10822-010-9374-0
-
(2010)
J. Comput.-Aided Mol. Des.
, vol.24
, pp. 789-801
-
-
Armstrong, M.S.1
Morris, G.M.2
Finn, P.W.3
Sharma, R.4
Moretti, L.5
Cooper, R.I.6
Richards, W.G.7
-
36
-
-
66449110287
-
DOCK 6: Combining Techniques to Model RNA-Small Molecule Complexes
-
Lang, P. T.; Brozell, S. R.; Mukherjee, S.; Pettersen, E. F.; Meng, E. C.; Thomas, V.; Rizzo, R. C.; Case, D. A.; James, T. L.; Kuntz, I. D. DOCK 6: Combining Techniques to Model RNA-Small Molecule Complexes RNA 2009, 15, 1219-1230 10.1261/rna.1563609
-
(2009)
RNA
, vol.15
, pp. 1219-1230
-
-
Lang, P.T.1
Brozell, S.R.2
Mukherjee, S.3
Pettersen, E.F.4
Meng, E.C.5
Thomas, V.6
Rizzo, R.C.7
Case, D.A.8
James, T.L.9
Kuntz, I.D.10
-
37
-
-
76149120388
-
AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
-
Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
-
(2010)
J. Comput. Chem.
, vol.31
, pp. 455-461
-
-
Trott, O.1
Olson, A.J.2
-
38
-
-
4444221565
-
UCSF Chimera-A Visualization System for Exploratory Research and Analysis
-
Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera-A Visualization System for Exploratory Research and Analysis J. Comput. Chem. 2004, 25, 1605-1612 10.1002/jcc.20084
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1605-1612
-
-
Pettersen, E.F.1
Goddard, T.D.2
Huang, C.C.3
Couch, G.S.4
Greenblatt, D.M.5
Meng, E.C.6
Ferrin, T.E.7
-
39
-
-
70349932423
-
AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility
-
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility J. Comput. Chem. 2009, 30, 2785-2791 10.1002/jcc.21256
-
(2009)
J. Comput. Chem.
, vol.30
, pp. 2785-2791
-
-
Morris, G.M.1
Huey, R.2
Lindstrom, W.3
Sanner, M.F.4
Belew, R.K.5
Goodsell, D.S.6
Olson, A.J.7
-
40
-
-
77956649096
-
A Survey of Cross-Validation Procedures for Model Selection
-
Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection Stat. Surv. 2010, 4, 40-79 10.1214/09-SS054
-
(2010)
Stat. Surv.
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
41
-
-
84859143413
-
4D Flexible Atom-Pairs: An Efficient Probabilistic Conformational Space Comparison for Ligand-Based Virtual Screening
-
Jahn, A.; Rosenbaum, L.; Hinselmann, G.; Zell, A. 4D Flexible Atom-Pairs: An Efficient Probabilistic Conformational Space Comparison for Ligand-Based Virtual Screening J. Cheminf. 2011, 3, 23 10.1186/1758-2946-3-23
-
(2011)
J. Cheminf.
, vol.3
, pp. 23
-
-
Jahn, A.1
Rosenbaum, L.2
Hinselmann, G.3
Zell, A.4
-
42
-
-
41349093326
-
What do We Know and when do We Know It?
-
Nicholls, A. What do We Know and when do We Know It? J. Comput.-Aided Mol. Des. 2008, 22, 239-255 10.1007/s10822-008-9170-2
-
(2008)
J. Comput.-Aided Mol. Des.
, vol.22
, pp. 239-255
-
-
Nicholls, A.1
-
43
-
-
84865265287
-
Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement
-
Neves, M. A.; Totrov, M.; Abagyan, R. Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement J. Comput.-Aided Mol. Des. 2012, 26, 675-686 10.1007/s10822-012-9547-0
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 675-686
-
-
Neves, M.A.1
Totrov, M.2
Abagyan, R.3
-
44
-
-
67650097331
-
Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy
-
Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.; Humblet, C. Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy J. Chem. Inf. Model. 2009, 49, 1455-1474 10.1021/ci900056c
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1455-1474
-
-
Cross, J.B.1
Thompson, D.C.2
Rai, B.K.3
Baber, J.C.4
Fan, K.Y.5
Hu, Y.6
Humblet, C.7
-
45
-
-
84864264343
-
Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking
-
Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking J. Med. Chem. 2012, 55, 6582-6594 10.1021/jm300687e
-
(2012)
J. Med. Chem.
, vol.55
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
|