메뉴 건너뛰기




Volumn 56, Issue 12, 2016, Pages 2495-2506

Boosting Docking-Based Virtual Screening with Deep Learning

Author keywords

[No Author keywords available]

Indexed keywords

ATOMS; COMPLEX NETWORKS; COMPLEXATION; DEEP NEURAL NETWORKS; E-LEARNING; LIGANDS; MOLECULAR MODELING; PROTEINS; STATISTICAL METHODS;

EID: 85008475964     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.6b00355     Document Type: Article
Times cited : (287)

References (45)
  • 1
    • 65749110436 scopus 로고    scopus 로고
    • Computational Intelligence Methods for Docking Scores
    • Hecht, D.; Fogel, G. B. Computational Intelligence Methods for Docking Scores Curr. Comput.-Aided Drug Des. 2009, 5, 56-68 10.2174/157340909787580863
    • (2009) Curr. Comput.-Aided Drug Des. , vol.5 , pp. 56-68
    • Hecht, D.1    Fogel, G.B.2
  • 3
    • 84862795414 scopus 로고    scopus 로고
    • Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review
    • Cheng, T.; Li, Q.; Zhou, Z.; Wang, Y.; Bryant, S. Structure-Based Virtual Screening for Drug Discovery: A Problem-Centric Review AAPS J. 2012, 14, 133-141 10.1208/s12248-012-9322-0
    • (2012) AAPS J. , vol.14 , pp. 133-141
    • Cheng, T.1    Li, Q.2    Zhou, Z.3    Wang, Y.4    Bryant, S.5
  • 4
    • 11144323163 scopus 로고    scopus 로고
    • Virtual Screening of Chemical Libraries
    • Shoichet, B. K. Virtual Screening of Chemical Libraries Nature 2004, 432, 862-865 10.1038/nature03197
    • (2004) Nature , vol.432 , pp. 862-865
    • Shoichet, B.K.1
  • 5
    • 33744551693 scopus 로고    scopus 로고
    • Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery
    • Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-Based Virtual Screening of Chemical Libraries for Drug Discovery Curr. Opin. Chem. Biol. 2006, 10, 194-202 10.1016/j.cbpa.2006.04.002
    • (2006) Curr. Opin. Chem. Biol. , vol.10 , pp. 194-202
    • Ghosh, S.1    Nie, A.2    An, J.3    Huang, Z.4
  • 6
    • 0034649618 scopus 로고    scopus 로고
    • Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations
    • Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations J. Med. Chem. 2000, 43, 4759-4767 10.1021/jm001044l
    • (2000) J. Med. Chem. , vol.43 , pp. 4759-4767
    • Bissantz, C.1    Folkers, G.2    Rognan, D.3
  • 7
    • 84901589516 scopus 로고    scopus 로고
    • Improvement of Virtual Screening Results by Docking Data Feature Analysis
    • Arciniega, M.; Lange, O. F. Improvement of Virtual Screening Results by Docking Data Feature Analysis J. Chem. Inf. Model. 2014, 54, 1401-1411 10.1021/ci500028u
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 1401-1411
    • Arciniega, M.1    Lange, O.F.2
  • 8
    • 84879242302 scopus 로고    scopus 로고
    • Combination of Ligand- and Structure-Based Methods in Virtual Screening
    • Drwal, M. N.; Griffith, R. Combination of Ligand-and Structure-Based Methods in Virtual Screening Drug Discovery Today: Technol. 2013, 10, e395-e401 10.1016/j.ddtec.2013.02.002
    • (2013) Drug Discovery Today: Technol. , vol.10 , pp. e395-e401
    • Drwal, M.N.1    Griffith, R.2
  • 9
    • 77950503976 scopus 로고    scopus 로고
    • Virtual Screening: An Endless Staircase?
    • Schneider, G. Virtual Screening: An Endless Staircase? Nat. Rev. Drug Discovery 2010, 9, 273-276 10.1038/nrd3139
    • (2010) Nat. Rev. Drug Discovery , vol.9 , pp. 273-276
    • Schneider, G.1
  • 10
    • 8844263008 scopus 로고    scopus 로고
    • Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications
    • Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications Nat. Rev. Drug Discovery 2004, 3, 935-949 10.1038/nrd1549
    • (2004) Nat. Rev. Drug Discovery , vol.3 , pp. 935-949
    • Kitchen, D.B.1    Decornez, H.2    Furr, J.R.3    Bajorath, J.4
  • 11
    • 84880552522 scopus 로고    scopus 로고
    • Comparing Neural-Network Scoring Functions and the State of the Art: Applications to Common Library Screening
    • Durrant, J. D.; Friedman, A. J.; Rogers, K. E.; McCammon, J. A. Comparing Neural-Network Scoring Functions and the State of the Art: Applications to Common Library Screening J. Chem. Inf. Model. 2013, 53, 1726-1735 10.1021/ci400042y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1726-1735
    • Durrant, J.D.1    Friedman, A.J.2    Rogers, K.E.3    McCammon, J.A.4
  • 12
    • 79952178127 scopus 로고    scopus 로고
    • A Machine Learning-Based Method to Improve Docking Scoring Functions and Its Application to Drug Repurposing
    • Kinnings, S. L.; Liu, N.; Tonge, P. J.; Jackson, R. M.; Xie, L.; Bourne, P. E. A Machine Learning-Based Method to Improve Docking Scoring Functions and Its Application to Drug Repurposing J. Chem. Inf. Model. 2011, 51, 408-419 10.1021/ci100369f
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 13
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: ANeural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes
    • Durrant, J. D.; McCammon, J. A. NNScore: ANeural-Network-Based Scoring Function for the Characterization of Protein-Ligand Complexes J. Chem. Inf. Model. 2010, 50, 1865-1871 10.1021/ci100244v
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 14
    • 77952825581 scopus 로고    scopus 로고
    • A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking
    • Ballester, P. J.; Mitchell, J. B. A Machine Learning Approach to Predicting Protein-Ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169-1175 10.1093/bioinformatics/btq112
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 16
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning Nature 2015, 521, 436-444 10.1038/nature14539
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 17
    • 69349090197 scopus 로고    scopus 로고
    • Learning Deep Architectures for AI
    • Bengio, Y. Learning Deep Architectures for AI FNT Mach. Learn. 2009, 2, 1-127 10.1561/2200000006
    • (2009) FNT Mach. Learn. , vol.2 , pp. 1-127
    • Bengio, Y.1
  • 18
    • 85048241154 scopus 로고    scopus 로고
    • Multi-Task Neural Networks for QSAR Predictions
    • arXiv:1406.1231.
    • Dahl, G. E.; Jaitly, N.; Salakhutdinov, R. Multi-Task Neural Networks for QSAR Predictions. arXiv Preprint, 2014, arXiv:1406.1231.
    • (2014) arXiv Preprint
    • Dahl, G.E.1    Jaitly, N.2    Salakhutdinov, R.3
  • 22
    • 84880542260 scopus 로고    scopus 로고
    • Deep Architectures and Deep Learning in Chemoinformatics: the Prediction of Aqueous Solubility for Drug-like Molecules
    • Lusci, A.; Pollastri, G.; Baldi, P. Deep Architectures and Deep Learning in Chemoinformatics: the Prediction of Aqueous Solubility for Drug-like Molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1563-1575
    • Lusci, A.1    Pollastri, G.2    Baldi, P.3
  • 24
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function
    • Durrant, J. D.; McCammon, J. A. NNScore 2.0: A Neural-Network Receptor-Ligand Scoring Function J. Chem. Inf. Model. 2011, 51, 2897-2903 10.1021/ci2003889
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 25
    • 84879566401 scopus 로고    scopus 로고
    • VAMMPIRE: a Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization
    • Weber, J.; Achenbach, J.; Moser, D.; Proschak, E. VAMMPIRE: a Matched Molecular Pairs Database for Structure-Based Drug Design and Optimization J. Med. Chem. 2013, 56, 5203-5207 10.1021/jm400223y
    • (2013) J. Med. Chem. , vol.56 , pp. 5203-5207
    • Weber, J.1    Achenbach, J.2    Moser, D.3    Proschak, E.4
  • 32
    • 0022471098 scopus 로고
    • Learning Representations by Back-Propagating Errors
    • Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. Learning Representations by Back-Propagating Errors Nature 1986, 323 ( 6088 ) 533-536 10.1038/323533a0
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 34
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking Sets for Molecular Docking
    • Huang, N.; Shoichet, B. K.; Irwin, J. J. Benchmarking Sets for Molecular Docking J. Med. Chem. 2006, 49, 6789-6801 10.1021/jm0608356
    • (2006) J. Med. Chem. , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 37
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
    • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 40
    • 77956649096 scopus 로고    scopus 로고
    • A Survey of Cross-Validation Procedures for Model Selection
    • Arlot, S.; Celisse, A. A Survey of Cross-Validation Procedures for Model Selection Stat. Surv. 2010, 4, 40-79 10.1214/09-SS054
    • (2010) Stat. Surv. , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 41
    • 84859143413 scopus 로고    scopus 로고
    • 4D Flexible Atom-Pairs: An Efficient Probabilistic Conformational Space Comparison for Ligand-Based Virtual Screening
    • Jahn, A.; Rosenbaum, L.; Hinselmann, G.; Zell, A. 4D Flexible Atom-Pairs: An Efficient Probabilistic Conformational Space Comparison for Ligand-Based Virtual Screening J. Cheminf. 2011, 3, 23 10.1186/1758-2946-3-23
    • (2011) J. Cheminf. , vol.3 , pp. 23
    • Jahn, A.1    Rosenbaum, L.2    Hinselmann, G.3    Zell, A.4
  • 42
    • 41349093326 scopus 로고    scopus 로고
    • What do We Know and when do We Know It?
    • Nicholls, A. What do We Know and when do We Know It? J. Comput.-Aided Mol. Des. 2008, 22, 239-255 10.1007/s10822-008-9170-2
    • (2008) J. Comput.-Aided Mol. Des. , vol.22 , pp. 239-255
    • Nicholls, A.1
  • 43
    • 84865265287 scopus 로고    scopus 로고
    • Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement
    • Neves, M. A.; Totrov, M.; Abagyan, R. Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement J. Comput.-Aided Mol. Des. 2012, 26, 675-686 10.1007/s10822-012-9547-0
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 675-686
    • Neves, M.A.1    Totrov, M.2    Abagyan, R.3
  • 44
    • 67650097331 scopus 로고    scopus 로고
    • Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy
    • Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K. Y.; Hu, Y.; Humblet, C. Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy J. Chem. Inf. Model. 2009, 49, 1455-1474 10.1021/ci900056c
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1455-1474
    • Cross, J.B.1    Thompson, D.C.2    Rai, B.K.3    Baber, J.C.4    Fan, K.Y.5    Hu, Y.6    Humblet, C.7
  • 45
    • 84864264343 scopus 로고    scopus 로고
    • Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking
    • Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking J. Med. Chem. 2012, 55, 6582-6594 10.1021/jm300687e
    • (2012) J. Med. Chem. , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.