-
1
-
-
84877933286
-
Protein-ligand docking in the new millennium - A retrospective of 10 years in the field
-
Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ,. 2013. Protein-ligand docking in the new millennium - a retrospective of 10 years in the field. Curr. Med. Chem. 20: 2296-2314.
-
(2013)
Curr. Med. Chem.
, vol.20
, pp. 2296-2314
-
-
Sousa, S.F.1
Ribeiro, A.J.2
Coimbra, J.T.3
Neves, R.P.4
Martins, S.A.5
Moorthy, N.S.6
Fernandes, P.A.7
Ramos, M.J.8
-
2
-
-
79952181220
-
Challenges and advances in computational docking: 2009 in review
-
Yuriev E, Agostino M, Ramsland PA,. 2011. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit. 24: 149-164.
-
(2011)
J. Mol. Recognit.
, vol.24
, pp. 149-164
-
-
Yuriev, E.1
Agostino, M.2
Ramsland, P.A.3
-
3
-
-
84875480305
-
Latest developments in molecular docking: 2010-2011 in review
-
Yuriev E, Ramsland PA,. 2013. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. 26: 215-239.
-
(2013)
J. Mol. Recognit.
, vol.26
, pp. 215-239
-
-
Yuriev, E.1
Ramsland, P.A.2
-
4
-
-
84871604119
-
GalaxyDock: Protein-ligand docking with flexible protein side-chains
-
Shin WH, Seok C,. 2012. GalaxyDock: protein-ligand docking with flexible protein side-chains. J. Chem. Inf. Model. 52: 3225-3232.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 3225-3232
-
-
Shin, W.H.1
Seok, C.2
-
5
-
-
84885660146
-
GalaxyDock2: Protein-ligand docking using beta-complex and global optimization
-
Shin WH, Kim JK, Kim DS, Seok C,. 2013. GalaxyDock2: protein-ligand docking using beta-complex and global optimization. J. Comput. Chem. 34: 2647-2656.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 2647-2656
-
-
Shin, W.H.1
Kim, J.K.2
Kim, D.S.3
Seok, C.4
-
6
-
-
85027917385
-
Consensus Induced Fit Docking (cIFD): Methodology, validation, and application to the discovery of novel Crm1 inhibitors
-
Kalid O, Toledo Warshaviak D, Shechter S, Sherman W, Shacham S,. 2012. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. J. Comput.-Aided Mol. Des. 26: 1217-1228.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 1217-1228
-
-
Kalid, O.1
Toledo Warshaviak, D.2
Shechter, S.3
Sherman, W.4
Shacham, S.5
-
7
-
-
84855945133
-
Rosetta Ligand docking with flexible XML protocols
-
Lemmon G, Meiler J,. 2012. Rosetta Ligand docking with flexible XML protocols. Methods Mol. Biol. 819: 143-155.
-
(2012)
Methods Mol. Biol.
, vol.819
, pp. 143-155
-
-
Lemmon, G.1
Meiler, J.2
-
8
-
-
84873050836
-
S4MPLE - Sampler for multiple protein-ligand entities: Simultaneous docking of several entities
-
Hoffer L, Horvath D,. 2013. S4MPLE - sampler for multiple protein-ligand entities: simultaneous docking of several entities. J. Chem. Inf. Model. 53: 88-102.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 88-102
-
-
Hoffer, L.1
Horvath, D.2
-
9
-
-
84876587110
-
Automated docking with protein flexibility in the design of femtomolar " click chemistry" inhibitors of acetylcholinesterase
-
Morris GM, Green LG, Radic Z, Taylor P, Sharpless KB, Olson AJ, Grynszpan F,. 2013. Automated docking with protein flexibility in the design of femtomolar " click chemistry" inhibitors of acetylcholinesterase. J. Chem. Inf. Model. 53: 898-906.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 898-906
-
-
Morris, G.M.1
Green, L.G.2
Radic, Z.3
Taylor, P.4
Sharpless, K.B.5
Olson, A.J.6
Grynszpan, F.7
-
10
-
-
84858796784
-
Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina
-
Abreu RM, Froufe HJ, Queiroz MJ, Ferreira IC,. 2012. Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina. Chem. Biol. Drug Des. 79: 530-534.
-
(2012)
Chem. Biol. Drug Des.
, vol.79
, pp. 530-534
-
-
Abreu, R.M.1
Froufe, H.J.2
Queiroz, M.J.3
Ferreira, I.C.4
-
11
-
-
84865088839
-
Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units
-
Mamonov AB, Lettieri S, Ding Y, Sarver JL, Palli R, Cunningham TF, Saxena S, Zuckerman DM,. 2012. Tunable, mixed-resolution modeling using library-based Monte Carlo and graphics processing units. J. Chem. Theory. Comput. 8: 2921-2929.
-
(2012)
J. Chem. Theory. Comput.
, vol.8
, pp. 2921-2929
-
-
Mamonov, A.B.1
Lettieri, S.2
Ding, Y.3
Sarver, J.L.4
Palli, R.5
Cunningham, T.F.6
Saxena, S.7
Zuckerman, D.M.8
-
12
-
-
84867760849
-
Experimental-like affinity constants and enantioselectivity estimates from flexible docking
-
Gumede NJ, Singh P, Sabela MI, Bisetty K, Escuder-Gilabert L, Medina-Hernandez MJ, Sagrado S,. 2012. Experimental-like affinity constants and enantioselectivity estimates from flexible docking. J. Chem. Inf. Model. 52: 2754-2759.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2754-2759
-
-
Gumede, N.J.1
Singh, P.2
Sabela, M.I.3
Bisetty, K.4
Escuder-Gilabert, L.5
Medina-Hernandez, M.J.6
Sagrado, S.7
-
13
-
-
84879592208
-
DOLINA - Docking based on a local induced-fit algorithm: Application toward small-molecule binding to nuclear receptors
-
Smiesko M,. 2013. DOLINA - docking based on a local induced-fit algorithm: application toward small-molecule binding to nuclear receptors. J. Chem. Inf. Model. 53: 1415-1423.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1415-1423
-
-
Smiesko, M.1
-
14
-
-
84876691506
-
Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure
-
Schumann M, Armen RS,. 2013. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure. J. Comput. Chem. 34: 1258-1269.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 1258-1269
-
-
Schumann, M.1
Armen, R.S.2
-
15
-
-
84867743951
-
Modeling loop backbone flexibility in receptor-ligand docking simulations
-
Flick J, Tristram F, Wenzel W,. 2012. Modeling loop backbone flexibility in receptor-ligand docking simulations. J. Comput. Chem. 33: 2504-2515.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 2504-2515
-
-
Flick, J.1
Tristram, F.2
Wenzel, W.3
-
16
-
-
84871381838
-
Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design
-
Sinko W, Lindert S, McCammon JA,. 2013. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug Des. 81: 41-49.
-
(2013)
Chem. Biol. Drug Des.
, vol.81
, pp. 41-49
-
-
Sinko, W.1
Lindert, S.2
McCammon, J.A.3
-
17
-
-
84861499934
-
Potential and limitations of ensemble docking
-
Korb O, Olsson TS, Bowden SJ, Hall RJ, Verdonk ML, Liebeschuetz JW, Cole JC,. 2012. Potential and limitations of ensemble docking. J. Chem. Inf. Model. 52: 1262-1274.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1262-1274
-
-
Korb, O.1
Olsson, T.S.2
Bowden, S.J.3
Hall, R.J.4
Verdonk, M.L.5
Liebeschuetz, J.W.6
Cole, J.C.7
-
18
-
-
84867760558
-
ALiBERO: Evolving a team of complementary pocket conformations rather than a single leader
-
Rueda M, Totrov M, Abagyan R,. 2012. ALiBERO: evolving a team of complementary pocket conformations rather than a single leader. J. Chem. Inf. Model. 52: 2705-2714.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2705-2714
-
-
Rueda, M.1
Totrov, M.2
Abagyan, R.3
-
19
-
-
84858046565
-
Utilizing experimental data for reducing ensemble size in flexible-protein docking
-
Xu M, Lill MA,. 2012. Utilizing experimental data for reducing ensemble size in flexible-protein docking. J. Chem. Inf. Model. 52: 187-198.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 187-198
-
-
Xu, M.1
Lill, M.A.2
-
20
-
-
84864000092
-
Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering
-
Osguthorpe DJ, Sherman W, Hagler AT,. 2012. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem. Biol. Drug Des. 80: 182-193.
-
(2012)
Chem. Biol. Drug Des.
, vol.80
, pp. 182-193
-
-
Osguthorpe, D.J.1
Sherman, W.2
Hagler, A.T.3
-
21
-
-
84860835824
-
Flexible protein-ligand docking using the Fleksy protocol
-
Wagener M, Vlieg JD, Nabuurs SB,. 2012. Flexible protein-ligand docking using the Fleksy protocol. J. Comput. Chem. 33: 1215-1217.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 1215-1217
-
-
Wagener, M.1
Vlieg, J.D.2
Nabuurs, S.B.3
-
22
-
-
84888614101
-
The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs
-
Tarcsay A, Paragi G, Vass M, Jojart B, Bogar F, Keseru GM,. 2013. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J. Chem. Inf. Model. 53: 2990-2999.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2990-2999
-
-
Tarcsay, A.1
Paragi, G.2
Vass, M.3
Jojart, B.4
Bogar, F.5
Keseru, G.M.6
-
23
-
-
84867766726
-
Protein flexibility in virtual screening: The BACE-1 case study
-
Cosconati S, Marinelli L, Di Leva FS, La Pietra V, De Simone A, Mancini F, Andrisano V, Novellino E, Goodsell DS, Olson AJ,. 2012. Protein flexibility in virtual screening: the BACE-1 case study. J. Chem. Inf. Model. 52: 2697-2704.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2697-2704
-
-
Cosconati, S.1
Marinelli, L.2
Di Leva, F.S.3
La Pietra, V.4
De Simone, A.5
Mancini, F.6
Andrisano, V.7
Novellino, E.8
Goodsell, D.S.9
Olson, A.J.10
-
24
-
-
84862282513
-
Exploring protein flexibility: Incorporating structural ensembles from crystal structures and simulation into virtual screening protocols
-
Osguthorpe DJ, Sherman W, Hagler AT,. 2012. Exploring protein flexibility: Incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J. Phys. Chem. B 116: 6952-6959.
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 6952-6959
-
-
Osguthorpe, D.J.1
Sherman, W.2
Hagler, A.T.3
-
25
-
-
84867773348
-
Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations
-
Dixit A, Verkhivker GM,. 2012. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations. J. Chem. Inf. Model. 52: 2501-2515.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2501-2515
-
-
Dixit, A.1
Verkhivker, G.M.2
-
26
-
-
84867328344
-
FRED and HYBRID docking performance on standardized datasets
-
McGann M,. 2012. FRED and HYBRID docking performance on standardized datasets. J. Comput.-Aided Mol. Des. 26: 897-906.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 897-906
-
-
McGann, M.1
-
27
-
-
84883214603
-
Docking challenge: Protein sampling and molecular docking performance
-
Elokely KM, Doerksen RJ,. 2013. Docking challenge: protein sampling and molecular docking performance. J. Chem. Inf. Model. 53: 1934-1945.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1934-1945
-
-
Elokely, K.M.1
Doerksen, R.J.2
-
28
-
-
84885132782
-
Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins
-
Rashad AA, Keller PA,. 2013. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins. J. Mol. Graph. Model. 44: 241-252.
-
(2013)
J. Mol. Graph. Model.
, vol.44
, pp. 241-252
-
-
Rashad, A.A.1
Keller, P.A.2
-
29
-
-
84864695108
-
Insights from comprehensive multiple receptor docking to HDAC8
-
Brunsteiner M, Petukhov PA,. 2012. Insights from comprehensive multiple receptor docking to HDAC8. J. Mol. Model. 18: 3927-3939.
-
(2012)
J. Mol. Model.
, vol.18
, pp. 3927-3939
-
-
Brunsteiner, M.1
Petukhov, P.A.2
-
30
-
-
84884799730
-
Discovery of Staphylococcus aureus sortase A inhibitors using virtual screening and the relaxed complex scheme
-
Chan AH, Wereszczynski J, Amer BR, Yi SW, Jung ME, McCammon JA, Clubb RT,. 2013. Discovery of Staphylococcus aureus sortase A inhibitors using virtual screening and the relaxed complex scheme. Chem. Biol. Drug Des. 82: 418-428.
-
(2013)
Chem. Biol. Drug Des.
, vol.82
, pp. 418-428
-
-
Chan, A.H.1
Wereszczynski, J.2
Amer, B.R.3
Yi, S.W.4
Jung, M.E.5
McCammon, J.A.6
Clubb, R.T.7
-
31
-
-
84873358025
-
Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands
-
Vilar S, Costanzi S,. 2013. Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands. Methods Enzymol. 522: 263-278.
-
(2013)
Methods Enzymol.
, vol.522
, pp. 263-278
-
-
Vilar, S.1
Costanzi, S.2
-
32
-
-
84893387507
-
Homology modeling of human muscarinic acetylcholine receptors
-
Thomas T, McLean KC, McRobb FM, Manallack DT, Chalmers DK, Yuriev E,. 2014. Homology modeling of human muscarinic acetylcholine receptors. J. Chem. Inf. Model. 54: 243-253.
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 243-253
-
-
Thomas, T.1
McLean, K.C.2
McRobb, F.M.3
Manallack, D.T.4
Chalmers, D.K.5
Yuriev, E.6
-
33
-
-
84874441507
-
Multiple structures for virtual ligand screening: Defining binding site properties-based criteria to optimize the selection of the query
-
Ben Nasr N, Guillemain H, Lagarde N, Zagury JF, Montes M,. 2013. Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J. Chem. Inf. Model. 53: 293-311.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 293-311
-
-
Ben Nasr, N.1
Guillemain, H.2
Lagarde, N.3
Zagury, J.F.4
Montes, M.5
-
34
-
-
84860492894
-
A GPU-based approach to accelerate computational protein-DNA docking
-
Wu J, Chen C, Hong B,. 2012. A GPU-based approach to accelerate computational protein-DNA docking. Comput. Sci. Eng. 14: 20-28.
-
(2012)
Comput. Sci. Eng.
, vol.14
, pp. 20-28
-
-
Wu, J.1
Chen, C.2
Hong, B.3
-
35
-
-
84962704372
-
High performance transcription factor-DNA docking with GPU computing
-
Wu JD, Hong B, Takeda T, Guo JT,. 2012. High performance transcription factor-DNA docking with GPU computing. Proteome Sci. 10: S17.
-
(2012)
Proteome Sci.
, vol.10
, pp. S17
-
-
Wu, J.D.1
Hong, B.2
Takeda, T.3
Guo, J.T.4
-
36
-
-
84884855084
-
Extending the generality of molecular dynamics simulations on a special-purpose machine
-
IEEE: New York
-
Scarpazza DP, Ierardi DJ, Lerer AK, Mackenzie KM, Pan AC, Bank JA, Chow E, Dror RO, Grossman JP, Killebrew D, Moraes MA, Predescu C, Salmon JK, Shaw DE,. 2013. Extending the generality of molecular dynamics simulations on a special-purpose machine, in: IEEE 27th International Parallel and Distributed Processing Symposium, IEEE: New York. p. 933-945.
-
(2013)
IEEE 27th International Parallel and Distributed Processing Symposium
, pp. 933-945
-
-
Scarpazza, D.P.1
Ierardi, D.J.2
Lerer, A.K.3
Mackenzie, K.M.4
Pan, A.C.5
Bank, J.A.6
Chow, E.7
Dror, R.O.8
Grossman, J.P.9
Killebrew, D.10
Moraes, M.A.11
Predescu, C.12
Salmon, J.K.13
Shaw, D.E.14
-
37
-
-
84877277360
-
WFReDoW: A cloud-based web environment to handle molecular docking simulations of a fully flexible receptor model
-
De Paris R, Frantz FA, de Souza ON, Ruiz DDA,. 2013. wFReDoW: A cloud-based web environment to handle molecular docking simulations of a fully flexible receptor model. Biomed Res. Int. 2013: 469363.
-
(2013)
Biomed Res. Int.
, vol.2013
, pp. 469363
-
-
De Paris, R.1
Frantz, F.A.2
De Souza, O.N.3
Ruiz, D.D.A.4
-
38
-
-
84863714870
-
Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design
-
Chaudhuri R, Carrillo O, Laughton CA, Orozco M,. 2012. Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design. J. Chem. Theory. Comput. 8: 2204-2214.
-
(2012)
J. Chem. Theory. Comput.
, vol.8
, pp. 2204-2214
-
-
Chaudhuri, R.1
Carrillo, O.2
Laughton, C.A.3
Orozco, M.4
-
39
-
-
84874646837
-
The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics
-
Nowosielski M, Hoffmann M, Kuron A, Korycka-Machala M, Dziadek J,. 2013. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. J. Comput. Chem. 34: 750-756.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 750-756
-
-
Nowosielski, M.1
Hoffmann, M.2
Kuron, A.3
Korycka-Machala, M.4
Dziadek, J.5
-
40
-
-
84859166785
-
On the applicability of elastic network normal modes in small-molecule docking
-
Dietzen M, Zotenko E, Hildebrandt A, Lengauer T,. 2012. On the applicability of elastic network normal modes in small-molecule docking. J. Chem. Inf. Model. 52: 844-856.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 844-856
-
-
Dietzen, M.1
Zotenko, E.2
Hildebrandt, A.3
Lengauer, T.4
-
41
-
-
84880701287
-
Effects of histidine protonation and rotameric states on virtual screening of M. Tuberculosis RmlC
-
Kim MO, Nichols SE, Wang Y, McCammon JA,. 2013. Effects of histidine protonation and rotameric states on virtual screening of M. tuberculosis RmlC. J. Comput.-Aided Mol. Des. 27: 235-246.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 235-246
-
-
Kim, M.O.1
Nichols, S.E.2
Wang, Y.3
McCammon, J.A.4
-
42
-
-
84880922581
-
Protein pocket and ligand shape comparison and its application in virtual screening
-
Wirth M, Volkamer A, Zoete V, Rippmann F, Michielin O, Rarey M, Sauer WH,. 2013. Protein pocket and ligand shape comparison and its application in virtual screening. J. Comput.-Aided Mol. Des. 27: 511-524.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 511-524
-
-
Wirth, M.1
Volkamer, A.2
Zoete, V.3
Rippmann, F.4
Michielin, O.5
Rarey, M.6
Sauer, W.H.7
-
43
-
-
84880529288
-
Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments
-
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W,. 2013. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 27: 221-234.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 221-234
-
-
Sastry, G.M.1
Adzhigirey, M.2
Day, T.3
Annabhimoju, R.4
Sherman, W.5
-
44
-
-
84858011865
-
Binding affinity prediction for ligands and receptors forming tautomers and ionization species: Inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2)
-
Natesan S, Subramaniam R, Bergeron C, Balaz S,. 2012. Binding affinity prediction for ligands and receptors forming tautomers and ionization species: inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2). J. Med. Chem. 55: 2035-2047.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 2035-2047
-
-
Natesan, S.1
Subramaniam, R.2
Bergeron, C.3
Balaz, S.4
-
45
-
-
84878388412
-
Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors
-
Kalyaanamoorthy S, Chen YP,. 2013. Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors. J. Mol. Graph. Model. 44: 44-53.
-
(2013)
J. Mol. Graph. Model.
, vol.44
, pp. 44-53
-
-
Kalyaanamoorthy, S.1
Chen, Y.P.2
-
46
-
-
84879286616
-
Effect of pH and ligand charge state on BACE-1 fragment docking performance
-
Dominguez JL, Villaverde MC, Sussman F,. 2013. Effect of pH and ligand charge state on BACE-1 fragment docking performance. J. Comput.-Aided Mol. Des. 27: 403-417.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 403-417
-
-
Dominguez, J.L.1
Villaverde, M.C.2
Sussman, F.3
-
47
-
-
84859192649
-
Numerical errors and chaotic behavior in docking simulations
-
Feher M, Williams CI,. 2012. Numerical errors and chaotic behavior in docking simulations. J. Chem. Inf. Model. 52: 724-738.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 724-738
-
-
Feher, M.1
Williams, C.I.2
-
48
-
-
84867582901
-
FDA approved drugs complexed to their targets: Evaluating pose prediction accuracy of docking protocols
-
Bohari MH, Sastry GN,. 2012. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J. Mol. Model. 18: 4263-4274.
-
(2012)
J. Mol. Model.
, vol.18
, pp. 4263-4274
-
-
Bohari, M.H.1
Sastry, G.N.2
-
49
-
-
84874445951
-
Consensus docking: Improving the reliability of docking in a virtual screening context
-
Houston DR, Walkinshaw MD,. 2013. Consensus docking: improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model. 53: 384-390.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 384-390
-
-
Houston, D.R.1
Walkinshaw, M.D.2
-
50
-
-
84876557057
-
In silico fragment-based drug discovery: Setup and validation of a fragment-to-lead computational protocol using S4MPLE
-
Hoffer L, Renaud JP, Horvath D,. 2013. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE. J. Chem. Inf. Model. 53: 836-851.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 836-851
-
-
Hoffer, L.1
Renaud, J.P.2
Horvath, D.3
-
51
-
-
84879596822
-
Use of experimental design to optimize docking performance: The case of LiGenDock, the docking module of LiGen, a new de novo design program
-
Beato C, Beccari AR, Cavazzoni C, Lorenzi S, Costantino G,. 2013. Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program. J. Chem. Inf. Model. 53: 1503-1517.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1503-1517
-
-
Beato, C.1
Beccari, A.R.2
Cavazzoni, C.3
Lorenzi, S.4
Costantino, G.5
-
52
-
-
0022993246
-
Docking flexible ligands to macromolecular receptors by molecular shape
-
DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R,. 1986. Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem. 29: 2149-2153.
-
(1986)
J. Med. Chem.
, vol.29
, pp. 2149-2153
-
-
DesJarlais, R.L.1
Sheridan, R.P.2
Dixon, J.S.3
Kuntz, I.D.4
Venkataraghavan, R.5
-
53
-
-
84879581777
-
LiGen: A high performance workflow for chemistry driven de novo design
-
Beccari AR, Cavazzoni C, Beato C, Costantino G,. 2013. LiGen: a high performance workflow for chemistry driven de novo design. J. Chem. Inf. Model. 53: 1518-1527.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1518-1527
-
-
Beccari, A.R.1
Cavazzoni, C.2
Beato, C.3
Costantino, G.4
-
54
-
-
84862010592
-
Ligand aligning method for molecular docking: Alignment of property-weighted vectors
-
Joung JY, Nam KY, Cho KH, No KT,. 2012. Ligand aligning method for molecular docking: alignment of property-weighted vectors. J. Chem. Inf. Model. 52: 984-995.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 984-995
-
-
Joung, J.Y.1
Nam, K.Y.2
Cho, K.H.3
No, K.T.4
-
55
-
-
84883250593
-
SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes
-
Zilian D, Sotriffer CA,. 2013. SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 53: 1923-1933.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
56
-
-
84887106527
-
Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines
-
Koppisetty CA, Frank M, Kemp GJ, Nyholm PG,. 2013. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J. Chem. Inf. Model. 53: 2559-2570.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2559-2570
-
-
Koppisetty, C.A.1
Frank, M.2
Kemp, G.J.3
Nyholm, P.G.4
-
57
-
-
84883218268
-
HotLig: A molecular surface-directed approach to scoring protein-ligand interactions
-
Wang SH, Wu YT, Kuo SC, Yu J,. 2013. HotLig: A molecular surface-directed approach to scoring protein-ligand interactions. J. Chem. Inf. Model. 53: 2181-2195.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2181-2195
-
-
Wang, S.H.1
Wu, Y.T.2
Kuo, S.C.3
Yu, J.4
-
58
-
-
84878201814
-
Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions
-
Zheng Z, Merz KM, Jr, 2013. Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions. J. Chem. Inf. Model. 53: 1073-1083.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1073-1083
-
-
Zheng, Z.1
Merz, K.M.2
-
59
-
-
84879115826
-
Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: Development and application on kinase inhibitors
-
Rao L, Zhang IY, Guo W, Feng L, Meggers E, Xu X,. 2013. Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: development and application on kinase inhibitors. J. Comput. Chem. 34: 1636-1646.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 1636-1646
-
-
Rao, L.1
Zhang, I.Y.2
Guo, W.3
Feng, L.4
Meggers, E.5
Xu, X.6
-
60
-
-
84876848837
-
Quantum mechanical scoring: Structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-A]pyrimidines
-
Brahmkshatriya PS, Dobes P, Fanfrlik J, Rezac J, Paruch K, Bronowska A, Lepsik M, Hobza P,. 2013. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-a]pyrimidines. Curr. Comp.-Aided Drug Des. 9: 118-129.
-
(2013)
Curr. Comp.-Aided Drug Des.
, vol.9
, pp. 118-129
-
-
Brahmkshatriya, P.S.1
Dobes, P.2
Fanfrlik, J.3
Rezac, J.4
Paruch, K.5
Bronowska, A.6
Lepsik, M.7
Hobza, P.8
-
61
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
Ballester PJ, Mitchell JB,. 2010. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26: 1169-1175.
-
(2010)
Bioinformatics
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.2
-
62
-
-
84888606432
-
Binding affinity prediction for protein-ligand complexes based on beta contacts and B factor
-
Liu Q, Kwoh CK, Li J,. 2013. Binding affinity prediction for protein-ligand complexes based on beta contacts and B factor. J. Chem. Inf. Model. 53: 3076-3085.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3076-3085
-
-
Liu, Q.1
Kwoh, C.K.2
Li, J.3
-
63
-
-
84876531629
-
Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints
-
Chupakhin V, Marcou G, Baskin I, Varnek A, Rognan D,. 2013. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J. Chem. Inf. Model. 53: 763-772.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 763-772
-
-
Chupakhin, V.1
Marcou, G.2
Baskin, I.3
Varnek, A.4
Rognan, D.5
-
64
-
-
84888602591
-
Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction
-
Brylinski M,. 2013. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. J. Chem. Inf. Model. 53: 3097-3112.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3097-3112
-
-
Brylinski, M.1
-
65
-
-
84875428269
-
ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
-
Li GB, Yang LL, Wang WJ, Li LL, Yang SY,. 2013. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 592-600
-
-
Li, G.B.1
Yang, L.L.2
Wang, W.J.3
Li, L.L.4
Yang, S.Y.5
-
66
-
-
84880698928
-
Optimization of molecular docking scores with support vector rank regression
-
Wang W, He W, Zhou X, Chen X,. 2013. Optimization of molecular docking scores with support vector rank regression. Proteins 81: 1386-1398.
-
(2013)
Proteins
, vol.81
, pp. 1386-1398
-
-
Wang, W.1
He, W.2
Zhou, X.3
Chen, X.4
-
67
-
-
84873041650
-
Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
-
Ding B, Wang J, Li N, Wang W,. 2013. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J. Chem. Inf. Model. 53: 114-122.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 114-122
-
-
Ding, B.1
Wang, J.2
Li, N.3
Wang, W.4
-
68
-
-
84878176071
-
Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
-
Ding B, Li N, Wang W,. 2013. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J. Chem. Inf. Model. 53: 1213-1222.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1213-1222
-
-
Ding, B.1
Li, N.2
Wang, W.3
-
69
-
-
84896705093
-
Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology
-
Hsin KY, Ghosh S, Kitano H,. 2013. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 8: e83922.
-
(2013)
PLoS One
, vol.8
, pp. e83922
-
-
Hsin, K.Y.1
Ghosh, S.2
Kitano, H.3
-
70
-
-
84864950736
-
A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction
-
Ashtawy HM, Mahapatra NR,. 2012. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9: 1301-1313.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.9
, pp. 1301-1313
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
71
-
-
83555178458
-
The interprotein scoring noises in glide docking scores
-
Wang W, Zhou X, He W, Fan Y, Chen Y, Chen X,. 2012. The interprotein scoring noises in glide docking scores. Proteins 80: 169-183.
-
(2012)
Proteins
, vol.80
, pp. 169-183
-
-
Wang, W.1
Zhou, X.2
He, W.3
Fan, Y.4
Chen, Y.5
Chen, X.6
-
72
-
-
84874111137
-
A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: Methods behind the HYDE scoring function
-
Schneider N, Lange G, Hindle S, Klein R, Rarey M,. 2013. A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput.-Aided Mol. Des. 27: 15-29.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 15-29
-
-
Schneider, N.1
Lange, G.2
Hindle, S.3
Klein, R.4
Rarey, M.5
-
73
-
-
84880552522
-
Comparing neural-network scoring functions and the state of the art: Applications to common library screening
-
Durrant JD, Friedman AJ, Rogers KE, McCammon JA,. 2013. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J. Chem. Inf. Model. 53: 1726-1735.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1726-1735
-
-
Durrant, J.D.1
Friedman, A.J.2
Rogers, K.E.3
McCammon, J.A.4
-
74
-
-
84884185651
-
One size does not fit all: The limits of structure-based models in drug discovery
-
Ross GA, Morris GM, Biggin PC,. 2013. One size does not fit all: the limits of structure-based models in drug discovery. J. Chem. Theory. Comput. 9: 4266-4274.
-
(2013)
J. Chem. Theory. Comput.
, vol.9
, pp. 4266-4274
-
-
Ross, G.A.1
Morris, G.M.2
Biggin, P.C.3
-
75
-
-
33846524439
-
Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding
-
Young T, Abel R, Kim B, Berne BJ, Friesner RA,. 2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. U. S. A. 104: 808-813.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 808-813
-
-
Young, T.1
Abel, R.2
Kim, B.3
Berne, B.J.4
Friesner, R.A.5
-
76
-
-
84874299846
-
Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: The use of WaterMap
-
Yang Y, Lightstone FC, Wong SE,. 2013. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap. Expert Opin. Drug Discov. 8: 277-287.
-
(2013)
Expert Opin. Drug Discov.
, vol.8
, pp. 277-287
-
-
Yang, Y.1
Lightstone, F.C.2
Wong, S.E.3
-
77
-
-
84863160413
-
Application of MM-Gb/SA and WaterMap to SRC kinase inhibitor potency prediction
-
Kohlmann A, Zhu X, Dalgarno D,. 2012. Application of MM-GB/SA and WaterMap to SRC kinase inhibitor potency prediction. ACS Med. Chem. Lett. 3: 94-99.
-
(2012)
ACS Med. Chem. Lett.
, vol.3
, pp. 94-99
-
-
Kohlmann, A.1
Zhu, X.2
Dalgarno, D.3
-
78
-
-
84861495307
-
Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: Impact on GOLD docking performance
-
Nurisso A, Bravo J, Carrupt PA, Daina A,. 2012. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: impact on GOLD docking performance. J. Chem. Inf. Model. 52: 1319-1327.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1319-1327
-
-
Nurisso, A.1
Bravo, J.2
Carrupt, P.A.3
Daina, A.4
-
79
-
-
84883222198
-
Investigation on the effect of key water molecules on docking performance in CSARdock exercise
-
Kumar A, Zhang KY,. 2013. Investigation on the effect of key water molecules on docking performance in CSARdock exercise. J. Chem. Inf. Model. 53: 1880-1892.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1880-1892
-
-
Kumar, A.1
Zhang, K.Y.2
-
80
-
-
84856397848
-
A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking
-
Forli S, Olson AJ,. 2012. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 55: 623-638.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 623-638
-
-
Forli, S.1
Olson, A.J.2
-
81
-
-
84857748866
-
Rapid and accurate prediction and scoring of water molecules in protein binding sites
-
Ross GA, Morris GM, Biggin PC,. 2012. Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One 7: e32036.
-
(2012)
PLoS One
, vol.7
, pp. e32036
-
-
Ross, G.A.1
Morris, G.M.2
Biggin, P.C.3
-
82
-
-
84865114760
-
Multiple ligand docking by Glide: Implications for virtual second-site screening
-
Vass M, Tarcsay A, Keseru GM,. 2012. Multiple ligand docking by Glide: implications for virtual second-site screening. J. Comput.-Aided Mol. Des. 26: 821-834.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 821-834
-
-
Vass, M.1
Tarcsay, A.2
Keseru, G.M.3
-
83
-
-
84880406167
-
Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities
-
Barelier S, Boyce SE, Fish I, Fischer M, Goodin DB, Shoichet BK,. 2013. Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities. PLoS One 8: e69153.
-
(2013)
PLoS One
, vol.8
, pp. e69153
-
-
Barelier, S.1
Boyce, S.E.2
Fish, I.3
Fischer, M.4
Goodin, D.B.5
Shoichet, B.K.6
-
84
-
-
84879518297
-
Towards ligand docking including explicit interface water molecules
-
Lemmon G, Meiler J,. 2013. Towards ligand docking including explicit interface water molecules. PLoS One 8: e67536.
-
(2013)
PLoS One
, vol.8
, pp. e67536
-
-
Lemmon, G.1
Meiler, J.2
-
85
-
-
84885362304
-
Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies?
-
Mulakala C, Viswanadhan VN,. 2013. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? J. Mol. Graph. Model. 46: 41-51.
-
(2013)
J. Mol. Graph. Model.
, vol.46
, pp. 41-51
-
-
Mulakala, C.1
Viswanadhan, V.N.2
-
86
-
-
84873047704
-
MM/GBSA binding energy prediction on the PDBbind data set: Successes, failures, and directions for further improvement
-
Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM,. 2013. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model. 53: 201-209.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 201-209
-
-
Greenidge, P.A.1
Kramer, C.2
Mozziconacci, J.C.3
Wolf, R.M.4
-
87
-
-
84879596436
-
Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization
-
Liu J, He X, Zhang JZ,. 2013. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. J. Chem. Inf. Model. 53: 1306-1314.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1306-1314
-
-
Liu, J.1
He, X.2
Zhang, J.Z.3
-
88
-
-
84859815041
-
In silico binding free energy predictability with pi-pi interaction energy-augmented scoring function: Benzimidazole Raf inhibitors as a case study
-
Chung JY, Cho SJ, Cho AE, Hah JM,. 2012. In silico binding free energy predictability with pi-pi interaction energy-augmented scoring function: benzimidazole Raf inhibitors as a case study. Bioorg. Med. Chem. Lett. 22: 3278-3283.
-
(2012)
Bioorg. Med. Chem. Lett.
, vol.22
, pp. 3278-3283
-
-
Chung, J.Y.1
Cho, S.J.2
Cho, A.E.3
Hah, J.M.4
-
89
-
-
84879834132
-
Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme
-
Puiatti M, Borioni JL, Vallejo MG, Cabrera JL, Agnese AM, Ortega MG, Pierini AB,. 2013. Study of the interaction of Huperzia saururus Lycopodium alkaloids with the acetylcholinesterase enzyme. J. Mol. Graph. Model. 44: 136-144.
-
(2013)
J. Mol. Graph. Model.
, vol.44
, pp. 136-144
-
-
Puiatti, M.1
Borioni, J.L.2
Vallejo, M.G.3
Cabrera, J.L.4
Agnese, A.M.5
Ortega, M.G.6
Pierini, A.B.7
-
90
-
-
84892637070
-
Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography
-
Topin J, Arnaud J, Sarkar A, Audfray A, Gillon E, Perez S, Jamet H, Varrot A, Imberty A, Thomas A,. 2013. Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography. PLoS One 8: e71149.
-
(2013)
PLoS One
, vol.8
, pp. e71149
-
-
Topin, J.1
Arnaud, J.2
Sarkar, A.3
Audfray, A.4
Gillon, E.5
Perez, S.6
Jamet, H.7
Varrot, A.8
Imberty, A.9
Thomas, A.10
-
91
-
-
84867332190
-
Virtual fragment screening: Exploration of MM-PBSA re-scoring
-
Kawatkar S, Moustakas D, Miller M, Joseph-McCarthy D,. 2012. Virtual fragment screening: exploration of MM-PBSA re-scoring. J. Comput.-Aided Mol. Des. 26: 921-934.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 921-934
-
-
Kawatkar, S.1
Moustakas, D.2
Miller, M.3
Joseph-Mccarthy, D.4
-
92
-
-
84859444429
-
Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods
-
Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U,. 2012. Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods. J. Comput.-Aided Mol. Des. 26: 527-541.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 527-541
-
-
Mikulskis, P.1
Genheden, S.2
Rydberg, P.3
Sandberg, L.4
Olsen, L.5
Ryde, U.6
-
93
-
-
84868699636
-
Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations
-
Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G,. 2012. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur. J. Med. Chem. 58: 431-440.
-
(2012)
Eur. J. Med. Chem.
, vol.58
, pp. 431-440
-
-
Sgobba, M.1
Caporuscio, F.2
Anighoro, A.3
Portioli, C.4
Rastelli, G.5
-
94
-
-
84865165896
-
An efficient computational method for calculating ligand binding affinities
-
Suenaga A, Okimoto N, Hirano Y, Fukui K,. 2012. An efficient computational method for calculating ligand binding affinities. PLoS One 7: e42846.
-
(2012)
PLoS One
, vol.7
, pp. e42846
-
-
Suenaga, A.1
Okimoto, N.2
Hirano, Y.3
Fukui, K.4
-
95
-
-
84866150181
-
3D-RISM-Dock: A new fragment-based drug design protocol
-
Nikolic D, Blinov N, Wishart D, Kovalenko A,. 2012. 3D-RISM-Dock: A new fragment-based drug design protocol. J. Chem. Theory. Comput. 8: 3356-3372.
-
(2012)
J. Chem. Theory. Comput.
, vol.8
, pp. 3356-3372
-
-
Nikolic, D.1
Blinov, N.2
Wishart, D.3
Kovalenko, A.4
-
96
-
-
84874310966
-
The application of quantum mechanics in structure-based drug design
-
Mucs D, Bryce RA,. 2013. The application of quantum mechanics in structure-based drug design. Expert Opin. Drug Discov. 8: 263-276.
-
(2013)
Expert Opin. Drug Discov.
, vol.8
, pp. 263-276
-
-
Mucs, D.1
Bryce, R.A.2
-
97
-
-
84860835748
-
A semiempirical approach to ligand-binding affinities: Dependence on the Hamiltonian and corrections
-
Mikulskis P, Genheden S, Wichmann K, Ryde U,. 2012. A semiempirical approach to ligand-binding affinities: dependence on the Hamiltonian and corrections. J. Comput. Chem. 33: 1179-1189.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 1179-1189
-
-
Mikulskis, P.1
Genheden, S.2
Wichmann, K.3
Ryde, U.4
-
98
-
-
84873047397
-
How to improve docking accuracy of AutoDock4.2: A case study using different electrostatic potentials
-
Hou X, Du J, Zhang J, Du L, Fang H, Li M,. 2013. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials. J. Chem. Inf. Model. 53: 188-200.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 188-200
-
-
Hou, X.1
Du, J.2
Zhang, J.3
Du, L.4
Fang, H.5
Li, M.6
-
99
-
-
84864470001
-
Quantum.Ligand.Dock: Protein-ligand docking with quantum entanglement refinement on a GPU system
-
Kantardjiev AA,. 2012. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system. Nucleic Acids Res. 40: W415-W422.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. W415-W422
-
-
Kantardjiev, A.A.1
-
100
-
-
84864399987
-
PRL-Dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling
-
Wu MY, Dai DQ, Yan H,. 2012. PRL-Dock: protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins 80: 2137-2153.
-
(2012)
Proteins
, vol.80
, pp. 2137-2153
-
-
Wu, M.Y.1
Dai, D.Q.2
Yan, H.3
-
101
-
-
84865514733
-
CRDOCK: An ultrafast multipurpose protein-ligand docking tool
-
Cortes Cabrera A, Klett J, Dos Santos HG, Perona A, Gil-Redondo R, Francis SM, Priego EM, Gago F, Morreale A,. 2012. CRDOCK: an ultrafast multipurpose protein-ligand docking tool. J. Chem. Inf. Model. 52: 2300-2309.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2300-2309
-
-
Cortes Cabrera, A.1
Klett, J.2
Dos Santos, H.G.3
Perona, A.4
Gil-Redondo, R.5
Francis, S.M.6
Priego, E.M.7
Gago, F.8
Morreale, A.9
-
102
-
-
84872598296
-
CovalentDock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints
-
Ouyang X, Zhou S, Su CT, Ge Z, Li R, Kwoh CK,. 2013. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34: 326-336.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 326-336
-
-
Ouyang, X.1
Zhou, S.2
Su, C.T.3
Ge, Z.4
Li, R.5
Kwoh, C.K.6
-
103
-
-
84883215175
-
DockoMatic 2.0: High throughput inverse virtual screening and homology modeling
-
Bullock C, Cornia N, Jacob R, Remm A, Peavey T, Weekes K, Mallory C, Oxford JT, McDougal OM, Andersen TL,. 2013. DockoMatic 2.0: high throughput inverse virtual screening and homology modeling. J. Chem. Inf. Model. 53: 2161-2170.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2161-2170
-
-
Bullock, C.1
Cornia, N.2
Jacob, R.3
Remm, A.4
Peavey, T.5
Weekes, K.6
Mallory, C.7
Oxford, J.T.8
McDougal, O.M.9
Andersen, T.L.10
-
104
-
-
84870065043
-
FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm
-
Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y,. 2013. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J. Comput. Chem. 34: 67-75.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 67-75
-
-
Liu, Y.1
Zhao, L.2
Li, W.3
Zhao, D.4
Song, M.5
Yang, Y.6
-
105
-
-
79961241154
-
Docking performance of fragments and druglike compounds
-
Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW,. 2011. Docking performance of fragments and druglike compounds. J. Med. Chem. 54: 5422-5431.
-
(2011)
J. Med. Chem.
, vol.54
, pp. 5422-5431
-
-
Verdonk, M.L.1
Giangreco, I.2
Hall, R.J.3
Korb, O.4
Mortenson, P.N.5
Murray, C.W.6
-
106
-
-
84863111926
-
Computational fragment-based screening using RosettaLigand: The SAMPL3 challenge
-
Kumar A, Zhang KY,. 2012. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J. Comput.-Aided Mol. Des. 26: 603-616.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 603-616
-
-
Kumar, A.1
Zhang, K.Y.2
-
107
-
-
84863111119
-
Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors
-
Surpateanu G, Iorga BI,. 2012. Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J. Comput.-Aided Mol. Des. 26: 595-601.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 595-601
-
-
Surpateanu, G.1
Iorga, B.I.2
-
108
-
-
84863100633
-
Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction
-
Sulea T, Hogues H, Purisima EO,. 2012. Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction. J. Comput.-Aided Mol. Des. 26: 617-633.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 617-633
-
-
Sulea, T.1
Hogues, H.2
Purisima, E.O.3
-
109
-
-
84863088606
-
Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores
-
Benson ML, Faver JC, Ucisik MN, Dashti DS, Zheng Z, Merz KM, Jr, 2012. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. J. Comput.-Aided Mol. Des. 26: 647-659.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 647-659
-
-
Benson, M.L.1
Faver, J.C.2
Ucisik, M.N.3
Dashti, D.S.4
Zheng, Z.5
Merz, K.M.6
-
110
-
-
84874504314
-
Fragments to link. A multiple docking strategy for second site binders
-
Vass M, Keseru GM,. 2013. Fragments to link. A multiple docking strategy for second site binders. Med. Chem. Comm. 4: 510-514.
-
(2013)
Med. Chem. Comm.
, vol.4
, pp. 510-514
-
-
Vass, M.1
Keseru, G.M.2
-
111
-
-
84875451264
-
Fragment-based drug discovery using a multidomain, parallel MD-MM/PBSA screening protocol
-
Zhu T, Lee H, Lei H, Jones C, Patel K, Johnson ME, Hevener KE,. 2013. Fragment-based drug discovery using a multidomain, parallel MD-MM/PBSA screening protocol. J. Chem. Inf. Model. 53: 560-572.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 560-572
-
-
Zhu, T.1
Lee, H.2
Lei, H.3
Jones, C.4
Patel, K.5
Johnson, M.E.6
Hevener, K.E.7
-
112
-
-
84863097743
-
A reverse combination of structure-based and ligand-based strategies for virtual screening
-
Cortes-Cabrera A, Gago F, Morreale A,. 2012. A reverse combination of structure-based and ligand-based strategies for virtual screening. J. Comput.-Aided Mol. Des. 26: 319-327.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 319-327
-
-
Cortes-Cabrera, A.1
Gago, F.2
Morreale, A.3
-
113
-
-
84858044079
-
Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery
-
Hall DR, Ngan CH, Zerbe BS, Kozakov D, Vajda S,. 2012. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. J. Chem. Inf. Model. 52: 199-209.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 199-209
-
-
Hall, D.R.1
Ngan, C.H.2
Zerbe, B.S.3
Kozakov, D.4
Vajda, S.5
-
114
-
-
84861078289
-
Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening
-
Tosh DK, Phan K, Gao ZG, Gakh AA, Xu F, Deflorian F, Abagyan R, Stevens RC, Jacobson KA, Katritch V,. 2012. Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J. Med. Chem. 55: 4297-4308.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 4297-4308
-
-
Tosh, D.K.1
Phan, K.2
Gao, Z.G.3
Gakh, A.A.4
Xu, F.5
Deflorian, F.6
Abagyan, R.7
Stevens, R.C.8
Jacobson, K.A.9
Katritch, V.10
-
115
-
-
84888218673
-
The targets of CAPRI rounds 20-27
-
Janin J,. 2013. The targets of CAPRI rounds 20-27. Proteins 81: 2075-2081.
-
(2013)
Proteins
, vol.81
, pp. 2075-2081
-
-
Janin, J.1
-
116
-
-
84888289172
-
Docking, scoring, and affinity prediction in CAPRI
-
Lensink MF, Wodak SJ,. 2013. Docking, scoring, and affinity prediction in CAPRI. Proteins 81: 2082-2095.
-
(2013)
Proteins
, vol.81
, pp. 2082-2095
-
-
Lensink, M.F.1
Wodak, S.J.2
-
117
-
-
84875151263
-
SwarmDock: A server for flexible protein-protein docking
-
Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA,. 2013. SwarmDock: a server for flexible protein-protein docking. Bioinformatics 29: 807-809.
-
(2013)
Bioinformatics
, vol.29
, pp. 807-809
-
-
Torchala, M.1
Moal, I.H.2
Chaleil, R.A.3
Fernandez-Recio, J.4
Bates, P.A.5
-
118
-
-
84888305150
-
Protein docking using case-based reasoning
-
Ghoorah AW, Devignes MD, Smaïl-Tabbone M, Ritchie DW,. 2013. Protein docking using case-based reasoning. Proteins 81: 2150-2158.
-
(2013)
Proteins
, vol.81
, pp. 2150-2158
-
-
Ghoorah, A.W.1
Devignes, M.D.2
Smaïl-Tabbone, M.3
Ritchie, D.W.4
-
119
-
-
84883292342
-
MEGADOCK 3.0: A high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments
-
Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y,. 2013. MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol. Med. 8: 18.
-
(2013)
Source Code Biol. Med.
, vol.8
, pp. 18
-
-
Matsuzaki, Y.1
Uchikoga, N.2
Ohue, M.3
Shimoda, T.4
Sato, T.5
Ishida, T.6
Akiyama, Y.7
-
120
-
-
84883252161
-
Replica exchange improves sampling in low-resolution docking stage of RosettaDock
-
Zhang Z, Lange OF,. 2013. Replica exchange improves sampling in low-resolution docking stage of RosettaDock. PLoS One 8: e72096.
-
(2013)
PLoS One
, vol.8
, pp. e72096
-
-
Zhang, Z.1
Lange, O.F.2
-
121
-
-
84861234644
-
Automatic prediction of flexible regions improves the accuracy of protein-protein docking models
-
Luo X, Lu Q, Wu H, Yang L, Huang X, Qian P, Fu G,. 2012. Automatic prediction of flexible regions improves the accuracy of protein-protein docking models. J. Mol. Model. 18: 2199-2208.
-
(2012)
J. Mol. Model.
, vol.18
, pp. 2199-2208
-
-
Luo, X.1
Lu, Q.2
Wu, H.3
Yang, L.4
Huang, X.5
Qian, P.6
Fu, G.7
-
122
-
-
84888825453
-
Coarse-grain modelling of protein-protein interactions
-
Baaden M, Marrink SJ,. 2013. Coarse-grain modelling of protein-protein interactions. Curr. Opin. Struct. Biol. 23: 878-886.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 878-886
-
-
Baaden, M.1
Marrink, S.J.2
-
123
-
-
84888818673
-
Scoring functions for protein-protein interactions
-
Moal IH, Moretti R, Baker D, Fernandez-Recio J,. 2013. Scoring functions for protein-protein interactions. Curr. Opin. Struct. Biol. 23: 862-867.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 862-867
-
-
Moal, I.H.1
Moretti, R.2
Baker, D.3
Fernandez-Recio, J.4
-
124
-
-
84869022006
-
Rigid body energy minimization on manifolds for molecular docking
-
Mirzaei H, Beglov D, Paschalidis IC, Vajda S, Vakili P, Kozakov D,. 2012. Rigid body energy minimization on manifolds for molecular docking. J. Chem. Theory. Comput. 8: 4374-4380.
-
(2012)
J. Chem. Theory. Comput.
, vol.8
, pp. 4374-4380
-
-
Mirzaei, H.1
Beglov, D.2
Paschalidis, I.C.3
Vajda, S.4
Vakili, P.5
Kozakov, D.6
-
125
-
-
84885074179
-
Sampling and scoring: A marriage made in heaven
-
Vajda S, Hall DR, Kozakov D,. 2013. Sampling and scoring: a marriage made in heaven. Proteins 81: 1874-1884.
-
(2013)
Proteins
, vol.81
, pp. 1874-1884
-
-
Vajda, S.1
Hall, D.R.2
Kozakov, D.3
-
126
-
-
84857983099
-
The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation
-
Gao M, Skolnick J,. 2012. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Proc. Natl. Acad. Sci. U. S. A. 109: 3784-3789.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 3784-3789
-
-
Gao, M.1
Skolnick, J.2
-
127
-
-
84897443073
-
Oncogenic protein interfaces: Small molecules, big challenges
-
Nero TL, Morton CJ, Holien JK, Wielens J, Parker MW,. 2014. Oncogenic protein interfaces: small molecules, big challenges. Nat. Rev. Cancer 14: 248-262.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 248-262
-
-
Nero, T.L.1
Morton, C.J.2
Holien, J.K.3
Wielens, J.4
Parker, M.W.5
-
128
-
-
84884228178
-
Cross-link guided molecular modeling with ROSETTA
-
Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R, Malmstrom L,. 2013. Cross-link guided molecular modeling with ROSETTA. PLoS One 8: e73411.
-
(2013)
PLoS One
, vol.8
, pp. e73411
-
-
Kahraman, A.1
Herzog, F.2
Leitner, A.3
Rosenberger, G.4
Aebersold, R.5
Malmstrom, L.6
-
129
-
-
84892698856
-
Protein-protein interactions in a crowded environment: An analysis via cross-docking simulations and evolutionary information
-
Lopes A, Sacquin-Mora S, Dimitrova V, Laine E, Ponty Y, Carbone A,. 2013. Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information. PLoS Comput. Biol. 9: e1003369.
-
(2013)
PLoS Comput. Biol.
, vol.9
, pp. e1003369
-
-
Lopes, A.1
Sacquin-Mora, S.2
Dimitrova, V.3
Laine, E.4
Ponty, Y.5
Carbone, A.6
-
130
-
-
84870030186
-
How good are state-of-The-Art docking tools in predicting ligand binding modes in protein-protein interfaces?
-
Kruger DM, Jessen G, Gohlke H,. 2012. How good are state-of-the-art docking tools in predicting ligand binding modes in protein-protein interfaces? J. Chem. Inf. Model. 52: 2807-2811.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2807-2811
-
-
Kruger, D.M.1
Jessen, G.2
Gohlke, H.3
-
131
-
-
84883217711
-
Structural properties of non-traditional drug targets present new challenges for virtual screening
-
Gowthaman R, Deeds EJ, Karanicolas J,. 2013. Structural properties of non-traditional drug targets present new challenges for virtual screening. J. Chem. Inf. Model. 53: 2073-2081.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2073-2081
-
-
Gowthaman, R.1
Deeds, E.J.2
Karanicolas, J.3
-
132
-
-
84866306870
-
A leap into the chemical space of protein-protein interaction inhibitors
-
Villoutreix BO, Labbe CM, Lagorce D, Laconde G, Sperandio O,. 2012. A leap into the chemical space of protein-protein interaction inhibitors. Curr. Pharm. Des. 18: 4648-4667.
-
(2012)
Curr. Pharm. Des.
, vol.18
, pp. 4648-4667
-
-
Villoutreix, B.O.1
Labbe, C.M.2
Lagorce, D.3
Laconde, G.4
Sperandio, O.5
-
133
-
-
84871940431
-
Pocket-based drug design: Exploring pocket space
-
Zheng X, Gan L, Wang E, Wang J,. 2013. Pocket-based drug design: exploring pocket space. AAPS J. 15: 228-241.
-
(2013)
AAPS J.
, vol.15
, pp. 228-241
-
-
Zheng, X.1
Gan, L.2
Wang, E.3
Wang, J.4
-
134
-
-
84863700202
-
Understanding the molecular basis of MK2-p38α signaling complex assembly: Insights into protein-protein interaction by molecular dynamics and free energy studies
-
Yang Y, Liub H, Yao X,. 2012. Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies. Mol. BioSyst. 8: 2106-2118.
-
(2012)
Mol. BioSyst.
, vol.8
, pp. 2106-2118
-
-
Yang, Y.1
Liub, H.2
Yao, X.3
-
135
-
-
84857291408
-
Hot spots and transient pockets: Predicting the determinants of small-molecule binding to a protein-protein interface
-
Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, Gohlke H,. 2012. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J. Chem. Inf. Model. 52: 120-133.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 120-133
-
-
Metz, A.1
Pfleger, C.2
Kopitz, H.3
Pfeiffer-Marek, S.4
Baringhaus, K.H.5
Gohlke, H.6
-
136
-
-
84856211919
-
Virtual screening for compounds that mimic protein-protein interface epitopes
-
Geppert T, Reisen F, Pillong M, Hahnke V, Tanrikulu Y, Koch CP, Perna AM, Perez TB, Schneider P, Schneider G,. 2012. Virtual screening for compounds that mimic protein-protein interface epitopes. J. Comput. Chem. 33: 573-579.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 573-579
-
-
Geppert, T.1
Reisen, F.2
Pillong, M.3
Hahnke, V.4
Tanrikulu, Y.5
Koch, C.P.6
Perna, A.M.7
Perez, T.B.8
Schneider, P.9
Schneider, G.10
-
137
-
-
84887068116
-
Effective screening strategy using ensembled pharmacophore models combined with cascade docking: Application to p53-MDM2 interaction inhibitors
-
Xue X, Wei JL, Xu LL, Xi MY, Xu XL, Liu F, Guo XK, Wang L, Zhang XJ, Zhang MY, Lu MC, Sun HP, You QD,. 2013. Effective screening strategy using ensembled pharmacophore models combined with cascade docking: application to p53-MDM2 interaction inhibitors. J. Chem. Inf. Model. 53: 2715-2729.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2715-2729
-
-
Xue, X.1
Wei, J.L.2
Xu, L.L.3
Xi, M.Y.4
Xu, X.L.5
Liu, F.6
Guo, X.K.7
Wang, L.8
Zhang, X.J.9
Zhang, M.Y.10
Lu, M.C.11
Sun, H.P.12
You, Q.D.13
-
138
-
-
84865453273
-
Virtual target screening: Validation using kinase inhibitors
-
Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH,. 2012. Virtual target screening: validation using kinase inhibitors. J. Chem. Inf. Model. 52: 2192-2203.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 2192-2203
-
-
Santiago, D.N.1
Pevzner, Y.2
Durand, A.A.3
Tran, M.4
Scheerer, R.R.5
Daniel, K.6
Sung, S.S.7
Woodcock, H.L.8
Guida, W.C.9
Brooks, W.H.10
-
139
-
-
84862510972
-
Large-scale prediction and testing of drug activity on side-effect targets
-
Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak AK, Cote S, Shoichet BK, Urban L,. 2012. Large-scale prediction and testing of drug activity on side-effect targets. Nature 486: 361-367.
-
(2012)
Nature
, vol.486
, pp. 361-367
-
-
Lounkine, E.1
Keiser, M.J.2
Whitebread, S.3
Mikhailov, D.4
Hamon, J.5
Jenkins, J.L.6
Lavan, P.7
Weber, E.8
Doak, A.K.9
Cote, S.10
Shoichet, B.K.11
Urban, L.12
-
140
-
-
84867365195
-
Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?
-
Grigoryan AV, Wang H, Cardozo TJ,. 2012. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening? PLoS One 7: e46532.
-
(2012)
PLoS One
, vol.7
, pp. e46532
-
-
Grigoryan, A.V.1
Wang, H.2
Cardozo, T.J.3
-
141
-
-
84859941752
-
Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping
-
Agostino M, Yuriev E, Ramsland PA,. 2012. Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping. PLoS One 7: e35457.
-
(2012)
PLoS One
, vol.7
, pp. e35457
-
-
Agostino, M.1
Yuriev, E.2
Ramsland, P.A.3
-
142
-
-
84873034177
-
AutoMap: A tool for analyzing protein-ligand recognition using multiple ligand binding modes
-
Agostino M, Mancera RL, Ramsland PA, Yuriev E,. 2013. AutoMap: A tool for analyzing protein-ligand recognition using multiple ligand binding modes. J. Mol. Graph. Model. 40: 80-90.
-
(2013)
J. Mol. Graph. Model.
, vol.40
, pp. 80-90
-
-
Agostino, M.1
Mancera, R.L.2
Ramsland, P.A.3
Yuriev, E.4
-
143
-
-
84938960518
-
Docking of carbohydrates into protein binding sites
-
Yuriev E. Ramsland P. (eds). Taylor and Francis: London.
-
Agostino M, Ramsland P, Yuriev E,. 2012. Docking of carbohydrates into protein binding sites, in: Structural Glycobiology, Yuriev E, Ramsland P, (eds). Taylor and Francis: London. p. 111-138.
-
(2012)
Structural Glycobiology
, pp. 111-138
-
-
Agostino, M.1
Ramsland, P.2
Yuriev, E.3
-
144
-
-
84879371161
-
Small-molecule ligand docking into comparative models with Rosetta
-
Combs SA, Deluca SL, Deluca SH, Lemmon GH, Nannemann DP, Nguyen ED, Willis JR, Sheehan JH, Meiler J,. 2013. Small-molecule ligand docking into comparative models with Rosetta. Nat. Protoc. 8: 1277-1298.
-
(2013)
Nat. Protoc.
, vol.8
, pp. 1277-1298
-
-
Combs, S.A.1
Deluca, S.L.2
Deluca, S.H.3
Lemmon, G.H.4
Nannemann, D.P.5
Nguyen, E.D.6
Willis, J.R.7
Sheehan, J.H.8
Meiler, J.9
-
145
-
-
84871122167
-
Using RosettaLigand for small molecule docking into comparative models
-
Kaufmann KW, Meiler J,. 2012. Using RosettaLigand for small molecule docking into comparative models. PLoS One 7: e50769.
-
(2012)
PLoS One
, vol.7
, pp. e50769
-
-
Kaufmann, K.W.1
Meiler, J.2
-
146
-
-
84862789167
-
Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?
-
Tang H, Wang XS, Hsieh JH, Tropsha A,. 2012. Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening? Proteins 80: 1503-1521.
-
(2012)
Proteins
, vol.80
, pp. 1503-1521
-
-
Tang, H.1
Wang, X.S.2
Hsieh, J.H.3
Tropsha, A.4
-
147
-
-
84879770850
-
Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors
-
Nguyen ED, Norn C, Frimurer TM, Meiler J,. 2013. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. PLoS One 8: e67302.
-
(2013)
PLoS One
, vol.8
, pp. e67302
-
-
Nguyen, E.D.1
Norn, C.2
Frimurer, T.M.3
Meiler, J.4
-
148
-
-
84896518217
-
Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes
-
Kombo DC, Bencherif M,. 2013. Comparative study on the use of docking and bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes. J. Chem. Inf. Model. 53: 3212-3222.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3212-3222
-
-
Kombo, D.C.1
Bencherif, M.2
-
149
-
-
84891844437
-
Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors
-
Tan W, Mei H, Chao L, Liu T, Pan X, Shu M, Yang L,. 2013. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors. J. Comput.-Aided Mol. Des. 27: 1067-1073.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 1067-1073
-
-
Tan, W.1
Mei, H.2
Chao, L.3
Liu, T.4
Pan, X.5
Shu, M.6
Yang, L.7
-
150
-
-
84886730401
-
Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands
-
Coi A, Bianucci AM,. 2013. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands. J. Mol. Graph. Model. 46: 93-104.
-
(2013)
J. Mol. Graph. Model.
, vol.46
, pp. 93-104
-
-
Coi, A.1
Bianucci, A.M.2
-
151
-
-
84877694782
-
Structure-based fragment screening is demonstrated to be a practical lead discovery method for a representative G-protein-coupled receptor
-
Stevens BD,. 2013. Structure-based fragment screening is demonstrated to be a practical lead discovery method for a representative G-protein-coupled receptor. J. Med. Chem. 56: 3444-3445.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 3444-3445
-
-
Stevens, B.D.1
-
152
-
-
84874060509
-
A strategy combining differential low-throughput screening and virtual screening (DLS-VS) accelerating the discovery of new modulators for the orphan GPR34 receptor
-
Diaz C, Labit-Le Bouteiller C, Yvon S, Cambon-Kerneis A, Roasio A, Jamme MF, Aries A, Feuillerat C, Perret E, Guette F, Dieu P, Miloux B, Albene D, Hasel N, Kaghad M, Ferran E, Lupker J, Ferrara P,. 2013. A strategy combining differential low-throughput screening and virtual screening (DLS-VS) accelerating the discovery of new modulators for the orphan GPR34 receptor. Mol. Inf. 32: 213-229.
-
(2013)
Mol. Inf.
, vol.32
, pp. 213-229
-
-
Diaz, C.1
Labit-Le Bouteiller, C.2
Yvon, S.3
Cambon-Kerneis, A.4
Roasio, A.5
Jamme, M.F.6
Aries, A.7
Feuillerat, C.8
Perret, E.9
Guette, F.10
Dieu, P.11
Miloux, B.12
Albene, D.13
Hasel, N.14
Kaghad, M.15
Ferran, E.16
Lupker, J.17
Ferrara, P.18
-
153
-
-
84862007546
-
FINDSITE(X): A structure-based, small molecule virtual screening approach with application to all identified human GPCRs
-
Zhou H, Skolnick J,. 2012. FINDSITE(X): a structure-based, small molecule virtual screening approach with application to all identified human GPCRs. Mol. Pharm. 9: 1775-1784.
-
(2012)
Mol. Pharm.
, vol.9
, pp. 1775-1784
-
-
Zhou, H.1
Skolnick, J.2
-
154
-
-
84861517739
-
On the value of homology models for virtual screening: Discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches
-
Huang D, Gu Q, Ge H, Ye J, Salam NK, Hagler A, Chen H, Xu J,. 2012. On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. J. Chem. Inf. Model. 52: 1356-1366.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1356-1366
-
-
Huang, D.1
Gu, Q.2
Ge, H.3
Ye, J.4
Salam, N.K.5
Hagler, A.6
Chen, H.7
Xu, J.8
-
155
-
-
84871596792
-
Virtual fragment screening: Discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints
-
Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJ, de Graaf C,. 2012. Virtual fragment screening: discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints. J. Chem. Inf. Model. 52: 3308-3324.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 3308-3324
-
-
Sirci, F.1
Istyastono, E.P.2
Vischer, H.F.3
Kooistra, A.J.4
Nijmeijer, S.5
Kuijer, M.6
Wijtmans, M.7
Mannhold, R.8
Leurs, R.9
De Esch, I.J.10
De Graaf, C.11
-
156
-
-
84871539979
-
Current assessment of docking into GPCR crystal structures and homology models: Successes, challenges, and guidelines
-
Beuming T, Sherman W,. 2012. Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J. Chem. Inf. Model. 52: 3263-3277.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 3263-3277
-
-
Beuming, T.1
Sherman, W.2
-
157
-
-
84886692148
-
Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein
-
Yang J, Hocking DM, Cheng C, Dogovski C, Perugini MA, Holien JK, Parker MW, Hartland EL, Tauschek M, Robins-Browne RM,. 2013. Disarming bacterial virulence through chemical inhibition of the DNA binding domain of an AraC-like transcriptional activator protein. J. Biol. Chem. 288: 31115-31126.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 31115-31126
-
-
Yang, J.1
Hocking, D.M.2
Cheng, C.3
Dogovski, C.4
Perugini, M.A.5
Holien, J.K.6
Parker, M.W.7
Hartland, E.L.8
Tauschek, M.9
Robins-Browne, R.M.10
-
158
-
-
84858023862
-
Cheminformatics meets molecular mechanics: A combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening
-
Hsieh JH, Yin S, Wang XS, Liu S, Dokholyan NV, Tropsha A,. 2012. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening. J. Chem. Inf. Model. 52: 16-28.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 16-28
-
-
Hsieh, J.H.1
Yin, S.2
Wang, X.S.3
Liu, S.4
Dokholyan, N.V.5
Tropsha, A.6
-
159
-
-
84896500405
-
DR-predictor: Incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism
-
Huang TW, Zaretzki J, Bergeron C, Bennett KP, Breneman CM,. 2013. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. J. Chem. Inf. Model. 53: 3352-3366.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3352-3366
-
-
Huang, T.W.1
Zaretzki, J.2
Bergeron, C.3
Bennett, K.P.4
Breneman, C.M.5
-
160
-
-
84890859433
-
A structure-guided approach for protein pocket modeling and affinity prediction
-
Varela R, Cleves AE, Spitzer R, Jain AN,. 2013. A structure-guided approach for protein pocket modeling and affinity prediction. J. Comput.-Aided Mol. Des. 27: 917-934.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 917-934
-
-
Varela, R.1
Cleves, A.E.2
Spitzer, R.3
Jain, A.N.4
-
161
-
-
84891875006
-
Fragment-based Shape Signatures: A new tool for virtual screening and drug discovery
-
Zauhar RJ, Gianti E, Welsh WJ,. 2013. Fragment-based Shape Signatures: a new tool for virtual screening and drug discovery. J. Comput.-Aided Mol. Des. 27: 1009-1036.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 1009-1036
-
-
Zauhar, R.J.1
Gianti, E.2
Welsh, W.J.3
-
162
-
-
84867487321
-
Lead hopping for PfDHODH inhibitors as antimalarials based on pharmacophore mapping, molecular docking and comparative binding energy analysis (COMBINE): A three-layered virtual screening approach
-
Ojha PK, Mitra I, Kar S, Das RN, Roy K,. 2012. Lead hopping for PfDHODH inhibitors as antimalarials based on pharmacophore mapping, molecular docking and comparative binding energy analysis (COMBINE): a three-layered virtual screening approach. Mol. Inf. 31: 711-718.
-
(2012)
Mol. Inf.
, vol.31
, pp. 711-718
-
-
Ojha, P.K.1
Mitra, I.2
Kar, S.3
Das, R.N.4
Roy, K.5
-
163
-
-
84883217252
-
Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches
-
Fourches D, Muratov E, Ding F, Dokholyan NV, Tropsha A,. 2013. Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches. J. Chem. Inf. Model. 53: 1915-1922.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1915-1922
-
-
Fourches, D.1
Muratov, E.2
Ding, F.3
Dokholyan, N.V.4
Tropsha, A.5
-
164
-
-
84858053438
-
Virtual screening data fusion using both structure- and ligand-based methods
-
Svensson F, Karlen A, Skold C,. 2012. Virtual screening data fusion using both structure- and ligand-based methods. J. Chem. Inf. Model. 52: 225-232.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 225-232
-
-
Svensson, F.1
Karlen, A.2
Skold, C.3
-
165
-
-
84885015704
-
How to deal with low-resolution target structures: Using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the alphabeta-tubulin colchicine site
-
Da C, Mooberry SL, Gupton JT, Kellogg GE,. 2013. How to deal with low-resolution target structures: using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the alphabeta-tubulin colchicine site. J. Med. Chem. 56: 7382-7395.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 7382-7395
-
-
Da, C.1
Mooberry, S.L.2
Gupton, J.T.3
Kellogg, G.E.4
-
166
-
-
84856548602
-
An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude
-
Orts J, Bartoschek S, Griesinger C, Monecke P, Carlomagno T,. 2012. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude. J. Biomol. NMR 52: 23-30.
-
(2012)
J. Biomol. NMR
, vol.52
, pp. 23-30
-
-
Orts, J.1
Bartoschek, S.2
Griesinger, C.3
Monecke, P.4
Carlomagno, T.5
-
167
-
-
84887968536
-
Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: An alternative approach for structure-based drug design
-
Sahner JH, Brengel C, Storz MP, Groh M, Plaza A, Muller R, Hartmann RW,. 2013. Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design. J. Med. Chem. 56: 8656-8664.
-
(2013)
J. Med. Chem.
, vol.56
, pp. 8656-8664
-
-
Sahner, J.H.1
Brengel, C.2
Storz, M.P.3
Groh, M.4
Plaza, A.5
Muller, R.6
Hartmann, R.W.7
-
168
-
-
84876489130
-
Accounting for conformational variability in protein-ligand docking with NMR-guided rescoring
-
Skjaerven L, Codutti L, Angelini A, Grimaldi M, Latek D, Monecke P, Dreyer MK, Carlomagno T,. 2013. Accounting for conformational variability in protein-ligand docking with NMR-guided rescoring. J. Am. Chem. Soc. 135: 5819-5827.
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 5819-5827
-
-
Skjaerven, L.1
Codutti, L.2
Angelini, A.3
Grimaldi, M.4
Latek, D.5
Monecke, P.6
Dreyer, M.K.7
Carlomagno, T.8
-
169
-
-
84887035754
-
Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor
-
Chen D, Ranganathan A, Ap IJ, Siegal G, Carlsson J,. 2013. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor. J. Chem. Inf. Model. 53: 2701-2714.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2701-2714
-
-
Chen, D.1
Ranganathan, A.2
Ap, I.J.3
Siegal, G.4
Carlsson, J.5
-
170
-
-
84863705628
-
Accessible high-throughput virtual screening molecular docking software for students and educators
-
Jacob RB, Andersen T, McDougal OM,. 2012. Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS Comput. Biol. 8: e1002499.
-
(2012)
PLoS Comput. Biol.
, vol.8
, pp. e1002499
-
-
Jacob, R.B.1
Andersen, T.2
McDougal, O.M.3
-
171
-
-
84886950237
-
One hundred thousand mouse clicks down the road: Selected online resources supporting drug discovery collected over a decade
-
Villoutreix BO, Lagorce D, Labbe CM, Sperandio O, Miteva MA,. 2013. One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov. Today 18: 1081-1089.
-
(2013)
Drug Discov. Today
, vol.18
, pp. 1081-1089
-
-
Villoutreix, B.O.1
Lagorce, D.2
Labbe, C.M.3
Sperandio, O.4
Miteva, M.A.5
-
173
-
-
84859468933
-
Analysis of structure-based virtual screening studies and characterization of identified active compounds
-
Ripphausen P, Stumpfe D, Bajorath J,. 2012. Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Med. Chem. 4: 603-613.
-
(2012)
Future Med. Chem.
, vol.4
, pp. 603-613
-
-
Ripphausen, P.1
Stumpfe, D.2
Bajorath, J.3
-
174
-
-
84862027743
-
Recognizing pitfalls in virtual screening: A critical review
-
Scior T, Bender A, Tresadern G, Medina-Franco JL, Martinez-Mayorga K, Langer T, Cuanalo-Contreras K, Agrafiotis DK,. 2012. Recognizing pitfalls in virtual screening: a critical review. J. Chem. Inf. Model. 52: 867-881.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 867-881
-
-
Scior, T.1
Bender, A.2
Tresadern, G.3
Medina-Franco, J.L.4
Martinez-Mayorga, K.5
Langer, T.6
Cuanalo-Contreras, K.7
Agrafiotis, D.K.8
-
175
-
-
84858044044
-
Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with FORECASTER, a novel platform for drug discovery
-
Therrien E, Englebienne P, Arrowsmith AG, Mendoza-Sanchez R, Corbeil CR, Weill N, Campagna-Slater V, Moitessier N,. 2012. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with FORECASTER, a novel platform for drug discovery. J. Chem. Inf. Model. 52: 210-224.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 210-224
-
-
Therrien, E.1
Englebienne, P.2
Arrowsmith, A.G.3
Mendoza-Sanchez, R.4
Corbeil, C.R.5
Weill, N.6
Campagna-Slater, V.7
Moitessier, N.8
-
176
-
-
84891389270
-
Computational biology in the cloud: Methods and new insights from computing at scale
-
Altman R.B. Dunker A.K. Hunter L. Murray T.A. Klein T.E. (eds).
-
Kasson PM,. 2013. Computational biology in the cloud: methods and new insights from computing at scale, in: Proceedings of The Pacific Symposium: Biocomputing 2013, Altman RB, Dunker AK, Hunter L, Murray TA, Klein TE, (eds). p. 451-453.
-
(2013)
Proceedings of the Pacific Symposium: Biocomputing 2013
, pp. 451-453
-
-
Kasson, P.M.1
-
177
-
-
84902540331
-
Large-scale virtual screening experiments on Windows Azure-based cloud resources
-
Kiss T, Borsody P, Terstyanszky G, Winter S, Greenwell P, McEldowney S, Heindle H,. 2013. Large-scale virtual screening experiments on Windows Azure-based cloud resources. Concurr. Comput. 26: 1760-1770.
-
(2013)
Concurr. Comput.
, vol.26
, pp. 1760-1770
-
-
Kiss, T.1
Borsody, P.2
Terstyanszky, G.3
Winter, S.4
Greenwell, P.5
McEldowney, S.6
Heindle, H.7
-
178
-
-
84902540086
-
A performance/cost model for a CUDA drug discovery application on physical and public cloud infrastructures
-
Guerrero GD, Wallace RM, Vazquez-Poletti JL, Cecilia JM, Garcia JM, Mozos D, Perez-Sanchez H,. 2013. A performance/cost model for a CUDA drug discovery application on physical and public cloud infrastructures. Concurr. Comput. 26: 1787-1798.
-
(2013)
Concurr. Comput.
, vol.26
, pp. 1787-1798
-
-
Guerrero, G.D.1
Wallace, R.M.2
Vazquez-Poletti, J.L.3
Cecilia, J.M.4
Garcia, J.M.5
Mozos, D.6
Perez-Sanchez, H.7
-
179
-
-
84875064754
-
High-throughput parallel blind virtual screening using BINDSURF
-
Sanchez-Linares I, Perez-Sanchez H, Cecilia JM, Garcia JM,. 2012. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics 13 Suppl 14: S13.
-
(2012)
BMC Bioinformatics
, vol.13
, Issue.14
, pp. S13
-
-
Sanchez-Linares, I.1
Perez-Sanchez, H.2
Cecilia, J.M.3
Garcia, J.M.4
-
180
-
-
84881572052
-
Fast docking on graphics processing units via Ray-Casting
-
Khar KR, Goldschmidt L, Karanicolas J,. 2013. Fast docking on graphics processing units via Ray-Casting. PLoS One 8: e70661.
-
(2013)
PLoS One
, vol.8
, pp. e70661
-
-
Khar, K.R.1
Goldschmidt, L.2
Karanicolas, J.3
-
181
-
-
84869229692
-
Fast force field-based optimization of protein-ligand complexes with graphics processor
-
Heinzerling L, Klein R, Rarey M,. 2012. Fast force field-based optimization of protein-ligand complexes with graphics processor. J. Comput. Chem. 33: 2554-2565.
-
(2012)
J. Comput. Chem.
, vol.33
, pp. 2554-2565
-
-
Heinzerling, L.1
Klein, R.2
Rarey, M.3
-
182
-
-
84864199587
-
ZINC: A free tool to discover chemistry for biology
-
Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG,. 2012. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model. 52: 1757-1768.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1757-1768
-
-
Irwin, J.J.1
Sterling, T.2
Mysinger, M.M.3
Bolstad, E.S.4
Coleman, R.G.5
-
183
-
-
84873042304
-
Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds
-
Baell JB,. 2013. Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds. J. Chem. Inf. Model. 53: 39-55.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 39-55
-
-
Baell, J.B.1
-
184
-
-
84864264343
-
Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
-
Mysinger MM, Carchia M, Irwin JJ, Shoichet BK,. 2012. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55: 6582-6594.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 6582-6594
-
-
Mysinger, M.M.1
Carchia, M.2
Irwin, J.J.3
Shoichet, B.K.4
-
185
-
-
84879583689
-
Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - A public library of challenging docking benchmark sets
-
Bauer MR, Ibrahim TM, Vogel SM, Boeckler FM,. 2013. Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - a public library of challenging docking benchmark sets. J. Chem. Inf. Model. 53: 1447-1462.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1447-1462
-
-
Bauer, M.R.1
Ibrahim, T.M.2
Vogel, S.M.3
Boeckler, F.M.4
-
186
-
-
84858052745
-
Ligand and decoy sets for docking to G protein-coupled receptors
-
Gatica EA, Cavasotto CN,. 2012. Ligand and decoy sets for docking to G protein-coupled receptors. J. Chem. Inf. Model. 52: 1-6.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1-6
-
-
Gatica, E.A.1
Cavasotto, C.N.2
-
187
-
-
33749260698
-
A critical assessment of docking programs and scoring functions
-
Warren GL, Andrews CW, Capelli AM, Clarke B, LaLonde J, Lambert MH, Lindvall M, Nevins N, Semus SF, Senger S, Tedesco G, Wall ID, Woolven JM, Peishoff CE, Head MS,. 2006. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49: 5912-5931.
-
(2006)
J. Med. Chem.
, vol.49
, pp. 5912-5931
-
-
Warren, G.L.1
Andrews, C.W.2
Capelli, A.M.3
Clarke, B.4
LaLonde, J.5
Lambert, M.H.6
Lindvall, M.7
Nevins, N.8
Semus, S.F.9
Senger, S.10
Tedesco, G.11
Wall, I.D.12
Woolven, J.M.13
Peishoff, C.E.14
Head, M.S.15
-
188
-
-
84883227058
-
CSAR data set release 2012: Ligands, affinities, complexes, and docking decoys
-
Dunbar JB, Jr., Smith RD, Damm-Ganamet KL, Ahmed A, Esposito EX, Delproposto J, Chinnaswamy K, Kang YN, Kubish G, Gestwicki JE, Stuckey JA, Carlson HA,. 2013. CSAR data set release 2012: ligands, affinities, complexes, and docking decoys. J. Chem. Inf. Model. 53: 1842-1852.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1842-1852
-
-
Dunbar, J.B.1
Smith, R.D.2
Damm-Ganamet, K.L.3
Ahmed, A.4
Esposito, E.X.5
Delproposto, J.6
Chinnaswamy, K.7
Kang, Y.N.8
Kubish, G.9
Gestwicki, J.E.10
Stuckey, J.A.11
Carlson, H.A.12
-
189
-
-
84941120266
-
-
accessed November 18, 2014; Available from.
-
Gordon research conference on computer-aided drug design 2013, accessed November 18, 2014; Available from: http://www.grc.org/programs.aspx?year=2013&program=cadd.
-
(2013)
Gordon Research Conference on Computer-aided Drug Design
-
-
-
190
-
-
84883260321
-
Check your confidence: Size really does matter
-
Carlson HA,. 2013. Check your confidence: size really does matter. J. Chem. Inf. Model. 53: 1837-1841.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1837-1841
-
-
Carlson, H.A.1
-
191
-
-
84883209345
-
CSAR benchmark exercise 2011-2012: Evaluation of results from docking and relative ranking of blinded congeneric series
-
Damm-Ganamet KL, Smith RD, Dunbar JB, Jr, Stuckey JA, Carlson HA,. 2013. CSAR benchmark exercise 2011-2012: evaluation of results from docking and relative ranking of blinded congeneric series. J. Chem. Inf. Model. 53: 1853-1870.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1853-1870
-
-
Damm-Ganamet, K.L.1
Smith, R.D.2
Dunbar, J.B.3
Stuckey, J.A.4
Carlson, H.A.5
-
192
-
-
84883240307
-
Automated large-scale file preparation, docking, and scoring: Evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark
-
Grinter SZ, Yan C, Huang SY, Jiang L, Zou X,. 2013. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark. J. Chem. Inf. Model. 53: 1905-1914.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1905-1914
-
-
Grinter, S.Z.1
Yan, C.2
Huang, S.Y.3
Jiang, L.4
Zou, X.5
-
193
-
-
84883247468
-
Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise
-
Koes DR, Baumgartner MP, Camacho CJ,. 2013. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53: 1893-1904.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1893-1904
-
-
Koes, D.R.1
Baumgartner, M.P.2
Camacho, C.J.3
-
194
-
-
84883226576
-
Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark
-
Ding F, Dokholyan NV,. 2013. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. J. Chem. Inf. Model. 53: 1871-1879.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1871-1879
-
-
Ding, F.1
Dokholyan, N.V.2
-
195
-
-
84883237038
-
Application of the docking program SOL for CSAR benchmark
-
Sulimov AV, Kutov DC, Oferkin IV, Katkova EV, Sulimov VB,. 2013. Application of the docking program SOL for CSAR benchmark. J. Chem. Inf. Model. 53: 1946-1956.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1946-1956
-
-
Sulimov, A.V.1
Kutov, D.C.2
Oferkin, I.V.3
Katkova, E.V.4
Sulimov, V.B.5
-
196
-
-
84941047509
-
Docking and scoring in Discovery Studio
-
ACS: Anaheim, California, abstract number 58.
-
Maynard AJ, Ehlers T, Koska J,. 2011. Docking and scoring in Discovery Studio. 241st ACS National Meeting & Exposition, ACS: Anaheim, California, abstract number 58.
-
(2011)
241st ACS National Meeting & Exposition
-
-
Maynard, A.J.1
Ehlers, T.2
Koska, J.3
-
197
-
-
84865248640
-
Evaluation of DOCK 6 as a pose generation and database enrichment tool
-
Brozell SR, Mukherjee S, Balius TE, Roe DR, Case DA, Rizzo RC,. 2012. Evaluation of DOCK 6 as a pose generation and database enrichment tool. J. Comput.-Aided Mol. Des. 26: 749-773.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 749-773
-
-
Brozell, S.R.1
Mukherjee, S.2
Balius, T.E.3
Roe, D.R.4
Case, D.A.5
Rizzo, R.C.6
-
198
-
-
84941056378
-
Recent developments in the eHiTS ligand docking and scoring software
-
ACS: Anaheim, California, abstract number 59.
-
Zsoldos Z, Ravitz O,. 2011. Recent developments in the eHiTS ligand docking and scoring software. 241st ACS National Meeting & Exposition, ACS: Anaheim, California, abstract number 59.
-
(2011)
241st ACS National Meeting & Exposition
-
-
Zsoldos, Z.1
Ravitz, O.2
-
199
-
-
84865212063
-
Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide
-
Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA,. 2012. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J. Comput.-Aided Mol. Des. 26: 787-799.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 787-799
-
-
Repasky, M.P.1
Murphy, R.B.2
Banks, J.L.3
Greenwood, J.R.4
Tubert-Brohman, I.5
Bhat, S.6
Friesner, R.A.7
-
200
-
-
84865266975
-
Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test
-
Liebeschuetz JW, Cole JC, Korb O,. 2012. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J. Comput.-Aided Mol. Des. 26: 737-748.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 737-748
-
-
Liebeschuetz, J.W.1
Cole, J.C.2
Korb, O.3
-
201
-
-
84865224649
-
Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function
-
Schneider N, Hindle S, Lange G, Klein R, Albrecht J, Briem H, Beyer K, Claussen H, Gastreich M, Lemmen C, Rarey M,. 2012. Substantial improvements in large-scale redocking and screening using the novel HYDE scoring function. J. Comput.-Aided Mol. Des. 26: 701-723.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 701-723
-
-
Schneider, N.1
Hindle, S.2
Lange, G.3
Klein, R.4
Albrecht, J.5
Briem, H.6
Beyer, K.7
Claussen, H.8
Gastreich, M.9
Lemmen, C.10
Rarey, M.11
-
202
-
-
84865265287
-
Docking and scoring with ICM: The benchmarking results and strategies for improvement
-
Neves MA, Totrov M, Abagyan R,. 2012. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput.-Aided Mol. Des. 26: 675-686.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 675-686
-
-
Neves, M.A.1
Totrov, M.2
Abagyan, R.3
-
203
-
-
84865247845
-
Lead Finder docking and virtual screening evaluation with Astex and DUD test sets
-
Novikov FN, Stroylov VS, Zeifman AA, Stroganov OV, Kulkov V, Chilov GG,. 2012. Lead Finder docking and virtual screening evaluation with Astex and DUD test sets. J. Comput.-Aided Mol. Des. 26: 725-735.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 725-735
-
-
Novikov, F.N.1
Stroylov, V.S.2
Zeifman, A.A.3
Stroganov, O.V.4
Kulkov, V.5
Chilov, G.G.6
-
205
-
-
84865214371
-
Surflex-Dock: Docking benchmarks and real-world application
-
Spitzer R, Jain AN,. 2012. Surflex-Dock: docking benchmarks and real-world application. J. Comput.-Aided Mol. Des. 26: 687-699.
-
(2012)
J. Comput.-Aided Mol. Des.
, vol.26
, pp. 687-699
-
-
Spitzer, R.1
Jain, A.N.2
-
206
-
-
84885035566
-
Ligand pose and orientational sampling in molecular docking
-
Coleman RG, Carchia M, Sterling T, Irwin JJ, Shoichet BK,. 2013. Ligand pose and orientational sampling in molecular docking. PLoS One 8: e75992.
-
(2013)
PLoS One
, vol.8
, pp. e75992
-
-
Coleman, R.G.1
Carchia, M.2
Sterling, T.3
Irwin, J.J.4
Shoichet, B.K.5
-
207
-
-
84876688756
-
Grid-based molecular footprint comparison method for docking and de novo design: Application to HIVgp41
-
Balius TE, Allen WJ, Mukherjee S, Rizzo RC,. 2013. Grid-based molecular footprint comparison method for docking and de novo design: application to HIVgp41. J. Comput. Chem. 34: 1226-1240.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 1226-1240
-
-
Balius, T.E.1
Allen, W.J.2
Mukherjee, S.3
Rizzo, R.C.4
-
208
-
-
84896532392
-
Assessing molecular docking tools for relative biological activity prediction: A case study of triazole HIV-1 NNRTIs
-
Fraczek T, Siwek A, Paneth P,. 2013. Assessing molecular docking tools for relative biological activity prediction: a case study of triazole HIV-1 NNRTIs. J. Chem. Inf. Model. 53: 3326-3342.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3326-3342
-
-
Fraczek, T.1
Siwek, A.2
Paneth, P.3
-
209
-
-
84884672908
-
Experimental versus predicted affinities for ligand binding to estrogen receptor: Iterative selection and rescoring of docked poses systematically improves the correlation
-
Wright JS, Anderson JM, Shadnia H, Durst T, Katzenellenbogen JA,. 2013. Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation. J. Comput.-Aided Mol. Des. 27: 707-721.
-
(2013)
J. Comput.-Aided Mol. Des.
, vol.27
, pp. 707-721
-
-
Wright, J.S.1
Anderson, J.M.2
Shadnia, H.3
Durst, T.4
Katzenellenbogen, J.A.5
-
210
-
-
0011147053
-
-
Seattle, WA, USA: University of Washington Press.
-
Crick FHC, Of Molecules and Men, 1966, Seattle, WA, USA: University of Washington Press.
-
(1966)
Of Molecules and Men
-
-
Crick, F.H.C.1
-
211
-
-
84908242076
-
Beware of machine learning-based scoring functions-on the danger of developing black boxes
-
Gabel J, Desaphy J, Rognan D,. 2014. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model. 54: 2807-2815.
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2807-2815
-
-
Gabel, J.1
Desaphy, J.2
Rognan, D.3
-
212
-
-
83555177310
-
BSP-SLIM: A blind low-resolution ligand-protein docking approach using predicted protein structures
-
Lee HS, Zhang Y,. 2012. BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80: 93-110.
-
(2012)
Proteins
, vol.80
, pp. 93-110
-
-
Lee, H.S.1
Zhang, Y.2
-
213
-
-
84864948908
-
QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization
-
Handoko SD, Ouyang X, Su CT, Kwoh CK, Ong YS,. 2012. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 9: 1266-1272.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.9
, pp. 1266-1272
-
-
Handoko, S.D.1
Ouyang, X.2
Su, C.T.3
Kwoh, C.K.4
Ong, Y.S.5
-
214
-
-
84875366733
-
Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines
-
Zhang X, Wong SE, Lightstone FC,. 2013. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines. J. Comput. Chem. 34: 915-927.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 915-927
-
-
Zhang, X.1
Wong, S.E.2
Lightstone, F.C.3
-
215
-
-
84888224178
-
A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions
-
Liu Y, Xu Z, Yang Z, Chen K, Zhu W,. 2013. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J. Mol. Model. 19: 5015-5030.
-
(2013)
J. Mol. Model.
, vol.19
, pp. 5015-5030
-
-
Liu, Y.1
Xu, Z.2
Yang, Z.3
Chen, K.4
Zhu, W.5
-
216
-
-
84855927725
-
AMMOS software: Method and application
-
Pencheva T, Lagorce D, Pajeva I, Villoutreix BO, Miteva MA,. 2012. AMMOS software: method and application. Methods Mol. Biol. 819: 127-141.
-
(2012)
Methods Mol. Biol.
, vol.819
, pp. 127-141
-
-
Pencheva, T.1
Lagorce, D.2
Pajeva, I.3
Villoutreix, B.O.4
Miteva, M.A.5
-
217
-
-
84866454213
-
Cell-Dock: High-performance protein-protein docking
-
Pons C, Jimenez-Gonzalez D, Gonzalez-Alvarez C, Servat H, Cabrera-Benitez D, Aguilar X, Fernandez-Recio J,. 2012. Cell-Dock: high-performance protein-protein docking. Bioinformatics 28: 2394-2396.
-
(2012)
Bioinformatics
, vol.28
, pp. 2394-2396
-
-
Pons, C.1
Jimenez-Gonzalez, D.2
Gonzalez-Alvarez, C.3
Servat, H.4
Cabrera-Benitez, D.5
Aguilar, X.6
Fernandez-Recio, J.7
-
219
-
-
84863525156
-
DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets
-
Cereto-Massague A, Guasch L, Valls C, Mulero M, Pujadas G, Garcia-Vallve S,. 2012. DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics 28: 1661-1662.
-
(2012)
Bioinformatics
, vol.28
, pp. 1661-1662
-
-
Cereto-Massague, A.1
Guasch, L.2
Valls, C.3
Mulero, M.4
Pujadas, G.5
Garcia-Vallve, S.6
-
220
-
-
84866167816
-
MMPBSA.py: An efficient program for end-state free energy calculations
-
Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE,. 2012. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory. Comput. 8: 3314-3321.
-
(2012)
J. Chem. Theory. Comput.
, vol.8
, pp. 3314-3321
-
-
Miller, B.R.1
McGee, T.D.2
Swails, J.M.3
Homeyer, N.4
Gohlke, H.5
Roitberg, A.E.6
-
221
-
-
84861498479
-
Freely available conformer generation methods: How good are they?
-
Ebejer JP, Morris GM, Deane CM,. 2012. Freely available conformer generation methods: how good are they? J. Chem. Inf. Model. 52: 1146-1158.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1146-1158
-
-
Ebejer, J.P.1
Morris, G.M.2
Deane, C.M.3
-
222
-
-
84882639480
-
VinaMPI: Facilitating multiple receptor high-throughput virtual docking on high-performance computers
-
Ellingson SR, Smith JC, Baudry J,. 2013. VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers. J. Comput. Chem. 34: 2212-2221.
-
(2013)
J. Comput. Chem.
, vol.34
, pp. 2212-2221
-
-
Ellingson, S.R.1
Smith, J.C.2
Baudry, J.3
-
223
-
-
84869421971
-
ChemBioServer: A web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery
-
Athanasiadis E, Cournia Z, Spyrou G,. 2012. ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics 28: 3002-3003.
-
(2012)
Bioinformatics
, vol.28
, pp. 3002-3003
-
-
Athanasiadis, E.1
Cournia, Z.2
Spyrou, G.3
-
224
-
-
84883564023
-
CovalentDock Cloud: A web server for automated covalent docking
-
Ouyang X, Zhou S, Ge Z, Li R, Kwoh CK,. 2013. CovalentDock Cloud: a web server for automated covalent docking. Nucleic Acids Res. 41: W329-W332.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. W329-W332
-
-
Ouyang, X.1
Zhou, S.2
Ge, Z.3
Li, R.4
Kwoh, C.K.5
-
225
-
-
84864464925
-
FTMAP: Extended protein mapping with user-selected probe molecules
-
Ngan CH, Bohnuud T, Mottarella SE, Beglov D, Villar EA, Hall DR, Kozakov D, Vajda S,. 2012. FTMAP: extended protein mapping with user-selected probe molecules. Nucleic Acids Res. 40: W271-W275.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. W271-W275
-
-
Ngan, C.H.1
Bohnuud, T.2
Mottarella, S.E.3
Beglov, D.4
Villar, E.A.5
Hall, D.R.6
Kozakov, D.7
Vajda, S.8
-
226
-
-
84855915978
-
Analysis of protein binding sites by computational solvent mapping
-
Hall DR, Kozakov D, Vajda S,. 2012. Analysis of protein binding sites by computational solvent mapping. Methods Mol. Biol. 819: 13-27.
-
(2012)
Methods Mol. Biol.
, vol.819
, pp. 13-27
-
-
Hall, D.R.1
Kozakov, D.2
Vajda, S.3
-
227
-
-
84856084072
-
FTSite: High accuracy detection of ligand binding sites on unbound protein structures
-
Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S,. 2012. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28: 286-287.
-
(2012)
Bioinformatics
, vol.28
, pp. 286-287
-
-
Ngan, C.H.1
Hall, D.R.2
Zerbe, B.3
Grove, L.E.4
Kozakov, D.5
Vajda, S.6
-
228
-
-
84864453939
-
IdTarget: A web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach
-
Wang JC, Chu PY, Chen CM, Lin JH,. 2012. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 40: W393-W399.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. W393-W399
-
-
Wang, J.C.1
Chu, P.Y.2
Chen, C.M.3
Lin, J.H.4
-
229
-
-
84879916282
-
PyDockWEB: A web server for rigid-body protein-protein docking using electrostatics and desolvation scoring
-
Jimenez-Garcia B, Pons C, Fernandez-Recio J,. 2013. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29: 1698-1699.
-
(2013)
Bioinformatics
, vol.29
, pp. 1698-1699
-
-
Jimenez-Garcia, B.1
Pons, C.2
Fernandez-Recio, J.3
-
230
-
-
77950571108
-
New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays
-
Baell JB, Holloway GA,. 2010. New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53: 2719-2740.
-
(2010)
J. Med. Chem.
, vol.53
, pp. 2719-2740
-
-
Baell, J.B.1
Holloway, G.A.2
-
231
-
-
84861729758
-
E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design
-
Pihan E, Colliandre L, Guichou JF, Douguet D,. 2012. e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 28: 1540-1541.
-
(2012)
Bioinformatics
, vol.28
, pp. 1540-1541
-
-
Pihan, E.1
Colliandre, L.2
Guichou, J.F.3
Douguet, D.4
-
232
-
-
84896528981
-
An integrated virtual screening approach for VEGFR-2 inhibitors
-
Zhang Y, Yang S, Jiao Y, Liu H, Yuan H, Lu S, Ran T, Yao S, Ke Z, Xu J, Xiong X, Chen Y, Lu T,. 2013. An integrated virtual screening approach for VEGFR-2 inhibitors. J. Chem. Inf. Model. 53: 3163-3177.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 3163-3177
-
-
Zhang, Y.1
Yang, S.2
Jiao, Y.3
Liu, H.4
Yuan, H.5
Lu, S.6
Ran, T.7
Yao, S.8
Ke, Z.9
Xu, J.10
Xiong, X.11
Chen, Y.12
Lu, T.13
-
233
-
-
82255186618
-
Enrichment of virtual hits by progressive shape-matching and docking
-
Choi J, He N, Kim N, Yoon S,. 2012. Enrichment of virtual hits by progressive shape-matching and docking. J. Mol. Graph. Model. 32: 82-88.
-
(2012)
J. Mol. Graph. Model.
, vol.32
, pp. 82-88
-
-
Choi, J.1
He, N.2
Kim, N.3
Yoon, S.4
-
234
-
-
84887042090
-
Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures
-
Tian S, Sun H, Li Y, Pan P, Li D, Hou T,. 2013. Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. J. Chem. Inf. Model. 53: 2743-2756.
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 2743-2756
-
-
Tian, S.1
Sun, H.2
Li, Y.3
Pan, P.4
Li, D.5
Hou, T.6
-
235
-
-
84862297586
-
Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds
-
Nevin DK, Peters MB, Carta G, Fayne D, Lloyd DG,. 2012. Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds. J. Med. Chem. 55: 4978-4989.
-
(2012)
J. Med. Chem.
, vol.55
, pp. 4978-4989
-
-
Nevin, D.K.1
Peters, M.B.2
Carta, G.3
Fayne, D.4
Lloyd, D.G.5
|