메뉴 건너뛰기




Volumn 28, Issue 10, 2015, Pages 581-604

Improvements, trends, and new ideas in molecular docking: 2012-2013 in review

Author keywords

flexibility; fragment docking; machine learning; protein protein docking; receptor ensemble; scoring; solvation; virtual screening

Indexed keywords

CELL SURFACE RECEPTOR; LIGAND; PROTEIN BINDING;

EID: 84941075640     PISSN: 09523499     EISSN: 10991352     Source Type: Journal    
DOI: 10.1002/jmr.2471     Document Type: Review
Times cited : (217)

References (235)
  • 2
    • 79952181220 scopus 로고    scopus 로고
    • Challenges and advances in computational docking: 2009 in review
    • Yuriev E, Agostino M, Ramsland PA,. 2011. Challenges and advances in computational docking: 2009 in review. J. Mol. Recognit. 24: 149-164.
    • (2011) J. Mol. Recognit. , vol.24 , pp. 149-164
    • Yuriev, E.1    Agostino, M.2    Ramsland, P.A.3
  • 3
    • 84875480305 scopus 로고    scopus 로고
    • Latest developments in molecular docking: 2010-2011 in review
    • Yuriev E, Ramsland PA,. 2013. Latest developments in molecular docking: 2010-2011 in review. J. Mol. Recognit. 26: 215-239.
    • (2013) J. Mol. Recognit. , vol.26 , pp. 215-239
    • Yuriev, E.1    Ramsland, P.A.2
  • 4
    • 84871604119 scopus 로고    scopus 로고
    • GalaxyDock: Protein-ligand docking with flexible protein side-chains
    • Shin WH, Seok C,. 2012. GalaxyDock: protein-ligand docking with flexible protein side-chains. J. Chem. Inf. Model. 52: 3225-3232.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 3225-3232
    • Shin, W.H.1    Seok, C.2
  • 5
    • 84885660146 scopus 로고    scopus 로고
    • GalaxyDock2: Protein-ligand docking using beta-complex and global optimization
    • Shin WH, Kim JK, Kim DS, Seok C,. 2013. GalaxyDock2: protein-ligand docking using beta-complex and global optimization. J. Comput. Chem. 34: 2647-2656.
    • (2013) J. Comput. Chem. , vol.34 , pp. 2647-2656
    • Shin, W.H.1    Kim, J.K.2    Kim, D.S.3    Seok, C.4
  • 6
    • 85027917385 scopus 로고    scopus 로고
    • Consensus Induced Fit Docking (cIFD): Methodology, validation, and application to the discovery of novel Crm1 inhibitors
    • Kalid O, Toledo Warshaviak D, Shechter S, Sherman W, Shacham S,. 2012. Consensus Induced Fit Docking (cIFD): methodology, validation, and application to the discovery of novel Crm1 inhibitors. J. Comput.-Aided Mol. Des. 26: 1217-1228.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 1217-1228
    • Kalid, O.1    Toledo Warshaviak, D.2    Shechter, S.3    Sherman, W.4    Shacham, S.5
  • 7
    • 84855945133 scopus 로고    scopus 로고
    • Rosetta Ligand docking with flexible XML protocols
    • Lemmon G, Meiler J,. 2012. Rosetta Ligand docking with flexible XML protocols. Methods Mol. Biol. 819: 143-155.
    • (2012) Methods Mol. Biol. , vol.819 , pp. 143-155
    • Lemmon, G.1    Meiler, J.2
  • 8
    • 84873050836 scopus 로고    scopus 로고
    • S4MPLE - Sampler for multiple protein-ligand entities: Simultaneous docking of several entities
    • Hoffer L, Horvath D,. 2013. S4MPLE - sampler for multiple protein-ligand entities: simultaneous docking of several entities. J. Chem. Inf. Model. 53: 88-102.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 88-102
    • Hoffer, L.1    Horvath, D.2
  • 9
    • 84876587110 scopus 로고    scopus 로고
    • Automated docking with protein flexibility in the design of femtomolar " click chemistry" inhibitors of acetylcholinesterase
    • Morris GM, Green LG, Radic Z, Taylor P, Sharpless KB, Olson AJ, Grynszpan F,. 2013. Automated docking with protein flexibility in the design of femtomolar " click chemistry" inhibitors of acetylcholinesterase. J. Chem. Inf. Model. 53: 898-906.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 898-906
    • Morris, G.M.1    Green, L.G.2    Radic, Z.3    Taylor, P.4    Sharpless, K.B.5    Olson, A.J.6    Grynszpan, F.7
  • 10
    • 84858796784 scopus 로고    scopus 로고
    • Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina
    • Abreu RM, Froufe HJ, Queiroz MJ, Ferreira IC,. 2012. Selective flexibility of side-chain residues improves VEGFR-2 docking score using AutoDock Vina. Chem. Biol. Drug Des. 79: 530-534.
    • (2012) Chem. Biol. Drug Des. , vol.79 , pp. 530-534
    • Abreu, R.M.1    Froufe, H.J.2    Queiroz, M.J.3    Ferreira, I.C.4
  • 13
    • 84879592208 scopus 로고    scopus 로고
    • DOLINA - Docking based on a local induced-fit algorithm: Application toward small-molecule binding to nuclear receptors
    • Smiesko M,. 2013. DOLINA - docking based on a local induced-fit algorithm: application toward small-molecule binding to nuclear receptors. J. Chem. Inf. Model. 53: 1415-1423.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1415-1423
    • Smiesko, M.1
  • 14
    • 84876691506 scopus 로고    scopus 로고
    • Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure
    • Schumann M, Armen RS,. 2013. Systematic and efficient side chain optimization for molecular docking using a cheapest-path procedure. J. Comput. Chem. 34: 1258-1269.
    • (2013) J. Comput. Chem. , vol.34 , pp. 1258-1269
    • Schumann, M.1    Armen, R.S.2
  • 15
    • 84867743951 scopus 로고    scopus 로고
    • Modeling loop backbone flexibility in receptor-ligand docking simulations
    • Flick J, Tristram F, Wenzel W,. 2012. Modeling loop backbone flexibility in receptor-ligand docking simulations. J. Comput. Chem. 33: 2504-2515.
    • (2012) J. Comput. Chem. , vol.33 , pp. 2504-2515
    • Flick, J.1    Tristram, F.2    Wenzel, W.3
  • 16
    • 84871381838 scopus 로고    scopus 로고
    • Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design
    • Sinko W, Lindert S, McCammon JA,. 2013. Accounting for receptor flexibility and enhanced sampling methods in computer-aided drug design. Chem. Biol. Drug Des. 81: 41-49.
    • (2013) Chem. Biol. Drug Des. , vol.81 , pp. 41-49
    • Sinko, W.1    Lindert, S.2    McCammon, J.A.3
  • 18
    • 84867760558 scopus 로고    scopus 로고
    • ALiBERO: Evolving a team of complementary pocket conformations rather than a single leader
    • Rueda M, Totrov M, Abagyan R,. 2012. ALiBERO: evolving a team of complementary pocket conformations rather than a single leader. J. Chem. Inf. Model. 52: 2705-2714.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2705-2714
    • Rueda, M.1    Totrov, M.2    Abagyan, R.3
  • 19
    • 84858046565 scopus 로고    scopus 로고
    • Utilizing experimental data for reducing ensemble size in flexible-protein docking
    • Xu M, Lill MA,. 2012. Utilizing experimental data for reducing ensemble size in flexible-protein docking. J. Chem. Inf. Model. 52: 187-198.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 187-198
    • Xu, M.1    Lill, M.A.2
  • 20
    • 84864000092 scopus 로고    scopus 로고
    • Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering
    • Osguthorpe DJ, Sherman W, Hagler AT,. 2012. Generation of receptor structural ensembles for virtual screening using binding site shape analysis and clustering. Chem. Biol. Drug Des. 80: 182-193.
    • (2012) Chem. Biol. Drug Des. , vol.80 , pp. 182-193
    • Osguthorpe, D.J.1    Sherman, W.2    Hagler, A.T.3
  • 21
    • 84860835824 scopus 로고    scopus 로고
    • Flexible protein-ligand docking using the Fleksy protocol
    • Wagener M, Vlieg JD, Nabuurs SB,. 2012. Flexible protein-ligand docking using the Fleksy protocol. J. Comput. Chem. 33: 1215-1217.
    • (2012) J. Comput. Chem. , vol.33 , pp. 1215-1217
    • Wagener, M.1    Vlieg, J.D.2    Nabuurs, S.B.3
  • 22
    • 84888614101 scopus 로고    scopus 로고
    • The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs
    • Tarcsay A, Paragi G, Vass M, Jojart B, Bogar F, Keseru GM,. 2013. The impact of molecular dynamics sampling on the performance of virtual screening against GPCRs. J. Chem. Inf. Model. 53: 2990-2999.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2990-2999
    • Tarcsay, A.1    Paragi, G.2    Vass, M.3    Jojart, B.4    Bogar, F.5    Keseru, G.M.6
  • 24
    • 84862282513 scopus 로고    scopus 로고
    • Exploring protein flexibility: Incorporating structural ensembles from crystal structures and simulation into virtual screening protocols
    • Osguthorpe DJ, Sherman W, Hagler AT,. 2012. Exploring protein flexibility: Incorporating structural ensembles from crystal structures and simulation into virtual screening protocols. J. Phys. Chem. B 116: 6952-6959.
    • (2012) J. Phys. Chem. B , vol.116 , pp. 6952-6959
    • Osguthorpe, D.J.1    Sherman, W.2    Hagler, A.T.3
  • 25
    • 84867773348 scopus 로고    scopus 로고
    • Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations
    • Dixit A, Verkhivker GM,. 2012. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations. J. Chem. Inf. Model. 52: 2501-2515.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2501-2515
    • Dixit, A.1    Verkhivker, G.M.2
  • 26
    • 84867328344 scopus 로고    scopus 로고
    • FRED and HYBRID docking performance on standardized datasets
    • McGann M,. 2012. FRED and HYBRID docking performance on standardized datasets. J. Comput.-Aided Mol. Des. 26: 897-906.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 897-906
    • McGann, M.1
  • 27
    • 84883214603 scopus 로고    scopus 로고
    • Docking challenge: Protein sampling and molecular docking performance
    • Elokely KM, Doerksen RJ,. 2013. Docking challenge: protein sampling and molecular docking performance. J. Chem. Inf. Model. 53: 1934-1945.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1934-1945
    • Elokely, K.M.1    Doerksen, R.J.2
  • 28
    • 84885132782 scopus 로고    scopus 로고
    • Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins
    • Rashad AA, Keller PA,. 2013. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins. J. Mol. Graph. Model. 44: 241-252.
    • (2013) J. Mol. Graph. Model. , vol.44 , pp. 241-252
    • Rashad, A.A.1    Keller, P.A.2
  • 29
    • 84864695108 scopus 로고    scopus 로고
    • Insights from comprehensive multiple receptor docking to HDAC8
    • Brunsteiner M, Petukhov PA,. 2012. Insights from comprehensive multiple receptor docking to HDAC8. J. Mol. Model. 18: 3927-3939.
    • (2012) J. Mol. Model. , vol.18 , pp. 3927-3939
    • Brunsteiner, M.1    Petukhov, P.A.2
  • 31
    • 84873358025 scopus 로고    scopus 로고
    • Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands
    • Vilar S, Costanzi S,. 2013. Application of Monte Carlo-based receptor ensemble docking to virtual screening for GPCR ligands. Methods Enzymol. 522: 263-278.
    • (2013) Methods Enzymol. , vol.522 , pp. 263-278
    • Vilar, S.1    Costanzi, S.2
  • 33
    • 84874441507 scopus 로고    scopus 로고
    • Multiple structures for virtual ligand screening: Defining binding site properties-based criteria to optimize the selection of the query
    • Ben Nasr N, Guillemain H, Lagarde N, Zagury JF, Montes M,. 2013. Multiple structures for virtual ligand screening: defining binding site properties-based criteria to optimize the selection of the query. J. Chem. Inf. Model. 53: 293-311.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 293-311
    • Ben Nasr, N.1    Guillemain, H.2    Lagarde, N.3    Zagury, J.F.4    Montes, M.5
  • 34
    • 84860492894 scopus 로고    scopus 로고
    • A GPU-based approach to accelerate computational protein-DNA docking
    • Wu J, Chen C, Hong B,. 2012. A GPU-based approach to accelerate computational protein-DNA docking. Comput. Sci. Eng. 14: 20-28.
    • (2012) Comput. Sci. Eng. , vol.14 , pp. 20-28
    • Wu, J.1    Chen, C.2    Hong, B.3
  • 35
    • 84962704372 scopus 로고    scopus 로고
    • High performance transcription factor-DNA docking with GPU computing
    • Wu JD, Hong B, Takeda T, Guo JT,. 2012. High performance transcription factor-DNA docking with GPU computing. Proteome Sci. 10: S17.
    • (2012) Proteome Sci. , vol.10 , pp. S17
    • Wu, J.D.1    Hong, B.2    Takeda, T.3    Guo, J.T.4
  • 37
    • 84877277360 scopus 로고    scopus 로고
    • WFReDoW: A cloud-based web environment to handle molecular docking simulations of a fully flexible receptor model
    • De Paris R, Frantz FA, de Souza ON, Ruiz DDA,. 2013. wFReDoW: A cloud-based web environment to handle molecular docking simulations of a fully flexible receptor model. Biomed Res. Int. 2013: 469363.
    • (2013) Biomed Res. Int. , vol.2013 , pp. 469363
    • De Paris, R.1    Frantz, F.A.2    De Souza, O.N.3    Ruiz, D.D.A.4
  • 38
    • 84863714870 scopus 로고    scopus 로고
    • Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design
    • Chaudhuri R, Carrillo O, Laughton CA, Orozco M,. 2012. Application of drug-perturbed essential dynamics/molecular dynamics (ED/MD) to virtual screening and rational drug design. J. Chem. Theory. Comput. 8: 2204-2214.
    • (2012) J. Chem. Theory. Comput. , vol.8 , pp. 2204-2214
    • Chaudhuri, R.1    Carrillo, O.2    Laughton, C.A.3    Orozco, M.4
  • 39
    • 84874646837 scopus 로고    scopus 로고
    • The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics
    • Nowosielski M, Hoffmann M, Kuron A, Korycka-Machala M, Dziadek J,. 2013. The MM2QM tool for combining docking, molecular dynamics, molecular mechanics, and quantum mechanics. J. Comput. Chem. 34: 750-756.
    • (2013) J. Comput. Chem. , vol.34 , pp. 750-756
    • Nowosielski, M.1    Hoffmann, M.2    Kuron, A.3    Korycka-Machala, M.4    Dziadek, J.5
  • 40
    • 84859166785 scopus 로고    scopus 로고
    • On the applicability of elastic network normal modes in small-molecule docking
    • Dietzen M, Zotenko E, Hildebrandt A, Lengauer T,. 2012. On the applicability of elastic network normal modes in small-molecule docking. J. Chem. Inf. Model. 52: 844-856.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 844-856
    • Dietzen, M.1    Zotenko, E.2    Hildebrandt, A.3    Lengauer, T.4
  • 41
    • 84880701287 scopus 로고    scopus 로고
    • Effects of histidine protonation and rotameric states on virtual screening of M. Tuberculosis RmlC
    • Kim MO, Nichols SE, Wang Y, McCammon JA,. 2013. Effects of histidine protonation and rotameric states on virtual screening of M. tuberculosis RmlC. J. Comput.-Aided Mol. Des. 27: 235-246.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 235-246
    • Kim, M.O.1    Nichols, S.E.2    Wang, Y.3    McCammon, J.A.4
  • 43
    • 84880529288 scopus 로고    scopus 로고
    • Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments
    • Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W,. 2013. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 27: 221-234.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 221-234
    • Sastry, G.M.1    Adzhigirey, M.2    Day, T.3    Annabhimoju, R.4    Sherman, W.5
  • 44
    • 84858011865 scopus 로고    scopus 로고
    • Binding affinity prediction for ligands and receptors forming tautomers and ionization species: Inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2)
    • Natesan S, Subramaniam R, Bergeron C, Balaz S,. 2012. Binding affinity prediction for ligands and receptors forming tautomers and ionization species: inhibition of mitogen-activated protein kinase-activated protein kinase 2 (MK2). J. Med. Chem. 55: 2035-2047.
    • (2012) J. Med. Chem. , vol.55 , pp. 2035-2047
    • Natesan, S.1    Subramaniam, R.2    Bergeron, C.3    Balaz, S.4
  • 45
    • 84878388412 scopus 로고    scopus 로고
    • Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors
    • Kalyaanamoorthy S, Chen YP,. 2013. Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors. J. Mol. Graph. Model. 44: 44-53.
    • (2013) J. Mol. Graph. Model. , vol.44 , pp. 44-53
    • Kalyaanamoorthy, S.1    Chen, Y.P.2
  • 46
    • 84879286616 scopus 로고    scopus 로고
    • Effect of pH and ligand charge state on BACE-1 fragment docking performance
    • Dominguez JL, Villaverde MC, Sussman F,. 2013. Effect of pH and ligand charge state on BACE-1 fragment docking performance. J. Comput.-Aided Mol. Des. 27: 403-417.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 403-417
    • Dominguez, J.L.1    Villaverde, M.C.2    Sussman, F.3
  • 47
    • 84859192649 scopus 로고    scopus 로고
    • Numerical errors and chaotic behavior in docking simulations
    • Feher M, Williams CI,. 2012. Numerical errors and chaotic behavior in docking simulations. J. Chem. Inf. Model. 52: 724-738.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 724-738
    • Feher, M.1    Williams, C.I.2
  • 48
    • 84867582901 scopus 로고    scopus 로고
    • FDA approved drugs complexed to their targets: Evaluating pose prediction accuracy of docking protocols
    • Bohari MH, Sastry GN,. 2012. FDA approved drugs complexed to their targets: evaluating pose prediction accuracy of docking protocols. J. Mol. Model. 18: 4263-4274.
    • (2012) J. Mol. Model. , vol.18 , pp. 4263-4274
    • Bohari, M.H.1    Sastry, G.N.2
  • 49
    • 84874445951 scopus 로고    scopus 로고
    • Consensus docking: Improving the reliability of docking in a virtual screening context
    • Houston DR, Walkinshaw MD,. 2013. Consensus docking: improving the reliability of docking in a virtual screening context. J. Chem. Inf. Model. 53: 384-390.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 384-390
    • Houston, D.R.1    Walkinshaw, M.D.2
  • 50
    • 84876557057 scopus 로고    scopus 로고
    • In silico fragment-based drug discovery: Setup and validation of a fragment-to-lead computational protocol using S4MPLE
    • Hoffer L, Renaud JP, Horvath D,. 2013. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE. J. Chem. Inf. Model. 53: 836-851.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 836-851
    • Hoffer, L.1    Renaud, J.P.2    Horvath, D.3
  • 51
    • 84879596822 scopus 로고    scopus 로고
    • Use of experimental design to optimize docking performance: The case of LiGenDock, the docking module of LiGen, a new de novo design program
    • Beato C, Beccari AR, Cavazzoni C, Lorenzi S, Costantino G,. 2013. Use of experimental design to optimize docking performance: the case of LiGenDock, the docking module of LiGen, a new de novo design program. J. Chem. Inf. Model. 53: 1503-1517.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1503-1517
    • Beato, C.1    Beccari, A.R.2    Cavazzoni, C.3    Lorenzi, S.4    Costantino, G.5
  • 53
    • 84879581777 scopus 로고    scopus 로고
    • LiGen: A high performance workflow for chemistry driven de novo design
    • Beccari AR, Cavazzoni C, Beato C, Costantino G,. 2013. LiGen: a high performance workflow for chemistry driven de novo design. J. Chem. Inf. Model. 53: 1518-1527.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1518-1527
    • Beccari, A.R.1    Cavazzoni, C.2    Beato, C.3    Costantino, G.4
  • 54
    • 84862010592 scopus 로고    scopus 로고
    • Ligand aligning method for molecular docking: Alignment of property-weighted vectors
    • Joung JY, Nam KY, Cho KH, No KT,. 2012. Ligand aligning method for molecular docking: alignment of property-weighted vectors. J. Chem. Inf. Model. 52: 984-995.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 984-995
    • Joung, J.Y.1    Nam, K.Y.2    Cho, K.H.3    No, K.T.4
  • 55
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • Zilian D, Sotriffer CA,. 2013. SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J. Chem. Inf. Model. 53: 1923-1933.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 56
    • 84887106527 scopus 로고    scopus 로고
    • Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines
    • Koppisetty CA, Frank M, Kemp GJ, Nyholm PG,. 2013. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J. Chem. Inf. Model. 53: 2559-2570.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2559-2570
    • Koppisetty, C.A.1    Frank, M.2    Kemp, G.J.3    Nyholm, P.G.4
  • 57
    • 84883218268 scopus 로고    scopus 로고
    • HotLig: A molecular surface-directed approach to scoring protein-ligand interactions
    • Wang SH, Wu YT, Kuo SC, Yu J,. 2013. HotLig: A molecular surface-directed approach to scoring protein-ligand interactions. J. Chem. Inf. Model. 53: 2181-2195.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2181-2195
    • Wang, S.H.1    Wu, Y.T.2    Kuo, S.C.3    Yu, J.4
  • 58
    • 84878201814 scopus 로고    scopus 로고
    • Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions
    • Zheng Z, Merz KM, Jr, 2013. Development of the knowledge-based and empirical combined scoring algorithm (KECSA) to score protein-ligand interactions. J. Chem. Inf. Model. 53: 1073-1083.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1073-1083
    • Zheng, Z.1    Merz, K.M.2
  • 59
    • 84879115826 scopus 로고    scopus 로고
    • Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: Development and application on kinase inhibitors
    • Rao L, Zhang IY, Guo W, Feng L, Meggers E, Xu X,. 2013. Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: development and application on kinase inhibitors. J. Comput. Chem. 34: 1636-1646.
    • (2013) J. Comput. Chem. , vol.34 , pp. 1636-1646
    • Rao, L.1    Zhang, I.Y.2    Guo, W.3    Feng, L.4    Meggers, E.5    Xu, X.6
  • 61
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JB,. 2010. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26: 1169-1175.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 62
    • 84888606432 scopus 로고    scopus 로고
    • Binding affinity prediction for protein-ligand complexes based on beta contacts and B factor
    • Liu Q, Kwoh CK, Li J,. 2013. Binding affinity prediction for protein-ligand complexes based on beta contacts and B factor. J. Chem. Inf. Model. 53: 3076-3085.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3076-3085
    • Liu, Q.1    Kwoh, C.K.2    Li, J.3
  • 63
    • 84876531629 scopus 로고    scopus 로고
    • Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints
    • Chupakhin V, Marcou G, Baskin I, Varnek A, Rognan D,. 2013. Predicting ligand binding modes from neural networks trained on protein-ligand interaction fingerprints. J. Chem. Inf. Model. 53: 763-772.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 763-772
    • Chupakhin, V.1    Marcou, G.2    Baskin, I.3    Varnek, A.4    Rognan, D.5
  • 64
    • 84888602591 scopus 로고    scopus 로고
    • Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction
    • Brylinski M,. 2013. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction. J. Chem. Inf. Model. 53: 3097-3112.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3097-3112
    • Brylinski, M.1
  • 65
    • 84875428269 scopus 로고    scopus 로고
    • ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
    • Li GB, Yang LL, Wang WJ, Li LL, Yang SY,. 2013. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model. 53: 592-600.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 592-600
    • Li, G.B.1    Yang, L.L.2    Wang, W.J.3    Li, L.L.4    Yang, S.Y.5
  • 66
    • 84880698928 scopus 로고    scopus 로고
    • Optimization of molecular docking scores with support vector rank regression
    • Wang W, He W, Zhou X, Chen X,. 2013. Optimization of molecular docking scores with support vector rank regression. Proteins 81: 1386-1398.
    • (2013) Proteins , vol.81 , pp. 1386-1398
    • Wang, W.1    He, W.2    Zhou, X.3    Chen, X.4
  • 67
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
    • Ding B, Wang J, Li N, Wang W,. 2013. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J. Chem. Inf. Model. 53: 114-122.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 68
    • 84878176071 scopus 로고    scopus 로고
    • Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
    • Ding B, Li N, Wang W,. 2013. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J. Chem. Inf. Model. 53: 1213-1222.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1213-1222
    • Ding, B.1    Li, N.2    Wang, W.3
  • 69
    • 84896705093 scopus 로고    scopus 로고
    • Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology
    • Hsin KY, Ghosh S, Kitano H,. 2013. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 8: e83922.
    • (2013) PLoS One , vol.8 , pp. e83922
    • Hsin, K.Y.1    Ghosh, S.2    Kitano, H.3
  • 70
    • 84864950736 scopus 로고    scopus 로고
    • A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction
    • Ashtawy HM, Mahapatra NR,. 2012. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 9: 1301-1313.
    • (2012) IEEE/ACM Trans. Comput. Biol. Bioinform. , vol.9 , pp. 1301-1313
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 71
    • 83555178458 scopus 로고    scopus 로고
    • The interprotein scoring noises in glide docking scores
    • Wang W, Zhou X, He W, Fan Y, Chen Y, Chen X,. 2012. The interprotein scoring noises in glide docking scores. Proteins 80: 169-183.
    • (2012) Proteins , vol.80 , pp. 169-183
    • Wang, W.1    Zhou, X.2    He, W.3    Fan, Y.4    Chen, Y.5    Chen, X.6
  • 72
    • 84874111137 scopus 로고    scopus 로고
    • A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: Methods behind the HYDE scoring function
    • Schneider N, Lange G, Hindle S, Klein R, Rarey M,. 2013. A consistent description of HYdrogen bond and DEhydration energies in protein-ligand complexes: methods behind the HYDE scoring function. J. Comput.-Aided Mol. Des. 27: 15-29.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 15-29
    • Schneider, N.1    Lange, G.2    Hindle, S.3    Klein, R.4    Rarey, M.5
  • 73
    • 84880552522 scopus 로고    scopus 로고
    • Comparing neural-network scoring functions and the state of the art: Applications to common library screening
    • Durrant JD, Friedman AJ, Rogers KE, McCammon JA,. 2013. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J. Chem. Inf. Model. 53: 1726-1735.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1726-1735
    • Durrant, J.D.1    Friedman, A.J.2    Rogers, K.E.3    McCammon, J.A.4
  • 74
    • 84884185651 scopus 로고    scopus 로고
    • One size does not fit all: The limits of structure-based models in drug discovery
    • Ross GA, Morris GM, Biggin PC,. 2013. One size does not fit all: the limits of structure-based models in drug discovery. J. Chem. Theory. Comput. 9: 4266-4274.
    • (2013) J. Chem. Theory. Comput. , vol.9 , pp. 4266-4274
    • Ross, G.A.1    Morris, G.M.2    Biggin, P.C.3
  • 75
    • 33846524439 scopus 로고    scopus 로고
    • Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding
    • Young T, Abel R, Kim B, Berne BJ, Friesner RA,. 2007. Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand binding. Proc. Natl. Acad. Sci. U. S. A. 104: 808-813.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 808-813
    • Young, T.1    Abel, R.2    Kim, B.3    Berne, B.J.4    Friesner, R.A.5
  • 76
    • 84874299846 scopus 로고    scopus 로고
    • Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: The use of WaterMap
    • Yang Y, Lightstone FC, Wong SE,. 2013. Approaches to efficiently estimate solvation and explicit water energetics in ligand binding: the use of WaterMap. Expert Opin. Drug Discov. 8: 277-287.
    • (2013) Expert Opin. Drug Discov. , vol.8 , pp. 277-287
    • Yang, Y.1    Lightstone, F.C.2    Wong, S.E.3
  • 77
    • 84863160413 scopus 로고    scopus 로고
    • Application of MM-Gb/SA and WaterMap to SRC kinase inhibitor potency prediction
    • Kohlmann A, Zhu X, Dalgarno D,. 2012. Application of MM-GB/SA and WaterMap to SRC kinase inhibitor potency prediction. ACS Med. Chem. Lett. 3: 94-99.
    • (2012) ACS Med. Chem. Lett. , vol.3 , pp. 94-99
    • Kohlmann, A.1    Zhu, X.2    Dalgarno, D.3
  • 78
    • 84861495307 scopus 로고    scopus 로고
    • Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: Impact on GOLD docking performance
    • Nurisso A, Bravo J, Carrupt PA, Daina A,. 2012. Molecular docking using the molecular lipophilicity potential as hydrophobic descriptor: impact on GOLD docking performance. J. Chem. Inf. Model. 52: 1319-1327.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1319-1327
    • Nurisso, A.1    Bravo, J.2    Carrupt, P.A.3    Daina, A.4
  • 79
    • 84883222198 scopus 로고    scopus 로고
    • Investigation on the effect of key water molecules on docking performance in CSARdock exercise
    • Kumar A, Zhang KY,. 2013. Investigation on the effect of key water molecules on docking performance in CSARdock exercise. J. Chem. Inf. Model. 53: 1880-1892.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1880-1892
    • Kumar, A.1    Zhang, K.Y.2
  • 80
    • 84856397848 scopus 로고    scopus 로고
    • A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking
    • Forli S, Olson AJ,. 2012. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 55: 623-638.
    • (2012) J. Med. Chem. , vol.55 , pp. 623-638
    • Forli, S.1    Olson, A.J.2
  • 81
    • 84857748866 scopus 로고    scopus 로고
    • Rapid and accurate prediction and scoring of water molecules in protein binding sites
    • Ross GA, Morris GM, Biggin PC,. 2012. Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One 7: e32036.
    • (2012) PLoS One , vol.7 , pp. e32036
    • Ross, G.A.1    Morris, G.M.2    Biggin, P.C.3
  • 82
    • 84865114760 scopus 로고    scopus 로고
    • Multiple ligand docking by Glide: Implications for virtual second-site screening
    • Vass M, Tarcsay A, Keseru GM,. 2012. Multiple ligand docking by Glide: implications for virtual second-site screening. J. Comput.-Aided Mol. Des. 26: 821-834.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 821-834
    • Vass, M.1    Tarcsay, A.2    Keseru, G.M.3
  • 83
    • 84880406167 scopus 로고    scopus 로고
    • Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities
    • Barelier S, Boyce SE, Fish I, Fischer M, Goodin DB, Shoichet BK,. 2013. Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities. PLoS One 8: e69153.
    • (2013) PLoS One , vol.8 , pp. e69153
    • Barelier, S.1    Boyce, S.E.2    Fish, I.3    Fischer, M.4    Goodin, D.B.5    Shoichet, B.K.6
  • 84
    • 84879518297 scopus 로고    scopus 로고
    • Towards ligand docking including explicit interface water molecules
    • Lemmon G, Meiler J,. 2013. Towards ligand docking including explicit interface water molecules. PLoS One 8: e67536.
    • (2013) PLoS One , vol.8 , pp. e67536
    • Lemmon, G.1    Meiler, J.2
  • 85
    • 84885362304 scopus 로고    scopus 로고
    • Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies?
    • Mulakala C, Viswanadhan VN,. 2013. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free energies? J. Mol. Graph. Model. 46: 41-51.
    • (2013) J. Mol. Graph. Model. , vol.46 , pp. 41-51
    • Mulakala, C.1    Viswanadhan, V.N.2
  • 86
    • 84873047704 scopus 로고    scopus 로고
    • MM/GBSA binding energy prediction on the PDBbind data set: Successes, failures, and directions for further improvement
    • Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM,. 2013. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model. 53: 201-209.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 201-209
    • Greenidge, P.A.1    Kramer, C.2    Mozziconacci, J.C.3    Wolf, R.M.4
  • 87
    • 84879596436 scopus 로고    scopus 로고
    • Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization
    • Liu J, He X, Zhang JZ,. 2013. Improving the scoring of protein-ligand binding affinity by including the effects of structural water and electronic polarization. J. Chem. Inf. Model. 53: 1306-1314.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1306-1314
    • Liu, J.1    He, X.2    Zhang, J.Z.3
  • 88
    • 84859815041 scopus 로고    scopus 로고
    • In silico binding free energy predictability with pi-pi interaction energy-augmented scoring function: Benzimidazole Raf inhibitors as a case study
    • Chung JY, Cho SJ, Cho AE, Hah JM,. 2012. In silico binding free energy predictability with pi-pi interaction energy-augmented scoring function: benzimidazole Raf inhibitors as a case study. Bioorg. Med. Chem. Lett. 22: 3278-3283.
    • (2012) Bioorg. Med. Chem. Lett. , vol.22 , pp. 3278-3283
    • Chung, J.Y.1    Cho, S.J.2    Cho, A.E.3    Hah, J.M.4
  • 90
    • 84892637070 scopus 로고    scopus 로고
    • Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography
    • Topin J, Arnaud J, Sarkar A, Audfray A, Gillon E, Perez S, Jamet H, Varrot A, Imberty A, Thomas A,. 2013. Deciphering the glycan preference of bacterial lectins by glycan array and molecular docking with validation by microcalorimetry and crystallography. PLoS One 8: e71149.
    • (2013) PLoS One , vol.8 , pp. e71149
    • Topin, J.1    Arnaud, J.2    Sarkar, A.3    Audfray, A.4    Gillon, E.5    Perez, S.6    Jamet, H.7    Varrot, A.8    Imberty, A.9    Thomas, A.10
  • 92
    • 84859444429 scopus 로고    scopus 로고
    • Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods
    • Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U,. 2012. Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods. J. Comput.-Aided Mol. Des. 26: 527-541.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 527-541
    • Mikulskis, P.1    Genheden, S.2    Rydberg, P.3    Sandberg, L.4    Olsen, L.5    Ryde, U.6
  • 93
    • 84868699636 scopus 로고    scopus 로고
    • Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations
    • Sgobba M, Caporuscio F, Anighoro A, Portioli C, Rastelli G,. 2012. Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. Eur. J. Med. Chem. 58: 431-440.
    • (2012) Eur. J. Med. Chem. , vol.58 , pp. 431-440
    • Sgobba, M.1    Caporuscio, F.2    Anighoro, A.3    Portioli, C.4    Rastelli, G.5
  • 94
    • 84865165896 scopus 로고    scopus 로고
    • An efficient computational method for calculating ligand binding affinities
    • Suenaga A, Okimoto N, Hirano Y, Fukui K,. 2012. An efficient computational method for calculating ligand binding affinities. PLoS One 7: e42846.
    • (2012) PLoS One , vol.7 , pp. e42846
    • Suenaga, A.1    Okimoto, N.2    Hirano, Y.3    Fukui, K.4
  • 96
    • 84874310966 scopus 로고    scopus 로고
    • The application of quantum mechanics in structure-based drug design
    • Mucs D, Bryce RA,. 2013. The application of quantum mechanics in structure-based drug design. Expert Opin. Drug Discov. 8: 263-276.
    • (2013) Expert Opin. Drug Discov. , vol.8 , pp. 263-276
    • Mucs, D.1    Bryce, R.A.2
  • 97
    • 84860835748 scopus 로고    scopus 로고
    • A semiempirical approach to ligand-binding affinities: Dependence on the Hamiltonian and corrections
    • Mikulskis P, Genheden S, Wichmann K, Ryde U,. 2012. A semiempirical approach to ligand-binding affinities: dependence on the Hamiltonian and corrections. J. Comput. Chem. 33: 1179-1189.
    • (2012) J. Comput. Chem. , vol.33 , pp. 1179-1189
    • Mikulskis, P.1    Genheden, S.2    Wichmann, K.3    Ryde, U.4
  • 98
    • 84873047397 scopus 로고    scopus 로고
    • How to improve docking accuracy of AutoDock4.2: A case study using different electrostatic potentials
    • Hou X, Du J, Zhang J, Du L, Fang H, Li M,. 2013. How to improve docking accuracy of AutoDock4.2: a case study using different electrostatic potentials. J. Chem. Inf. Model. 53: 188-200.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 188-200
    • Hou, X.1    Du, J.2    Zhang, J.3    Du, L.4    Fang, H.5    Li, M.6
  • 99
    • 84864470001 scopus 로고    scopus 로고
    • Quantum.Ligand.Dock: Protein-ligand docking with quantum entanglement refinement on a GPU system
    • Kantardjiev AA,. 2012. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system. Nucleic Acids Res. 40: W415-W422.
    • (2012) Nucleic Acids Res. , vol.40 , pp. W415-W422
    • Kantardjiev, A.A.1
  • 100
    • 84864399987 scopus 로고    scopus 로고
    • PRL-Dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling
    • Wu MY, Dai DQ, Yan H,. 2012. PRL-Dock: protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins 80: 2137-2153.
    • (2012) Proteins , vol.80 , pp. 2137-2153
    • Wu, M.Y.1    Dai, D.Q.2    Yan, H.3
  • 102
    • 84872598296 scopus 로고    scopus 로고
    • CovalentDock: Automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints
    • Ouyang X, Zhou S, Su CT, Ge Z, Li R, Kwoh CK,. 2013. CovalentDock: automated covalent docking with parameterized covalent linkage energy estimation and molecular geometry constraints. J. Comput. Chem. 34: 326-336.
    • (2013) J. Comput. Chem. , vol.34 , pp. 326-336
    • Ouyang, X.1    Zhou, S.2    Su, C.T.3    Ge, Z.4    Li, R.5    Kwoh, C.K.6
  • 104
    • 84870065043 scopus 로고    scopus 로고
    • FIPSDock: A new molecular docking technique driven by fully informed swarm optimization algorithm
    • Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y,. 2013. FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J. Comput. Chem. 34: 67-75.
    • (2013) J. Comput. Chem. , vol.34 , pp. 67-75
    • Liu, Y.1    Zhao, L.2    Li, W.3    Zhao, D.4    Song, M.5    Yang, Y.6
  • 106
    • 84863111926 scopus 로고    scopus 로고
    • Computational fragment-based screening using RosettaLigand: The SAMPL3 challenge
    • Kumar A, Zhang KY,. 2012. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge. J. Comput.-Aided Mol. Des. 26: 603-616.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 603-616
    • Kumar, A.1    Zhang, K.Y.2
  • 107
    • 84863111119 scopus 로고    scopus 로고
    • Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors
    • Surpateanu G, Iorga BI,. 2012. Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J. Comput.-Aided Mol. Des. 26: 595-601.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 595-601
    • Surpateanu, G.1    Iorga, B.I.2
  • 108
    • 84863100633 scopus 로고    scopus 로고
    • Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction
    • Sulea T, Hogues H, Purisima EO,. 2012. Exhaustive search and solvated interaction energy (SIE) for virtual screening and affinity prediction. J. Comput.-Aided Mol. Des. 26: 617-633.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 617-633
    • Sulea, T.1    Hogues, H.2    Purisima, E.O.3
  • 109
    • 84863088606 scopus 로고    scopus 로고
    • Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores
    • Benson ML, Faver JC, Ucisik MN, Dashti DS, Zheng Z, Merz KM, Jr, 2012. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores. J. Comput.-Aided Mol. Des. 26: 647-659.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 647-659
    • Benson, M.L.1    Faver, J.C.2    Ucisik, M.N.3    Dashti, D.S.4    Zheng, Z.5    Merz, K.M.6
  • 110
    • 84874504314 scopus 로고    scopus 로고
    • Fragments to link. A multiple docking strategy for second site binders
    • Vass M, Keseru GM,. 2013. Fragments to link. A multiple docking strategy for second site binders. Med. Chem. Comm. 4: 510-514.
    • (2013) Med. Chem. Comm. , vol.4 , pp. 510-514
    • Vass, M.1    Keseru, G.M.2
  • 112
    • 84863097743 scopus 로고    scopus 로고
    • A reverse combination of structure-based and ligand-based strategies for virtual screening
    • Cortes-Cabrera A, Gago F, Morreale A,. 2012. A reverse combination of structure-based and ligand-based strategies for virtual screening. J. Comput.-Aided Mol. Des. 26: 319-327.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 319-327
    • Cortes-Cabrera, A.1    Gago, F.2    Morreale, A.3
  • 113
    • 84858044079 scopus 로고    scopus 로고
    • Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery
    • Hall DR, Ngan CH, Zerbe BS, Kozakov D, Vajda S,. 2012. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. J. Chem. Inf. Model. 52: 199-209.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 199-209
    • Hall, D.R.1    Ngan, C.H.2    Zerbe, B.S.3    Kozakov, D.4    Vajda, S.5
  • 114
    • 84861078289 scopus 로고    scopus 로고
    • Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening
    • Tosh DK, Phan K, Gao ZG, Gakh AA, Xu F, Deflorian F, Abagyan R, Stevens RC, Jacobson KA, Katritch V,. 2012. Optimization of adenosine 5'-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J. Med. Chem. 55: 4297-4308.
    • (2012) J. Med. Chem. , vol.55 , pp. 4297-4308
    • Tosh, D.K.1    Phan, K.2    Gao, Z.G.3    Gakh, A.A.4    Xu, F.5    Deflorian, F.6    Abagyan, R.7    Stevens, R.C.8    Jacobson, K.A.9    Katritch, V.10
  • 115
    • 84888218673 scopus 로고    scopus 로고
    • The targets of CAPRI rounds 20-27
    • Janin J,. 2013. The targets of CAPRI rounds 20-27. Proteins 81: 2075-2081.
    • (2013) Proteins , vol.81 , pp. 2075-2081
    • Janin, J.1
  • 116
    • 84888289172 scopus 로고    scopus 로고
    • Docking, scoring, and affinity prediction in CAPRI
    • Lensink MF, Wodak SJ,. 2013. Docking, scoring, and affinity prediction in CAPRI. Proteins 81: 2082-2095.
    • (2013) Proteins , vol.81 , pp. 2082-2095
    • Lensink, M.F.1    Wodak, S.J.2
  • 119
    • 84883292342 scopus 로고    scopus 로고
    • MEGADOCK 3.0: A high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments
    • Matsuzaki Y, Uchikoga N, Ohue M, Shimoda T, Sato T, Ishida T, Akiyama Y,. 2013. MEGADOCK 3.0: a high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol. Med. 8: 18.
    • (2013) Source Code Biol. Med. , vol.8 , pp. 18
    • Matsuzaki, Y.1    Uchikoga, N.2    Ohue, M.3    Shimoda, T.4    Sato, T.5    Ishida, T.6    Akiyama, Y.7
  • 120
    • 84883252161 scopus 로고    scopus 로고
    • Replica exchange improves sampling in low-resolution docking stage of RosettaDock
    • Zhang Z, Lange OF,. 2013. Replica exchange improves sampling in low-resolution docking stage of RosettaDock. PLoS One 8: e72096.
    • (2013) PLoS One , vol.8 , pp. e72096
    • Zhang, Z.1    Lange, O.F.2
  • 121
    • 84861234644 scopus 로고    scopus 로고
    • Automatic prediction of flexible regions improves the accuracy of protein-protein docking models
    • Luo X, Lu Q, Wu H, Yang L, Huang X, Qian P, Fu G,. 2012. Automatic prediction of flexible regions improves the accuracy of protein-protein docking models. J. Mol. Model. 18: 2199-2208.
    • (2012) J. Mol. Model. , vol.18 , pp. 2199-2208
    • Luo, X.1    Lu, Q.2    Wu, H.3    Yang, L.4    Huang, X.5    Qian, P.6    Fu, G.7
  • 122
    • 84888825453 scopus 로고    scopus 로고
    • Coarse-grain modelling of protein-protein interactions
    • Baaden M, Marrink SJ,. 2013. Coarse-grain modelling of protein-protein interactions. Curr. Opin. Struct. Biol. 23: 878-886.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 878-886
    • Baaden, M.1    Marrink, S.J.2
  • 125
    • 84885074179 scopus 로고    scopus 로고
    • Sampling and scoring: A marriage made in heaven
    • Vajda S, Hall DR, Kozakov D,. 2013. Sampling and scoring: a marriage made in heaven. Proteins 81: 1874-1884.
    • (2013) Proteins , vol.81 , pp. 1874-1884
    • Vajda, S.1    Hall, D.R.2    Kozakov, D.3
  • 126
    • 84857983099 scopus 로고    scopus 로고
    • The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation
    • Gao M, Skolnick J,. 2012. The distribution of ligand-binding pockets around protein-protein interfaces suggests a general mechanism for pocket formation. Proc. Natl. Acad. Sci. U. S. A. 109: 3784-3789.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 3784-3789
    • Gao, M.1    Skolnick, J.2
  • 129
    • 84892698856 scopus 로고    scopus 로고
    • Protein-protein interactions in a crowded environment: An analysis via cross-docking simulations and evolutionary information
    • Lopes A, Sacquin-Mora S, Dimitrova V, Laine E, Ponty Y, Carbone A,. 2013. Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information. PLoS Comput. Biol. 9: e1003369.
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003369
    • Lopes, A.1    Sacquin-Mora, S.2    Dimitrova, V.3    Laine, E.4    Ponty, Y.5    Carbone, A.6
  • 130
    • 84870030186 scopus 로고    scopus 로고
    • How good are state-of-The-Art docking tools in predicting ligand binding modes in protein-protein interfaces?
    • Kruger DM, Jessen G, Gohlke H,. 2012. How good are state-of-the-art docking tools in predicting ligand binding modes in protein-protein interfaces? J. Chem. Inf. Model. 52: 2807-2811.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 2807-2811
    • Kruger, D.M.1    Jessen, G.2    Gohlke, H.3
  • 131
    • 84883217711 scopus 로고    scopus 로고
    • Structural properties of non-traditional drug targets present new challenges for virtual screening
    • Gowthaman R, Deeds EJ, Karanicolas J,. 2013. Structural properties of non-traditional drug targets present new challenges for virtual screening. J. Chem. Inf. Model. 53: 2073-2081.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2073-2081
    • Gowthaman, R.1    Deeds, E.J.2    Karanicolas, J.3
  • 133
    • 84871940431 scopus 로고    scopus 로고
    • Pocket-based drug design: Exploring pocket space
    • Zheng X, Gan L, Wang E, Wang J,. 2013. Pocket-based drug design: exploring pocket space. AAPS J. 15: 228-241.
    • (2013) AAPS J. , vol.15 , pp. 228-241
    • Zheng, X.1    Gan, L.2    Wang, E.3    Wang, J.4
  • 134
    • 84863700202 scopus 로고    scopus 로고
    • Understanding the molecular basis of MK2-p38α signaling complex assembly: Insights into protein-protein interaction by molecular dynamics and free energy studies
    • Yang Y, Liub H, Yao X,. 2012. Understanding the molecular basis of MK2-p38α signaling complex assembly: insights into protein-protein interaction by molecular dynamics and free energy studies. Mol. BioSyst. 8: 2106-2118.
    • (2012) Mol. BioSyst. , vol.8 , pp. 2106-2118
    • Yang, Y.1    Liub, H.2    Yao, X.3
  • 135
    • 84857291408 scopus 로고    scopus 로고
    • Hot spots and transient pockets: Predicting the determinants of small-molecule binding to a protein-protein interface
    • Metz A, Pfleger C, Kopitz H, Pfeiffer-Marek S, Baringhaus KH, Gohlke H,. 2012. Hot spots and transient pockets: predicting the determinants of small-molecule binding to a protein-protein interface. J. Chem. Inf. Model. 52: 120-133.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 120-133
    • Metz, A.1    Pfleger, C.2    Kopitz, H.3    Pfeiffer-Marek, S.4    Baringhaus, K.H.5    Gohlke, H.6
  • 140
    • 84867365195 scopus 로고    scopus 로고
    • Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening?
    • Grigoryan AV, Wang H, Cardozo TJ,. 2012. Can the energy gap in the protein-ligand binding energy landscape be used as a descriptor in virtual ligand screening? PLoS One 7: e46532.
    • (2012) PLoS One , vol.7 , pp. e46532
    • Grigoryan, A.V.1    Wang, H.2    Cardozo, T.J.3
  • 141
    • 84859941752 scopus 로고    scopus 로고
    • Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping
    • Agostino M, Yuriev E, Ramsland PA,. 2012. Antibody recognition of cancer-related gangliosides and their mimics investigated using in silico site mapping. PLoS One 7: e35457.
    • (2012) PLoS One , vol.7 , pp. e35457
    • Agostino, M.1    Yuriev, E.2    Ramsland, P.A.3
  • 142
    • 84873034177 scopus 로고    scopus 로고
    • AutoMap: A tool for analyzing protein-ligand recognition using multiple ligand binding modes
    • Agostino M, Mancera RL, Ramsland PA, Yuriev E,. 2013. AutoMap: A tool for analyzing protein-ligand recognition using multiple ligand binding modes. J. Mol. Graph. Model. 40: 80-90.
    • (2013) J. Mol. Graph. Model. , vol.40 , pp. 80-90
    • Agostino, M.1    Mancera, R.L.2    Ramsland, P.A.3    Yuriev, E.4
  • 143
    • 84938960518 scopus 로고    scopus 로고
    • Docking of carbohydrates into protein binding sites
    • Yuriev E. Ramsland P. (eds). Taylor and Francis: London.
    • Agostino M, Ramsland P, Yuriev E,. 2012. Docking of carbohydrates into protein binding sites, in: Structural Glycobiology, Yuriev E, Ramsland P, (eds). Taylor and Francis: London. p. 111-138.
    • (2012) Structural Glycobiology , pp. 111-138
    • Agostino, M.1    Ramsland, P.2    Yuriev, E.3
  • 145
    • 84871122167 scopus 로고    scopus 로고
    • Using RosettaLigand for small molecule docking into comparative models
    • Kaufmann KW, Meiler J,. 2012. Using RosettaLigand for small molecule docking into comparative models. PLoS One 7: e50769.
    • (2012) PLoS One , vol.7 , pp. e50769
    • Kaufmann, K.W.1    Meiler, J.2
  • 146
    • 84862789167 scopus 로고    scopus 로고
    • Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening?
    • Tang H, Wang XS, Hsieh JH, Tropsha A,. 2012. Do crystal structures obviate the need for theoretical models of GPCRs for structure-based virtual screening? Proteins 80: 1503-1521.
    • (2012) Proteins , vol.80 , pp. 1503-1521
    • Tang, H.1    Wang, X.S.2    Hsieh, J.H.3    Tropsha, A.4
  • 147
    • 84879770850 scopus 로고    scopus 로고
    • Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors
    • Nguyen ED, Norn C, Frimurer TM, Meiler J,. 2013. Assessment and challenges of ligand docking into comparative models of G-protein coupled receptors. PLoS One 8: e67302.
    • (2013) PLoS One , vol.8 , pp. e67302
    • Nguyen, E.D.1    Norn, C.2    Frimurer, T.M.3    Meiler, J.4
  • 148
    • 84896518217 scopus 로고    scopus 로고
    • Comparative study on the use of docking and Bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes
    • Kombo DC, Bencherif M,. 2013. Comparative study on the use of docking and bayesian categorization to predict ligand binding to nicotinic acetylcholine receptors (nAChRs) subtypes. J. Chem. Inf. Model. 53: 3212-3222.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3212-3222
    • Kombo, D.C.1    Bencherif, M.2
  • 149
    • 84891844437 scopus 로고    scopus 로고
    • Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors
    • Tan W, Mei H, Chao L, Liu T, Pan X, Shu M, Yang L,. 2013. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors. J. Comput.-Aided Mol. Des. 27: 1067-1073.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 1067-1073
    • Tan, W.1    Mei, H.2    Chao, L.3    Liu, T.4    Pan, X.5    Shu, M.6    Yang, L.7
  • 150
    • 84886730401 scopus 로고    scopus 로고
    • Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands
    • Coi A, Bianucci AM,. 2013. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands. J. Mol. Graph. Model. 46: 93-104.
    • (2013) J. Mol. Graph. Model. , vol.46 , pp. 93-104
    • Coi, A.1    Bianucci, A.M.2
  • 151
    • 84877694782 scopus 로고    scopus 로고
    • Structure-based fragment screening is demonstrated to be a practical lead discovery method for a representative G-protein-coupled receptor
    • Stevens BD,. 2013. Structure-based fragment screening is demonstrated to be a practical lead discovery method for a representative G-protein-coupled receptor. J. Med. Chem. 56: 3444-3445.
    • (2013) J. Med. Chem. , vol.56 , pp. 3444-3445
    • Stevens, B.D.1
  • 153
    • 84862007546 scopus 로고    scopus 로고
    • FINDSITE(X): A structure-based, small molecule virtual screening approach with application to all identified human GPCRs
    • Zhou H, Skolnick J,. 2012. FINDSITE(X): a structure-based, small molecule virtual screening approach with application to all identified human GPCRs. Mol. Pharm. 9: 1775-1784.
    • (2012) Mol. Pharm. , vol.9 , pp. 1775-1784
    • Zhou, H.1    Skolnick, J.2
  • 154
    • 84861517739 scopus 로고    scopus 로고
    • On the value of homology models for virtual screening: Discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches
    • Huang D, Gu Q, Ge H, Ye J, Salam NK, Hagler A, Chen H, Xu J,. 2012. On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. J. Chem. Inf. Model. 52: 1356-1366.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1356-1366
    • Huang, D.1    Gu, Q.2    Ge, H.3    Ye, J.4    Salam, N.K.5    Hagler, A.6    Chen, H.7    Xu, J.8
  • 156
    • 84871539979 scopus 로고    scopus 로고
    • Current assessment of docking into GPCR crystal structures and homology models: Successes, challenges, and guidelines
    • Beuming T, Sherman W,. 2012. Current assessment of docking into GPCR crystal structures and homology models: successes, challenges, and guidelines. J. Chem. Inf. Model. 52: 3263-3277.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 3263-3277
    • Beuming, T.1    Sherman, W.2
  • 158
    • 84858023862 scopus 로고    scopus 로고
    • Cheminformatics meets molecular mechanics: A combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening
    • Hsieh JH, Yin S, Wang XS, Liu S, Dokholyan NV, Tropsha A,. 2012. Cheminformatics meets molecular mechanics: a combined application of knowledge-based pose scoring and physical force field-based hit scoring functions improves the accuracy of structure-based virtual screening. J. Chem. Inf. Model. 52: 16-28.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 16-28
    • Hsieh, J.H.1    Yin, S.2    Wang, X.S.3    Liu, S.4    Dokholyan, N.V.5    Tropsha, A.6
  • 159
    • 84896500405 scopus 로고    scopus 로고
    • DR-predictor: Incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism
    • Huang TW, Zaretzki J, Bergeron C, Bennett KP, Breneman CM,. 2013. DR-predictor: incorporating flexible docking with specialized electronic reactivity and machine learning techniques to predict CYP-mediated sites of metabolism. J. Chem. Inf. Model. 53: 3352-3366.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3352-3366
    • Huang, T.W.1    Zaretzki, J.2    Bergeron, C.3    Bennett, K.P.4    Breneman, C.M.5
  • 160
    • 84890859433 scopus 로고    scopus 로고
    • A structure-guided approach for protein pocket modeling and affinity prediction
    • Varela R, Cleves AE, Spitzer R, Jain AN,. 2013. A structure-guided approach for protein pocket modeling and affinity prediction. J. Comput.-Aided Mol. Des. 27: 917-934.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 917-934
    • Varela, R.1    Cleves, A.E.2    Spitzer, R.3    Jain, A.N.4
  • 161
    • 84891875006 scopus 로고    scopus 로고
    • Fragment-based Shape Signatures: A new tool for virtual screening and drug discovery
    • Zauhar RJ, Gianti E, Welsh WJ,. 2013. Fragment-based Shape Signatures: a new tool for virtual screening and drug discovery. J. Comput.-Aided Mol. Des. 27: 1009-1036.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 1009-1036
    • Zauhar, R.J.1    Gianti, E.2    Welsh, W.J.3
  • 162
    • 84867487321 scopus 로고    scopus 로고
    • Lead hopping for PfDHODH inhibitors as antimalarials based on pharmacophore mapping, molecular docking and comparative binding energy analysis (COMBINE): A three-layered virtual screening approach
    • Ojha PK, Mitra I, Kar S, Das RN, Roy K,. 2012. Lead hopping for PfDHODH inhibitors as antimalarials based on pharmacophore mapping, molecular docking and comparative binding energy analysis (COMBINE): a three-layered virtual screening approach. Mol. Inf. 31: 711-718.
    • (2012) Mol. Inf. , vol.31 , pp. 711-718
    • Ojha, P.K.1    Mitra, I.2    Kar, S.3    Das, R.N.4    Roy, K.5
  • 163
    • 84883217252 scopus 로고    scopus 로고
    • Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches
    • Fourches D, Muratov E, Ding F, Dokholyan NV, Tropsha A,. 2013. Predicting binding affinity of CSAR ligands using both structure-based and ligand-based approaches. J. Chem. Inf. Model. 53: 1915-1922.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1915-1922
    • Fourches, D.1    Muratov, E.2    Ding, F.3    Dokholyan, N.V.4    Tropsha, A.5
  • 164
    • 84858053438 scopus 로고    scopus 로고
    • Virtual screening data fusion using both structure- and ligand-based methods
    • Svensson F, Karlen A, Skold C,. 2012. Virtual screening data fusion using both structure- and ligand-based methods. J. Chem. Inf. Model. 52: 225-232.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 225-232
    • Svensson, F.1    Karlen, A.2    Skold, C.3
  • 165
    • 84885015704 scopus 로고    scopus 로고
    • How to deal with low-resolution target structures: Using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the alphabeta-tubulin colchicine site
    • Da C, Mooberry SL, Gupton JT, Kellogg GE,. 2013. How to deal with low-resolution target structures: using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the alphabeta-tubulin colchicine site. J. Med. Chem. 56: 7382-7395.
    • (2013) J. Med. Chem. , vol.56 , pp. 7382-7395
    • Da, C.1    Mooberry, S.L.2    Gupton, J.T.3    Kellogg, G.E.4
  • 166
    • 84856548602 scopus 로고    scopus 로고
    • An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude
    • Orts J, Bartoschek S, Griesinger C, Monecke P, Carlomagno T,. 2012. An NMR-based scoring function improves the accuracy of binding pose predictions by docking by two orders of magnitude. J. Biomol. NMR 52: 23-30.
    • (2012) J. Biomol. NMR , vol.52 , pp. 23-30
    • Orts, J.1    Bartoschek, S.2    Griesinger, C.3    Monecke, P.4    Carlomagno, T.5
  • 167
    • 84887968536 scopus 로고    scopus 로고
    • Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: An alternative approach for structure-based drug design
    • Sahner JH, Brengel C, Storz MP, Groh M, Plaza A, Muller R, Hartmann RW,. 2013. Combining in silico and biophysical methods for the development of Pseudomonas aeruginosa quorum sensing inhibitors: an alternative approach for structure-based drug design. J. Med. Chem. 56: 8656-8664.
    • (2013) J. Med. Chem. , vol.56 , pp. 8656-8664
    • Sahner, J.H.1    Brengel, C.2    Storz, M.P.3    Groh, M.4    Plaza, A.5    Muller, R.6    Hartmann, R.W.7
  • 169
    • 84887035754 scopus 로고    scopus 로고
    • Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor
    • Chen D, Ranganathan A, Ap IJ, Siegal G, Carlsson J,. 2013. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor. J. Chem. Inf. Model. 53: 2701-2714.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2701-2714
    • Chen, D.1    Ranganathan, A.2    Ap, I.J.3    Siegal, G.4    Carlsson, J.5
  • 170
    • 84863705628 scopus 로고    scopus 로고
    • Accessible high-throughput virtual screening molecular docking software for students and educators
    • Jacob RB, Andersen T, McDougal OM,. 2012. Accessible high-throughput virtual screening molecular docking software for students and educators. PLoS Comput. Biol. 8: e1002499.
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002499
    • Jacob, R.B.1    Andersen, T.2    McDougal, O.M.3
  • 171
    • 84886950237 scopus 로고    scopus 로고
    • One hundred thousand mouse clicks down the road: Selected online resources supporting drug discovery collected over a decade
    • Villoutreix BO, Lagorce D, Labbe CM, Sperandio O, Miteva MA,. 2013. One hundred thousand mouse clicks down the road: selected online resources supporting drug discovery collected over a decade. Drug Discov. Today 18: 1081-1089.
    • (2013) Drug Discov. Today , vol.18 , pp. 1081-1089
    • Villoutreix, B.O.1    Lagorce, D.2    Labbe, C.M.3    Sperandio, O.4    Miteva, M.A.5
  • 173
    • 84859468933 scopus 로고    scopus 로고
    • Analysis of structure-based virtual screening studies and characterization of identified active compounds
    • Ripphausen P, Stumpfe D, Bajorath J,. 2012. Analysis of structure-based virtual screening studies and characterization of identified active compounds. Future Med. Chem. 4: 603-613.
    • (2012) Future Med. Chem. , vol.4 , pp. 603-613
    • Ripphausen, P.1    Stumpfe, D.2    Bajorath, J.3
  • 175
    • 84858044044 scopus 로고    scopus 로고
    • Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with FORECASTER, a novel platform for drug discovery
    • Therrien E, Englebienne P, Arrowsmith AG, Mendoza-Sanchez R, Corbeil CR, Weill N, Campagna-Slater V, Moitessier N,. 2012. Integrating medicinal chemistry, organic/combinatorial chemistry, and computational chemistry for the discovery of selective estrogen receptor modulators with FORECASTER, a novel platform for drug discovery. J. Chem. Inf. Model. 52: 210-224.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 210-224
    • Therrien, E.1    Englebienne, P.2    Arrowsmith, A.G.3    Mendoza-Sanchez, R.4    Corbeil, C.R.5    Weill, N.6    Campagna-Slater, V.7    Moitessier, N.8
  • 176
    • 84891389270 scopus 로고    scopus 로고
    • Computational biology in the cloud: Methods and new insights from computing at scale
    • Altman R.B. Dunker A.K. Hunter L. Murray T.A. Klein T.E. (eds).
    • Kasson PM,. 2013. Computational biology in the cloud: methods and new insights from computing at scale, in: Proceedings of The Pacific Symposium: Biocomputing 2013, Altman RB, Dunker AK, Hunter L, Murray TA, Klein TE, (eds). p. 451-453.
    • (2013) Proceedings of the Pacific Symposium: Biocomputing 2013 , pp. 451-453
    • Kasson, P.M.1
  • 180
    • 84881572052 scopus 로고    scopus 로고
    • Fast docking on graphics processing units via Ray-Casting
    • Khar KR, Goldschmidt L, Karanicolas J,. 2013. Fast docking on graphics processing units via Ray-Casting. PLoS One 8: e70661.
    • (2013) PLoS One , vol.8 , pp. e70661
    • Khar, K.R.1    Goldschmidt, L.2    Karanicolas, J.3
  • 181
    • 84869229692 scopus 로고    scopus 로고
    • Fast force field-based optimization of protein-ligand complexes with graphics processor
    • Heinzerling L, Klein R, Rarey M,. 2012. Fast force field-based optimization of protein-ligand complexes with graphics processor. J. Comput. Chem. 33: 2554-2565.
    • (2012) J. Comput. Chem. , vol.33 , pp. 2554-2565
    • Heinzerling, L.1    Klein, R.2    Rarey, M.3
  • 183
    • 84873042304 scopus 로고    scopus 로고
    • Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds
    • Baell JB,. 2013. Broad coverage of commercially available lead-like screening space with fewer than 350,000 compounds. J. Chem. Inf. Model. 53: 39-55.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 39-55
    • Baell, J.B.1
  • 184
    • 84864264343 scopus 로고    scopus 로고
    • Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking
    • Mysinger MM, Carchia M, Irwin JJ, Shoichet BK,. 2012. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55: 6582-6594.
    • (2012) J. Med. Chem. , vol.55 , pp. 6582-6594
    • Mysinger, M.M.1    Carchia, M.2    Irwin, J.J.3    Shoichet, B.K.4
  • 185
    • 84879583689 scopus 로고    scopus 로고
    • Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - A public library of challenging docking benchmark sets
    • Bauer MR, Ibrahim TM, Vogel SM, Boeckler FM,. 2013. Evaluation and optimization of virtual screening workflows with DEKOIS 2.0 - a public library of challenging docking benchmark sets. J. Chem. Inf. Model. 53: 1447-1462.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1447-1462
    • Bauer, M.R.1    Ibrahim, T.M.2    Vogel, S.M.3    Boeckler, F.M.4
  • 186
    • 84858052745 scopus 로고    scopus 로고
    • Ligand and decoy sets for docking to G protein-coupled receptors
    • Gatica EA, Cavasotto CN,. 2012. Ligand and decoy sets for docking to G protein-coupled receptors. J. Chem. Inf. Model. 52: 1-6.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1-6
    • Gatica, E.A.1    Cavasotto, C.N.2
  • 189
    • 84941120266 scopus 로고    scopus 로고
    • accessed November 18, 2014; Available from.
    • Gordon research conference on computer-aided drug design 2013, accessed November 18, 2014; Available from: http://www.grc.org/programs.aspx?year=2013&program=cadd.
    • (2013) Gordon Research Conference on Computer-aided Drug Design
  • 190
    • 84883260321 scopus 로고    scopus 로고
    • Check your confidence: Size really does matter
    • Carlson HA,. 2013. Check your confidence: size really does matter. J. Chem. Inf. Model. 53: 1837-1841.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1837-1841
    • Carlson, H.A.1
  • 191
    • 84883209345 scopus 로고    scopus 로고
    • CSAR benchmark exercise 2011-2012: Evaluation of results from docking and relative ranking of blinded congeneric series
    • Damm-Ganamet KL, Smith RD, Dunbar JB, Jr, Stuckey JA, Carlson HA,. 2013. CSAR benchmark exercise 2011-2012: evaluation of results from docking and relative ranking of blinded congeneric series. J. Chem. Inf. Model. 53: 1853-1870.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1853-1870
    • Damm-Ganamet, K.L.1    Smith, R.D.2    Dunbar, J.B.3    Stuckey, J.A.4    Carlson, H.A.5
  • 192
    • 84883240307 scopus 로고    scopus 로고
    • Automated large-scale file preparation, docking, and scoring: Evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark
    • Grinter SZ, Yan C, Huang SY, Jiang L, Zou X,. 2013. Automated large-scale file preparation, docking, and scoring: evaluation of ITScore and STScore using the 2012 Community Structure-Activity Resource benchmark. J. Chem. Inf. Model. 53: 1905-1914.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1905-1914
    • Grinter, S.Z.1    Yan, C.2    Huang, S.Y.3    Jiang, L.4    Zou, X.5
  • 193
    • 84883247468 scopus 로고    scopus 로고
    • Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise
    • Koes DR, Baumgartner MP, Camacho CJ,. 2013. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 53: 1893-1904.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 194
    • 84883226576 scopus 로고    scopus 로고
    • Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark
    • Ding F, Dokholyan NV,. 2013. Incorporating backbone flexibility in MedusaDock improves ligand-binding pose prediction in the CSAR2011 docking benchmark. J. Chem. Inf. Model. 53: 1871-1879.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1871-1879
    • Ding, F.1    Dokholyan, N.V.2
  • 198
    • 84941056378 scopus 로고    scopus 로고
    • Recent developments in the eHiTS ligand docking and scoring software
    • ACS: Anaheim, California, abstract number 59.
    • Zsoldos Z, Ravitz O,. 2011. Recent developments in the eHiTS ligand docking and scoring software. 241st ACS National Meeting & Exposition, ACS: Anaheim, California, abstract number 59.
    • (2011) 241st ACS National Meeting & Exposition
    • Zsoldos, Z.1    Ravitz, O.2
  • 199
    • 84865212063 scopus 로고    scopus 로고
    • Docking performance of the glide program as evaluated on the Astex and DUD datasets: A complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide
    • Repasky MP, Murphy RB, Banks JL, Greenwood JR, Tubert-Brohman I, Bhat S, Friesner RA,. 2012. Docking performance of the glide program as evaluated on the Astex and DUD datasets: a complete set of glide SP results and selected results for a new scoring function integrating WaterMap and glide. J. Comput.-Aided Mol. Des. 26: 787-799.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 787-799
    • Repasky, M.P.1    Murphy, R.B.2    Banks, J.L.3    Greenwood, J.R.4    Tubert-Brohman, I.5    Bhat, S.6    Friesner, R.A.7
  • 200
    • 84865266975 scopus 로고    scopus 로고
    • Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test
    • Liebeschuetz JW, Cole JC, Korb O,. 2012. Pose prediction and virtual screening performance of GOLD scoring functions in a standardized test. J. Comput.-Aided Mol. Des. 26: 737-748.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 737-748
    • Liebeschuetz, J.W.1    Cole, J.C.2    Korb, O.3
  • 202
    • 84865265287 scopus 로고    scopus 로고
    • Docking and scoring with ICM: The benchmarking results and strategies for improvement
    • Neves MA, Totrov M, Abagyan R,. 2012. Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput.-Aided Mol. Des. 26: 675-686.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 675-686
    • Neves, M.A.1    Totrov, M.2    Abagyan, R.3
  • 204
    • 84865271039 scopus 로고    scopus 로고
    • Variability in docking success rates due to dataset preparation
    • Corbeil CR, Williams CI, Labute P,. 2012. Variability in docking success rates due to dataset preparation. J. Comput.-Aided Mol. Des. 26: 775-786.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 775-786
    • Corbeil, C.R.1    Williams, C.I.2    Labute, P.3
  • 205
    • 84865214371 scopus 로고    scopus 로고
    • Surflex-Dock: Docking benchmarks and real-world application
    • Spitzer R, Jain AN,. 2012. Surflex-Dock: docking benchmarks and real-world application. J. Comput.-Aided Mol. Des. 26: 687-699.
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 687-699
    • Spitzer, R.1    Jain, A.N.2
  • 207
    • 84876688756 scopus 로고    scopus 로고
    • Grid-based molecular footprint comparison method for docking and de novo design: Application to HIVgp41
    • Balius TE, Allen WJ, Mukherjee S, Rizzo RC,. 2013. Grid-based molecular footprint comparison method for docking and de novo design: application to HIVgp41. J. Comput. Chem. 34: 1226-1240.
    • (2013) J. Comput. Chem. , vol.34 , pp. 1226-1240
    • Balius, T.E.1    Allen, W.J.2    Mukherjee, S.3    Rizzo, R.C.4
  • 208
    • 84896532392 scopus 로고    scopus 로고
    • Assessing molecular docking tools for relative biological activity prediction: A case study of triazole HIV-1 NNRTIs
    • Fraczek T, Siwek A, Paneth P,. 2013. Assessing molecular docking tools for relative biological activity prediction: a case study of triazole HIV-1 NNRTIs. J. Chem. Inf. Model. 53: 3326-3342.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 3326-3342
    • Fraczek, T.1    Siwek, A.2    Paneth, P.3
  • 209
    • 84884672908 scopus 로고    scopus 로고
    • Experimental versus predicted affinities for ligand binding to estrogen receptor: Iterative selection and rescoring of docked poses systematically improves the correlation
    • Wright JS, Anderson JM, Shadnia H, Durst T, Katzenellenbogen JA,. 2013. Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation. J. Comput.-Aided Mol. Des. 27: 707-721.
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 707-721
    • Wright, J.S.1    Anderson, J.M.2    Shadnia, H.3    Durst, T.4    Katzenellenbogen, J.A.5
  • 210
    • 0011147053 scopus 로고
    • Seattle, WA, USA: University of Washington Press.
    • Crick FHC, Of Molecules and Men, 1966, Seattle, WA, USA: University of Washington Press.
    • (1966) Of Molecules and Men
    • Crick, F.H.C.1
  • 211
    • 84908242076 scopus 로고    scopus 로고
    • Beware of machine learning-based scoring functions-on the danger of developing black boxes
    • Gabel J, Desaphy J, Rognan D,. 2014. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model. 54: 2807-2815.
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 2807-2815
    • Gabel, J.1    Desaphy, J.2    Rognan, D.3
  • 212
    • 83555177310 scopus 로고    scopus 로고
    • BSP-SLIM: A blind low-resolution ligand-protein docking approach using predicted protein structures
    • Lee HS, Zhang Y,. 2012. BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80: 93-110.
    • (2012) Proteins , vol.80 , pp. 93-110
    • Lee, H.S.1    Zhang, Y.2
  • 214
    • 84875366733 scopus 로고    scopus 로고
    • Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines
    • Zhang X, Wong SE, Lightstone FC,. 2013. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines. J. Comput. Chem. 34: 915-927.
    • (2013) J. Comput. Chem. , vol.34 , pp. 915-927
    • Zhang, X.1    Wong, S.E.2    Lightstone, F.C.3
  • 215
    • 84888224178 scopus 로고    scopus 로고
    • A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions
    • Liu Y, Xu Z, Yang Z, Chen K, Zhu W,. 2013. A knowledge-based halogen bonding scoring function for predicting protein-ligand interactions. J. Mol. Model. 19: 5015-5030.
    • (2013) J. Mol. Model. , vol.19 , pp. 5015-5030
    • Liu, Y.1    Xu, Z.2    Yang, Z.3    Chen, K.4    Zhu, W.5
  • 221
    • 84861498479 scopus 로고    scopus 로고
    • Freely available conformer generation methods: How good are they?
    • Ebejer JP, Morris GM, Deane CM,. 2012. Freely available conformer generation methods: how good are they? J. Chem. Inf. Model. 52: 1146-1158.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1146-1158
    • Ebejer, J.P.1    Morris, G.M.2    Deane, C.M.3
  • 222
    • 84882639480 scopus 로고    scopus 로고
    • VinaMPI: Facilitating multiple receptor high-throughput virtual docking on high-performance computers
    • Ellingson SR, Smith JC, Baudry J,. 2013. VinaMPI: facilitating multiple receptor high-throughput virtual docking on high-performance computers. J. Comput. Chem. 34: 2212-2221.
    • (2013) J. Comput. Chem. , vol.34 , pp. 2212-2221
    • Ellingson, S.R.1    Smith, J.C.2    Baudry, J.3
  • 223
    • 84869421971 scopus 로고    scopus 로고
    • ChemBioServer: A web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery
    • Athanasiadis E, Cournia Z, Spyrou G,. 2012. ChemBioServer: a web-based pipeline for filtering, clustering and visualization of chemical compounds used in drug discovery. Bioinformatics 28: 3002-3003.
    • (2012) Bioinformatics , vol.28 , pp. 3002-3003
    • Athanasiadis, E.1    Cournia, Z.2    Spyrou, G.3
  • 224
    • 84883564023 scopus 로고    scopus 로고
    • CovalentDock Cloud: A web server for automated covalent docking
    • Ouyang X, Zhou S, Ge Z, Li R, Kwoh CK,. 2013. CovalentDock Cloud: a web server for automated covalent docking. Nucleic Acids Res. 41: W329-W332.
    • (2013) Nucleic Acids Res. , vol.41 , pp. W329-W332
    • Ouyang, X.1    Zhou, S.2    Ge, Z.3    Li, R.4    Kwoh, C.K.5
  • 226
    • 84855915978 scopus 로고    scopus 로고
    • Analysis of protein binding sites by computational solvent mapping
    • Hall DR, Kozakov D, Vajda S,. 2012. Analysis of protein binding sites by computational solvent mapping. Methods Mol. Biol. 819: 13-27.
    • (2012) Methods Mol. Biol. , vol.819 , pp. 13-27
    • Hall, D.R.1    Kozakov, D.2    Vajda, S.3
  • 227
    • 84856084072 scopus 로고    scopus 로고
    • FTSite: High accuracy detection of ligand binding sites on unbound protein structures
    • Ngan CH, Hall DR, Zerbe B, Grove LE, Kozakov D, Vajda S,. 2012. FTSite: high accuracy detection of ligand binding sites on unbound protein structures. Bioinformatics 28: 286-287.
    • (2012) Bioinformatics , vol.28 , pp. 286-287
    • Ngan, C.H.1    Hall, D.R.2    Zerbe, B.3    Grove, L.E.4    Kozakov, D.5    Vajda, S.6
  • 228
    • 84864453939 scopus 로고    scopus 로고
    • IdTarget: A web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach
    • Wang JC, Chu PY, Chen CM, Lin JH,. 2012. idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res. 40: W393-W399.
    • (2012) Nucleic Acids Res. , vol.40 , pp. W393-W399
    • Wang, J.C.1    Chu, P.Y.2    Chen, C.M.3    Lin, J.H.4
  • 229
    • 84879916282 scopus 로고    scopus 로고
    • PyDockWEB: A web server for rigid-body protein-protein docking using electrostatics and desolvation scoring
    • Jimenez-Garcia B, Pons C, Fernandez-Recio J,. 2013. pyDockWEB: a web server for rigid-body protein-protein docking using electrostatics and desolvation scoring. Bioinformatics 29: 1698-1699.
    • (2013) Bioinformatics , vol.29 , pp. 1698-1699
    • Jimenez-Garcia, B.1    Pons, C.2    Fernandez-Recio, J.3
  • 230
    • 77950571108 scopus 로고    scopus 로고
    • New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays
    • Baell JB, Holloway GA,. 2010. New substructure filters for removal of Pan Assay Interference Compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 53: 2719-2740.
    • (2010) J. Med. Chem. , vol.53 , pp. 2719-2740
    • Baell, J.B.1    Holloway, G.A.2
  • 231
    • 84861729758 scopus 로고    scopus 로고
    • E-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design
    • Pihan E, Colliandre L, Guichou JF, Douguet D,. 2012. e-Drug3D: 3D structure collections dedicated to drug repurposing and fragment-based drug design. Bioinformatics 28: 1540-1541.
    • (2012) Bioinformatics , vol.28 , pp. 1540-1541
    • Pihan, E.1    Colliandre, L.2    Guichou, J.F.3    Douguet, D.4
  • 233
    • 82255186618 scopus 로고    scopus 로고
    • Enrichment of virtual hits by progressive shape-matching and docking
    • Choi J, He N, Kim N, Yoon S,. 2012. Enrichment of virtual hits by progressive shape-matching and docking. J. Mol. Graph. Model. 32: 82-88.
    • (2012) J. Mol. Graph. Model. , vol.32 , pp. 82-88
    • Choi, J.1    He, N.2    Kim, N.3    Yoon, S.4
  • 234
    • 84887042090 scopus 로고    scopus 로고
    • Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures
    • Tian S, Sun H, Li Y, Pan P, Li D, Hou T,. 2013. Development and evaluation of an integrated virtual screening strategy by combining molecular docking and pharmacophore searching based on multiple protein structures. J. Chem. Inf. Model. 53: 2743-2756.
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 2743-2756
    • Tian, S.1    Sun, H.2    Li, Y.3    Pan, P.4    Li, D.5    Hou, T.6
  • 235
    • 84862297586 scopus 로고    scopus 로고
    • Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds
    • Nevin DK, Peters MB, Carta G, Fayne D, Lloyd DG,. 2012. Integrated virtual screening for the identification of novel and selective peroxisome proliferator-activated receptor (PPAR) scaffolds. J. Med. Chem. 55: 4978-4989.
    • (2012) J. Med. Chem. , vol.55 , pp. 4978-4989
    • Nevin, D.K.1    Peters, M.B.2    Carta, G.3    Fayne, D.4    Lloyd, D.G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.