메뉴 건너뛰기




Volumn 5, Issue 6, 2015, Pages 405-424

Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening

Author keywords

[No Author keywords available]

Indexed keywords

BINDING ENERGY; E-LEARNING; FORECASTING; MACHINE LEARNING; REGRESSION ANALYSIS;

EID: 84945475267     PISSN: 17590876     EISSN: 17590884     Source Type: Journal    
DOI: 10.1002/wcms.1225     Document Type: Review
Times cited : (275)

References (109)
  • 1
    • 77950503976 scopus 로고    scopus 로고
    • Virtual screening: an endless staircase?
    • Schneider G. Virtual screening: an endless staircase? Nat Rev Drug Discov 2010, 9:273-276.
    • (2010) Nat Rev Drug Discov , vol.9 , pp. 273-276
    • Schneider, G.1
  • 2
    • 70249148040 scopus 로고    scopus 로고
    • Mining free compound databases to identify candidates selected by virtual screening
    • Vasudevan SR, Churchill GC. Mining free compound databases to identify candidates selected by virtual screening. Expert Opin Drug Discov 2009, 4:901-906.
    • (2009) Expert Opin Drug Discov , vol.4 , pp. 901-906
    • Vasudevan, S.R.1    Churchill, G.C.2
  • 7
    • 67649225348 scopus 로고    scopus 로고
    • Efficient drug lead discovery and optimization
    • Jorgensen WL. Efficient drug lead discovery and optimization. Acc Chem Res 2009, 42:724-733.
    • (2009) Acc Chem Res , vol.42 , pp. 724-733
    • Jorgensen, W.L.1
  • 9
    • 33749245117 scopus 로고    scopus 로고
    • Prediction of protein-ligand interactions. Docking and scoring: successes and gaps
    • Leach AR, Shoichet BK, Peishoff CE. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 2006, 49:5851-5855.
    • (2006) J Med Chem , vol.49 , pp. 5851-5855
    • Leach, A.R.1    Shoichet, B.K.2    Peishoff, C.E.3
  • 10
    • 84861118556 scopus 로고    scopus 로고
    • Outstanding challenges in protein-ligand docking and structure-based virtual screening
    • Waszkowycz B, Clark DE, Gancia E. Outstanding challenges in protein-ligand docking and structure-based virtual screening. WIREs Comput Mol Sci 2011, 1:229-259.
    • (2011) WIREs Comput Mol Sci , vol.1 , pp. 229-259
    • Waszkowycz, B.1    Clark, D.E.2    Gancia, E.3
  • 12
    • 26444468103 scopus 로고    scopus 로고
    • General and targeted statistical potentials for protein-ligand interactions
    • Mooij WTM, Verdonk ML. General and targeted statistical potentials for protein-ligand interactions. Proteins 2005, 61:272-287.
    • (2005) Proteins , vol.61 , pp. 272-287
    • Mooij, W.T.M.1    Verdonk, M.L.2
  • 13
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-based scoring function to predict protein-ligand interactions
    • Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol 2000, 295:337-356.
    • (2000) J Mol Biol , vol.295 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 16
    • 84857453882 scopus 로고    scopus 로고
    • Let's get honest about sampling
    • Mobley DL. Let's get honest about sampling. J Comput Mol Des 2012, 26:93-95.
    • (2012) J Comput Mol Des , vol.26 , pp. 93-95
    • Mobley, D.L.1
  • 17
    • 60349109713 scopus 로고    scopus 로고
    • Computational evaluation of protein-small molecule binding
    • Guvench O, MacKerell AD. Computational evaluation of protein-small molecule binding. Curr Opin Struct Biol 2009, 19:56-61.
    • (2009) Curr Opin Struct Biol , vol.19 , pp. 56-61
    • Guvench, O.1    MacKerell, A.D.2
  • 18
    • 77952825581 scopus 로고    scopus 로고
    • A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    • Ballester PJ, Mitchell JBO. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26:1169-1175.
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 19
    • 77950022453 scopus 로고    scopus 로고
    • Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry
    • Baum B, Muley L, Smolinski M, Heine A, Hangauer D, Klebe G. Non-additivity of functional group contributions in protein-ligand binding: a comprehensive study by crystallography and isothermal titration calorimetry. J Mol Biol 2010, 397:1042-1054.
    • (2010) J Mol Biol , vol.397 , pp. 1042-1054
    • Baum, B.1    Muley, L.2    Smolinski, M.3    Heine, A.4    Hangauer, D.5    Klebe, G.6
  • 20
    • 84923588607 scopus 로고    scopus 로고
    • Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
    • Li H, Leung K-S, Wong M-H, Ballester PJ. Improving AutoDock Vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol Inform 2015, 34:115-126.
    • (2015) Mol Inform , vol.34 , pp. 115-126
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 21
    • 77957898063 scopus 로고    scopus 로고
    • Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions
    • Huang S-Y, Grinter SZ, Zou X. Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. Phys Chem Chem Phys 2010, 12:12899-12908.
    • (2010) Phys Chem Chem Phys , vol.12 , pp. 12899-12908
    • Huang, S.-Y.1    Grinter, S.Z.2    Zou, X.3
  • 22
    • 84862795414 scopus 로고    scopus 로고
    • Structure-based virtual screening for drug discovery: a problem-centric review
    • Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 2012, 14:133-141.
    • (2012) AAPS J , vol.14 , pp. 133-141
    • Cheng, T.1    Li, Q.2    Zhou, Z.3    Wang, Y.4    Bryant, S.H.5
  • 23
    • 84871717368 scopus 로고    scopus 로고
    • Scoring functions for protein-ligand interactions
    • In: 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
    • Sotriffer C. Scoring functions for protein-ligand interactions. In: Protein-Ligand Interactions. 1st ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2012.
    • (2012) Protein-Ligand Interactions
    • Sotriffer, C.1
  • 24
    • 84863598108 scopus 로고    scopus 로고
    • Bioinformatics and variability in drug response: a protein structural perspective
    • Lahti JL, Tang GW, Capriotti E, Liu T, Altman RB. Bioinformatics and variability in drug response: a protein structural perspective. J R Soc Interface 2012, 9:1409-1437.
    • (2012) J R Soc Interface , vol.9 , pp. 1409-1437
    • Lahti, J.L.1    Tang, G.W.2    Capriotti, E.3    Liu, T.4    Altman, R.B.5
  • 25
    • 84873686290 scopus 로고    scopus 로고
    • Drug repositioning by structure-based virtual screening
    • Ma D-L, Chan DS-H, Leung C-H. Drug repositioning by structure-based virtual screening. Chem Soc Rev 2013, 42:2130-2141.
    • (2013) Chem Soc Rev , vol.42 , pp. 2130-2141
    • Ma, D.-L.1    Chan, D.-H.2    Leung, C.-H.3
  • 26
    • 84941075640 scopus 로고    scopus 로고
    • Improvements, trends, and new ideas in molecular docking: 2012-2013 in review
    • Yuriev E, Holien J, Ramsland PA. Improvements, trends, and new ideas in molecular docking: 2012-2013 in review. J Mol Recognit 2015.
    • (2015) J Mol Recognit
    • Yuriev, E.1    Holien, J.2    Ramsland, P.A.3
  • 27
    • 65749110436 scopus 로고    scopus 로고
    • Computational intelligence methods for docking scores
    • Hecht D, Fogel GB. Computational intelligence methods for docking scores. Curr Comput - Aided Drug Des 2009, 5:56-68.
    • (2009) Curr Comput - Aided Drug Des , vol.5 , pp. 56-68
    • Hecht, D.1    Fogel, G.B.2
  • 28
    • 84884672908 scopus 로고    scopus 로고
    • Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation
    • Wright JS, Anderson JM, Shadnia H, Durst T, Katzenellenbogen JA. Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation. J Comput Aided Mol Des 2013.
    • (2013) J Comput Aided Mol Des
    • Wright, J.S.1    Anderson, J.M.2    Shadnia, H.3    Durst, T.4    Katzenellenbogen, J.A.5
  • 29
    • 33746867935 scopus 로고    scopus 로고
    • GFscore: a general nonlinear consensus scoring function for high-throughput docking
    • Betzi S, Suhre K, Chétrit B, Guerlesquin F, Morelli X. GFscore: a general nonlinear consensus scoring function for high-throughput docking. J Chem Inf Model 2006, 46:1704-1712.
    • (2006) J Chem Inf Model , vol.46 , pp. 1704-1712
    • Betzi, S.1    Suhre, K.2    Chétrit, B.3    Guerlesquin, F.4    Morelli, X.5
  • 30
    • 84874445951 scopus 로고    scopus 로고
    • Consensus docking: improving the reliability of docking in a virtual screening context
    • Houston DR, Walkinshaw MD. Consensus docking: improving the reliability of docking in a virtual screening context. J Chem Inf Model 2013, 53:384-390.
    • (2013) J Chem Inf Model , vol.53 , pp. 384-390
    • Houston, D.R.1    Walkinshaw, M.D.2
  • 31
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: quo vadis?
    • Varnek A, Baskin I. Machine learning methods for property prediction in chemoinformatics: quo vadis? J Chem Inf Model 2012, 52:1413-1437.
    • (2012) J Chem Inf Model , vol.52 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 34
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007, 23:2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 35
    • 84864837998 scopus 로고    scopus 로고
    • Predictive cheminformatics in drug discovery: statistical modeling for analysis of micro-array and gene expression data
    • In: Larson RS, Walker JM, eds. New York: Humana Press;
    • Sukumar N, Krein MP, Embrechts MJ. Predictive cheminformatics in drug discovery: statistical modeling for analysis of micro-array and gene expression data. In: Larson RS, Walker JM, eds. Bioinformatics and Drug Discovery, vol. 910. New York: Humana Press; 2012, 165-194.
    • (2012) Bioinformatics and Drug Discovery , vol.910 , pp. 165-194
    • Sukumar, N.1    Krein, M.P.2    Embrechts, M.J.3
  • 36
    • 66149103553 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on a diverse test set
    • Cheng T, Li X, Li Y, Liu Z, Wang R. Comparative assessment of scoring functions on a diverse test set. J Chem Inf Model 2009, 49:1079-1093.
    • (2009) J Chem Inf Model , vol.49 , pp. 1079-1093
    • Cheng, T.1    Li, X.2    Li, Y.3    Liu, Z.4    Wang, R.5
  • 37
    • 84903287174 scopus 로고    scopus 로고
    • Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results
    • Li Y, Han L, Liu Z, Wang R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J Chem Inf Model 2014, 54:1717-1736.
    • (2014) J Chem Inf Model , vol.54 , pp. 1717-1736
    • Li, Y.1    Han, L.2    Liu, Z.3    Wang, R.4
  • 39
    • 34247272948 scopus 로고    scopus 로고
    • Evaluating virtual screening methods: good and bad metrics for the 'early recognition' problem
    • Truchon J-F, Bayly CI. Evaluating virtual screening methods: good and bad metrics for the 'early recognition' problem. J Chem Inf Model 2007, 47:488-508.
    • (2007) J Chem Inf Model , vol.47 , pp. 488-508
    • Truchon, J.-F.1    Bayly, C.I.2
  • 40
    • 17144385534 scopus 로고    scopus 로고
    • Virtual screening workflow development guided by the 'receiver operating characteristic' curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4
    • Triballeau N, Acher F, Brabet I, Pin J-P, Bertrand H-O. Virtual screening workflow development guided by the 'receiver operating characteristic' curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem 2005, 48:2534-2547.
    • (2005) J Med Chem , vol.48 , pp. 2534-2547
    • Triballeau, N.1    Acher, F.2    Brabet, I.3    Pin, J.-P.4    Bertrand, H.-O.5
  • 41
    • 78650643212 scopus 로고    scopus 로고
    • Ultrafast shape recognition: method and applications
    • Ballester PJ. Ultrafast shape recognition: method and applications. Future Med Chem 2011, 3:65-78.
    • (2011) Future Med Chem , vol.3 , pp. 65-78
    • Ballester, P.J.1
  • 42
    • 77952832818 scopus 로고    scopus 로고
    • A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval
    • Swamidass SJ, Azencott C-A, Daily K, Baldi P. A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval. Bioinformatics 2010, 26:1348-1356.
    • (2010) Bioinformatics , vol.26 , pp. 1348-1356
    • Swamidass, S.J.1    Azencott, C.-A.2    Daily, K.3    Baldi, P.4
  • 44
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang N, Shoichet BK, Irwin JJ. Benchmarking sets for molecular docking. J Med Chem 2006, 49:6789-6801.
    • (2006) J Med Chem , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 45
    • 65349136650 scopus 로고    scopus 로고
    • Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data
    • Rohrer SG, Baumann K. Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data. J Chem Inf Model 2009, 49:169-184.
    • (2009) J Chem Inf Model , vol.49 , pp. 169-184
    • Rohrer, S.G.1    Baumann, K.2
  • 47
    • 1842740026 scopus 로고    scopus 로고
    • Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods
    • Deng W, Breneman C, Embrechts MJ. Predicting protein-ligand binding affinities using novel geometrical descriptors and machine-learning methods. J Chem Inf Comput Sci 2004, 44:699-703.
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 699-703
    • Deng, W.1    Breneman, C.2    Embrechts, M.J.3
  • 48
    • 84984286248 scopus 로고
    • A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm
    • Rännar S, Lindgren F, Geladi P, Wold S. A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: theory and algorithm. J Chemom 1994, 8:111-125.
    • (1994) J Chemom , vol.8 , pp. 111-125
    • Rännar, S.1    Lindgren, F.2    Geladi, P.3    Wold, S.4
  • 49
    • 33646462126 scopus 로고    scopus 로고
    • Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces
    • Zhang S, Golbraikh A, Tropsha A. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. J Med Chem 2006, 49:2713-2724.
    • (2006) J Med Chem , vol.49 , pp. 2713-2724
    • Zhang, S.1    Golbraikh, A.2    Tropsha, A.3
  • 50
    • 42149142447 scopus 로고    scopus 로고
    • Distance dependent scoring function for describing protein-ligand intermolecular interactions
    • Artemenko N. Distance dependent scoring function for describing protein-ligand intermolecular interactions. J Chem Inf Model 2008, 48:569-574.
    • (2008) J Chem Inf Model , vol.48 , pp. 569-574
    • Artemenko, N.1
  • 51
    • 77649229098 scopus 로고    scopus 로고
    • Binding affinity prediction with property-encoded shape distribution signatures
    • Das S, Krein MP, Breneman CM. Binding affinity prediction with property-encoded shape distribution signatures. J Chem Inf Model 2010, 50:298-308.
    • (2010) J Chem Inf Model , vol.50 , pp. 298-308
    • Das, S.1    Krein, M.P.2    Breneman, C.M.3
  • 52
    • 52249113723 scopus 로고    scopus 로고
    • SFCscore: scoring functions for affinity prediction of protein-ligand complexes
    • Sotriffer CA, Sanschagrin P, Matter H, Klebe G. SFCscore: scoring functions for affinity prediction of protein-ligand complexes. Proteins 2008, 73:395-419.
    • (2008) Proteins , vol.73 , pp. 395-419
    • Sotriffer, C.A.1    Sanschagrin, P.2    Matter, H.3    Klebe, G.4
  • 53
    • 77958585233 scopus 로고    scopus 로고
    • NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes
    • Durrant JD, McCammon JA. NNScore: a neural-network-based scoring function for the characterization of protein-ligand complexes. J Chem Inf Model 2010, 50:1865-1871.
    • (2010) J Chem Inf Model , vol.50 , pp. 1865-1871
    • Durrant, J.D.1    McCammon, J.A.2
  • 54
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
    • Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 2010, 31:455-461.
    • (2010) J Comput Chem , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 55
    • 79953277006 scopus 로고    scopus 로고
    • BINANA: a novel algorithm for ligand-binding characterization
    • Durrant JD, McCammon JA. BINANA: a novel algorithm for ligand-binding characterization. J Mol Graph Model 2011, 29:888-893.
    • (2011) J Mol Graph Model , vol.29 , pp. 888-893
    • Durrant, J.D.1    McCammon, J.A.2
  • 56
    • 82355181271 scopus 로고    scopus 로고
    • Cscore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified Cmac learning architecture
    • Ouyang X, Handoko SD, Kwoh CK. Cscore: a simple yet effective scoring function for protein-ligand binding affinity prediction using modified Cmac learning architecture. J Bioinform Comput Biol 2011, 09:1-14.
    • (2011) J Bioinform Comput Biol , vol.9 , pp. 1-14
    • Ouyang, X.1    Handoko, S.D.2    Kwoh, C.K.3
  • 57
    • 84896705093 scopus 로고    scopus 로고
    • Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology
    • Hsin K-Y, Ghosh S, Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 2013, 8:e83922.
    • (2013) PLoS One , vol.8 , pp. e83922
    • Hsin, K.-Y.1    Ghosh, S.2    Kitano, H.3
  • 58
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li L, Wang B, Meroueh SO. Support vector regression scoring of receptor-ligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 2011, 51:2132-2138.
    • (2011) J Chem Inf Model , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 59
    • 84887106527 scopus 로고    scopus 로고
    • Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines
    • Koppisetty CAK, Frank M, Kemp GJL, Nyholm P-G. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J Chem Inf Model 2013, 53:2559-2570.
    • (2013) J Chem Inf Model , vol.53 , pp. 2559-2570
    • Koppisetty, C.A.K.1    Frank, M.2    Kemp, G.J.L.3    Nyholm, P.-G.4
  • 60
    • 84868679998 scopus 로고    scopus 로고
    • Machine learning scoring functions based on random forest and support vector regression
    • Lecture Notes in Computer Science].
    • Ballester PJ. Machine learning scoring functions based on random forest and support vector regression. Lect Notes Bioinforma 2012, 7632:14-25. [Lecture Notes in Computer Science].
    • (2012) Lect Notes Bioinforma , vol.7632 , pp. 14-25
    • Ballester, P.J.1
  • 61
    • 84875428269 scopus 로고    scopus 로고
    • ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
    • Li G-B, Yang L-L, Wang W-J, Li L-L, Yang S-Y. ID-score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J Chem Inf Model 2013, 53:592-600.
    • (2013) J Chem Inf Model , vol.53 , pp. 592-600
    • Li, G.-B.1    Yang, L.-L.2    Wang, W.-J.3    Li, L.-L.4    Yang, S.-Y.5
  • 62
    • 84888606432 scopus 로고    scopus 로고
    • Binding affinity prediction for protein-ligand complexes based on β contacts and B factor
    • Liu Q, Kwoh CK, Li J. Binding affinity prediction for protein-ligand complexes based on β contacts and B factor. J Chem Inf Model 2013, 53:3076-3085.
    • (2013) J Chem Inf Model , vol.53 , pp. 3076-3085
    • Liu, Q.1    Kwoh, C.K.2    Li, J.3
  • 63
    • 84883250593 scopus 로고    scopus 로고
    • SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes
    • Zilian D, Sotriffer CA. SFCscore(RF): a random forest-based scoring function for improved affinity prediction of protein-ligand complexes. J Chem Inf Model 2013, 53:1923-1933.
    • (2013) J Chem Inf Model , vol.53 , pp. 1923-1933
    • Zilian, D.1    Sotriffer, C.A.2
  • 64
    • 84897010735 scopus 로고    scopus 로고
    • Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
    • Ballester PJ, Schreyer A, Blundell TL. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity? J Chem Inf Model 2014, 54:944-955.
    • (2014) J Chem Inf Model , vol.54 , pp. 944-955
    • Ballester, P.J.1    Schreyer, A.2    Blundell, T.L.3
  • 65
    • 82355186299 scopus 로고    scopus 로고
    • NNScore 2.0: a neural-network receptor-ligand scoring function
    • Durrant JD, McCammon JA. NNScore 2.0: a neural-network receptor-ligand scoring function. J Chem Inf Model 2011, 51:2897-2903.
    • (2011) J Chem Inf Model , vol.51 , pp. 2897-2903
    • Durrant, J.D.1    McCammon, J.A.2
  • 66
    • 84906829436 scopus 로고    scopus 로고
    • Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
    • Li H, Leung K-S, Wong M-H, Ballester PJ. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinformatics 2014, 15:291.
    • (2014) BMC Bioinformatics , vol.15 , pp. 291
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.J.4
  • 67
    • 79952178127 scopus 로고    scopus 로고
    • A machine learning-based method to improve docking scoring functions and its application to drug repurposing
    • Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. A machine learning-based method to improve docking scoring functions and its application to drug repurposing. J Chem Inf Model 2011, 51:408-419.
    • (2011) J Chem Inf Model , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 68
    • 84927634713 scopus 로고    scopus 로고
    • A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction
    • Ashtawy HM, Mahapatra NR. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein-ligand binding affinity prediction. IEEE/ACM Trans Comput Biol Bioinforma 2015, 12:335-347.
    • (2015) IEEE/ACM Trans Comput Biol Bioinforma , vol.12 , pp. 335-347
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 69
    • 78649517318 scopus 로고    scopus 로고
    • Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
    • Kramer C, Gedeck P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J Chem Inf Model 2010, 50:1961-1969.
    • (2010) J Chem Inf Model , vol.50 , pp. 1961-1969
    • Kramer, C.1    Gedeck, P.2
  • 70
    • 80051984855 scopus 로고    scopus 로고
    • Comments on 'leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets': significance for the validation of scoring functions
    • Ballester PJ, Mitchell JBO. Comments on 'leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets': significance for the validation of scoring functions. J Chem Inf Model 2011, 51:1739-1741.
    • (2011) J Chem Inf Model , vol.51 , pp. 1739-1741
    • Ballester, P.J.1    Mitchell, J.B.O.2
  • 71
    • 84925496993 scopus 로고    scopus 로고
    • A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach
    • Wang Y, Guo Y, Kuang Q, Pu X, Ji Y, Zhang Z, Li M. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach. J Comput Aided Mol Des 2015, 29:349-360.
    • (2015) J Comput Aided Mol Des , vol.29 , pp. 349-360
    • Wang, Y.1    Guo, Y.2    Kuang, Q.3    Pu, X.4    Ji, Y.5    Zhang, Z.6    Li, M.7
  • 72
    • 36749002607 scopus 로고    scopus 로고
    • A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming
    • Amini A, Shrimpton PJ, Muggleton SH, Sternberg MJE. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins Struct Funct Bioinforma 2007, 69:823-831.
    • (2007) Proteins Struct Funct Bioinforma , vol.69 , pp. 823-831
    • Amini, A.1    Shrimpton, P.J.2    Muggleton, S.H.3    Sternberg, M.J.E.4
  • 74
    • 84893553641 scopus 로고    scopus 로고
    • Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors
    • Zhan W, Li D, Che J, Zhang L, Yang B, Hu Y, Liu T, Dong X. Integrating docking scores, interaction profiles and molecular descriptors to improve the accuracy of molecular docking: toward the discovery of novel Akt1 inhibitors. Eur J Med Chem 2014, 75:11-20.
    • (2014) Eur J Med Chem , vol.75 , pp. 11-20
    • Zhan, W.1    Li, D.2    Che, J.3    Zhang, L.4    Yang, B.5    Hu, Y.6    Liu, T.7    Dong, X.8
  • 76
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 77
  • 78
    • 75749126524 scopus 로고    scopus 로고
    • Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening
    • Sato T, Honma T, Yokoyama S. Combining machine learning and pharmacophore-based interaction fingerprint for in silico screening. J Chem Inf Model 2010, 50:170-185.
    • (2010) J Chem Inf Model , vol.50 , pp. 170-185
    • Sato, T.1    Honma, T.2    Yokoyama, S.3
  • 80
    • 78649386109 scopus 로고    scopus 로고
    • Exploiting PubChem for virtual screening
    • Xie X-Q. Exploiting PubChem for virtual screening. Expert Opin Drug Discov 2010, 5:1205-1220.
    • (2010) Expert Opin Drug Discov , vol.5 , pp. 1205-1220
    • Xie, X.-Q.1
  • 82
    • 84880552522 scopus 로고    scopus 로고
    • Comparing neural-network scoring functions and the state of the art: applications to common library screening
    • Durrant JD, Friedman AJ, Rogers KE, McCammon JA. Comparing neural-network scoring functions and the state of the art: applications to common library screening. J Chem Inf Model 2013, 53:1726-1735.
    • (2013) J Chem Inf Model , vol.53 , pp. 1726-1735
    • Durrant, J.D.1    Friedman, A.J.2    Rogers, K.E.3    McCammon, J.A.4
  • 83
    • 79952178127 scopus 로고    scopus 로고
    • Correction to 'a machine learning-based method to improve docking scoring functions and its application to drug repurposing'
    • Kinnings SL, Liu N, Tonge PJ, Jackson RM, Xie L, Bourne PE. Correction to 'a machine learning-based method to improve docking scoring functions and its application to drug repurposing'. J Chem Inf Model 2011, 51:408-419.
    • (2011) J Chem Inf Model , vol.51 , pp. 408-419
    • Kinnings, S.L.1    Liu, N.2    Tonge, P.J.3    Jackson, R.M.4    Xie, L.5    Bourne, P.E.6
  • 84
    • 79955401050 scopus 로고    scopus 로고
    • Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation
    • Li L, Khanna M, Jo I, Wang F, Ashpole NM, Hudmon A, Meroueh SO. Target-specific support vector machine scoring in structure-based virtual screening: computational validation, in vitro testing in kinases, and effects on lung cancer cell proliferation. J Chem Inf Model 2011, 51:755-759.
    • (2011) J Chem Inf Model , vol.51 , pp. 755-759
    • Li, L.1    Khanna, M.2    Jo, I.3    Wang, F.4    Ashpole, N.M.5    Hudmon, A.6    Meroueh, S.O.7
  • 86
    • 36349009372 scopus 로고    scopus 로고
    • Ultrafast shape recognition for similarity search in molecular databases
    • Ballester PJ, Richards WG. Ultrafast shape recognition for similarity search in molecular databases. Proc Math Phys Eng Sci 2007, 463:1307-1321.
    • (2007) Proc Math Phys Eng Sci , vol.463 , pp. 1307-1321
    • Ballester, P.J.1    Richards, W.G.2
  • 87
    • 0031552362 scopus 로고    scopus 로고
    • Development and validation of a genetic algorithm for flexible docking
    • Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 1997, 267:727-748.
    • (1997) J Mol Biol , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 88
    • 84894639153 scopus 로고    scopus 로고
    • istar: A web platform for large-scale protein-ligand docking
    • Li H, Leung K-S, Ballester PJ, Wong M-H. istar: A web platform for large-scale protein-ligand docking. PLoS One 2014, 9:e85678.
    • (2014) PLoS One , vol.9 , pp. e85678
    • Li, H.1    Leung, K.-S.2    Ballester, P.J.3    Wong, M.-H.4
  • 90
    • 84873041650 scopus 로고    scopus 로고
    • Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
    • Ding B, Wang J, Li N, Wang W. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J Chem Inf Model 2013, 53:114-122.
    • (2013) J Chem Inf Model , vol.53 , pp. 114-122
    • Ding, B.1    Wang, J.2    Li, N.3    Wang, W.4
  • 91
    • 84945454057 scopus 로고    scopus 로고
    • The impact of docking pose generation error on the prediction of binding affinity
    • In: Switzerland: Springer
    • Li H, Leung K-S, Wong M-H, Ballester P. The impact of docking pose generation error on the prediction of binding affinity. In: Lecture Notes in Bioinformatics, vol. 8623. Switzerland: Springer; 2015.
    • (2015) Lecture Notes in Bioinformatics , vol.8623
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.4
  • 92
    • 84932194253 scopus 로고    scopus 로고
    • Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field
    • Wójcikowski M, Zielenkiewicz P, Siedlecki P. Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field. J Cheminform 2015, 7:26.
    • (2015) J Cheminform , vol.7 , pp. 26
    • Wójcikowski, M.1    Zielenkiewicz, P.2    Siedlecki, P.3
  • 94
    • 84939564287 scopus 로고    scopus 로고
    • Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect
    • Yan Z, Wang J. Optimizing the affinity and specificity of ligand binding with the inclusion of solvation effect. Proteins Struct Funct Bioinforma 2015.
    • (2015) Proteins Struct Funct Bioinforma
    • Yan, Z.1    Wang, J.2
  • 95
    • 84902438255 scopus 로고    scopus 로고
    • Improved protein-ligand binding affinity prediction by using a curvature dependent surface area model
    • Cao Y, Li L. Improved protein-ligand binding affinity prediction by using a curvature dependent surface area model. Bioinformatics 2014, 30:1674-1680.
    • (2014) Bioinformatics , vol.30 , pp. 1674-1680
    • Cao, Y.1    Li, L.2
  • 96
    • 84865305788 scopus 로고    scopus 로고
    • Protein-protein binding affinity prediction based on an SVR ensemble
    • In: Huang D-S, Jiang C, Bevilacqua V, Figueroa J, eds. Berlin/Heidelberg: Springer;
    • Li X, Zhu M, Li X, Wang H-Q, Wang S. Protein-protein binding affinity prediction based on an SVR ensemble. In: Huang D-S, Jiang C, Bevilacqua V, Figueroa J, eds. Intelligent Computing Technology, vol. 7389. Berlin/Heidelberg: Springer; 2012, 145-151.
    • (2012) Intelligent Computing Technology , vol.7389 , pp. 145-151
    • Li, X.1    Zhu, M.2    Li, X.3    Wang, H.-Q.4    Wang, S.5
  • 97
    • 84880698928 scopus 로고    scopus 로고
    • Optimization of molecular docking scores with support vector rank regression
    • Wang W, He W, Zhou X, Chen X. Optimization of molecular docking scores with support vector rank regression. Proteins Struct Funct Bioinforma 2013, 81:1386-1398.
    • (2013) Proteins Struct Funct Bioinforma , vol.81 , pp. 1386-1398
    • Wang, W.1    He, W.2    Zhou, X.3    Chen, X.4
  • 98
    • 84938280812 scopus 로고    scopus 로고
    • Low-quality structural and interaction data improves binding affinity prediction via random forest
    • Li H, Leung K-S, Wong M-H, Ballester P. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules 2015, 20:10947-10962.
    • (2015) Molecules , vol.20 , pp. 10947-10962
    • Li, H.1    Leung, K.-S.2    Wong, M.-H.3    Ballester, P.4
  • 99
    • 68149160790 scopus 로고    scopus 로고
    • Predicting the predictability: a unified approach to the applicability domain problem of QSAR models
    • Dragos H, Gilles M, Alexandre V. Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. J Chem Inf Model 2009, 49:1762-1776.
    • (2009) J Chem Inf Model , vol.49 , pp. 1762-1776
    • Dragos, H.1    Gilles, M.2    Alexandre, V.3
  • 100
    • 84888603687 scopus 로고    scopus 로고
    • Using random forest to model the domain applicability of another random forest model
    • Sheridan RP. Using random forest to model the domain applicability of another random forest model. J Chem Inf Model 2013, 53:2837-2850.
    • (2013) J Chem Inf Model , vol.53 , pp. 2837-2850
    • Sheridan, R.P.1
  • 103
    • 84901364194 scopus 로고    scopus 로고
    • Chemical, target, and bioactive properties of allosteric modulation
    • Van Westen GJP, Gaulton A, Overington JP. Chemical, target, and bioactive properties of allosteric modulation. PLoS Comput Biol 2014, 10:e1003559.
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003559
    • Van Westen, G.J.P.1    Gaulton, A.2    Overington, J.P.3
  • 104
    • 77952732009 scopus 로고    scopus 로고
    • Bioisosteric replacement and scaffold hopping in lead generation and optimization
    • Langdon SR, Ertl P, Brown N. Bioisosteric replacement and scaffold hopping in lead generation and optimization. Mol Inform 2010, 29:366-385.
    • (2010) Mol Inform , vol.29 , pp. 366-385
    • Langdon, S.R.1    Ertl, P.2    Brown, N.3
  • 105
  • 108
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: internal and external
    • Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007, 26:694-701.
    • (2007) QSAR Comb Sci , vol.26 , pp. 694-701
    • Gramatica, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.