-
1
-
-
0031552362
-
Development and validation of a genetic algorithm for flexible docking
-
Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking J. Mol. Biol. 1997, 267, 727-748 10.1006/jmbi.1996.0897
-
(1997)
J. Mol. Biol.
, vol.267
, pp. 727-748
-
-
Jones, G.1
Willett, P.2
Glen, R.C.3
Leach, A.R.4
Taylor, R.5
-
2
-
-
0037434582
-
Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine
-
Jain, A. N. Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine J. Med. Chem. 2003, 46, 499-511 10.1021/jm020406h
-
(2003)
J. Med. Chem.
, vol.46
, pp. 499-511
-
-
Jain, A.N.1
-
3
-
-
12144289984
-
Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy
-
Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy J. Med. Chem. 2004, 47, 1739-1749 10.1021/jm0306430
-
(2004)
J. Med. Chem.
, vol.47
, pp. 1739-1749
-
-
Friesner, R.A.1
Banks, J.L.2
Murphy, R.B.3
Halgren, T.A.4
Klicic, J.J.5
Mainz, D.T.6
Repasky, M.P.7
Knoll, E.H.8
Shelley, M.9
Perry, J.K.10
Shaw, D.E.11
Francis, P.12
Shenkin, P.S.13
-
5
-
-
77952415408
-
Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field
-
Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field J. Chem. Theory Comput. 2010, 6, 1509-1519 10.1021/ct900587b
-
(2010)
J. Chem. Theory Comput.
, vol.6
, pp. 1509-1519
-
-
Shivakumar, D.1
Williams, J.2
Wu, Y.3
Damm, W.4
Shelley, J.5
Sherman, W.6
-
6
-
-
84923538660
-
Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field
-
Wang, L.; Wu, Y.; Deng, Y.; Kim, B.; Pierce, L.; Krilov, G.; Lupyan, D.; Robinson, S.; Dahlgren, M. K.; Greenwood, J.; Romero, D. L.; Masse, C.; Knight, J. L.; Steinbrecher, T.; Beuming, T.; Damm, W.; Harder, E.; Sherman, W.; Brewer, M.; Wester, R.; Murcko, M.; Frye, L.; Farid, R.; Lin, T.; Mobley, D. L.; Jorgensen, W. L.; Berne, B. J.; Friesner, R. A.; Abel, R. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field J. Am. Chem. Soc. 2015, 137, 2695-2703 10.1021/ja512751q
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 2695-2703
-
-
Wang, L.1
Wu, Y.2
Deng, Y.3
Kim, B.4
Pierce, L.5
Krilov, G.6
Lupyan, D.7
Robinson, S.8
Dahlgren, M.K.9
Greenwood, J.10
Romero, D.L.11
Masse, C.12
Knight, J.L.13
Steinbrecher, T.14
Beuming, T.15
Damm, W.16
Harder, E.17
Sherman, W.18
Brewer, M.19
Wester, R.20
Murcko, M.21
Frye, L.22
Farid, R.23
Lin, T.24
Mobley, D.L.25
Jorgensen, W.L.26
Berne, B.J.27
Friesner, R.A.28
Abel, R.29
more..
-
7
-
-
85018602823
-
Evaluation and Characterization of Trk Kinase Inhibitors for the Treatment of Pain: Reliable Binding Affinity Predictions from Theory and Computation
-
Wan, S.; Bhati, A. P.; Skerratt, S.; Omoto, K.; Shanmugasundaram, V.; Bagal, S. K.; Coveney, P. V. Evaluation and Characterization of Trk Kinase Inhibitors for the Treatment of Pain: Reliable Binding Affinity Predictions from Theory and Computation J. Chem. Inf. Model. 2017, 57, 897-909 10.1021/acs.jcim.6b00780
-
(2017)
J. Chem. Inf. Model.
, vol.57
, pp. 897-909
-
-
Wan, S.1
Bhati, A.P.2
Skerratt, S.3
Omoto, K.4
Shanmugasundaram, V.5
Bagal, S.K.6
Coveney, P.V.7
-
8
-
-
84988851134
-
Application of Free Energy Perturbation for the Design of BACE1 Inhibitors
-
Ciordia, M.; Pérez-Benito, L.; Delgado, F.; Trabanco, A. A.; Tresadern, G. Application of Free Energy Perturbation for the Design of BACE1 Inhibitors J. Chem. Inf. Model. 2016, 56, 1856-1871 10.1021/acs.jcim.6b00220
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 1856-1871
-
-
Ciordia, M.1
Pérez-Benito, L.2
Delgado, F.3
Trabanco, A.A.4
Tresadern, G.5
-
9
-
-
85015151874
-
Acylguanidine Beta Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study
-
Keränen, H.; Pérez-Benito, L.; Ciordia, M.; Delgado, F.; Steinbrecher, T. B.; Oehlrich, D.; van Vlijmen, H. W. T.; Trabanco, A. A.; Tresadern, G. Acylguanidine Beta Secretase 1 Inhibitors: A Combined Experimental and Free Energy Perturbation Study J. Chem. Theory Comput. 2017, 13, 1439-1453 10.1021/acs.jctc.6b01141
-
(2017)
J. Chem. Theory Comput.
, vol.13
, pp. 1439-1453
-
-
Keränen, H.1
Pérez-Benito, L.2
Ciordia, M.3
Delgado, F.4
Steinbrecher, T.B.5
Oehlrich, D.6
Van Vlijmen, H.W.T.7
Trabanco, A.A.8
Tresadern, G.9
-
10
-
-
84945475267
-
Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
-
Ain, Q. U.; Aleksandrova, A.; Roessler, F. D.; Ballester, P. J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015, 5, 405-424 10.1002/wcms.1225
-
(2015)
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
, vol.5
, pp. 405-424
-
-
Ain, Q.U.1
Aleksandrova, A.2
Roessler, F.D.3
Ballester, P.J.4
-
11
-
-
0037763817
-
Comparative evaluation of 11 scoring functions for molecular docking
-
Wang, R.; Lu, Y.; Wang, S. Comparative evaluation of 11 scoring functions for molecular docking J. Med. Chem. 2003, 46, 2287-2303 10.1021/jm0203783
-
(2003)
J. Med. Chem.
, vol.46
, pp. 2287-2303
-
-
Wang, R.1
Lu, Y.2
Wang, S.3
-
12
-
-
52249113723
-
SFCscore: Scoring functions for affinity prediction of protein-ligand complexes
-
Sotriffer, C. A.; Sanschagrin, P.; Matter, H.; Klebe, G. SFCscore: Scoring functions for affinity prediction of protein-ligand complexes Proteins: Struct., Funct., Genet. 2008, 73, 395-419 10.1002/prot.22058
-
(2008)
Proteins: Struct., Funct., Genet.
, vol.73
, pp. 395-419
-
-
Sotriffer, C.A.1
Sanschagrin, P.2
Matter, H.3
Klebe, G.4
-
13
-
-
77952825581
-
A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
-
Ballester, P. J.; Mitchell, J. B. O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking Bioinformatics 2010, 26, 1169-1175 10.1093/bioinformatics/btq112
-
(2010)
Bioinformatics
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
14
-
-
0035478854
-
Random Forests
-
Breiman, L. Random Forests Mach. Learn. 2001, 45, 5-32 10.1023/A:1010933404324
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
15
-
-
84875428269
-
ID-score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions
-
Li, G. B.; Yang, L. L.; Wang, W. J.; Li, L. L.; Yang, S. Y. ID-score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions J. Chem. Inf. Model. 2013, 53, 592-600 10.1021/ci300493w
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 592-600
-
-
Li, G.B.1
Yang, L.L.2
Wang, W.J.3
Li, L.L.4
Yang, S.Y.5
-
16
-
-
34249753618
-
Support vector machine
-
Cortes, C.; Vapnik, V. Support vector machine Mach. Learn. 1995, 20, 273-297 10.1007/BF00994018
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
17
-
-
84923588607
-
Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
-
Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets Mol. Inf. 2015, 34, 115-126 10.1002/minf.201400132
-
(2015)
Mol. Inf.
, vol.34
, pp. 115-126
-
-
Li, H.1
Leung, K.S.2
Wong, M.H.3
Ballester, P.J.4
-
18
-
-
84883250593
-
SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes
-
Zilian, D.; Sotri, C. SFCscoreRF: A Random Forest-Based Scoring Function for Improved Affinity Prediction of Protein-Ligand Complexes J. Chem. Inf. Model. 2013, 53, 1923-1933 10.1021/ci400120b
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1923-1933
-
-
Zilian, D.1
Sotri, C.2
-
19
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning Nature 2015, 521, 436-444 10.1038/nature14539
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
20
-
-
84910651844
-
Deep Learning in Neural Networks: An Overview
-
Schmidhuber, J. Deep Learning in Neural Networks: An Overview Neural Netw. 2015, 61, 85-117 10.1016/j.neunet.2014.09.003
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
22
-
-
85001976188
-
A primer on neural network models for natural language processing
-
Goldberg, Y. A primer on neural network models for natural language processing J. Artif. Intell. Res. 2016, 57, 345-420
-
(2016)
J. Artif. Intell. Res.
, vol.57
, pp. 345-420
-
-
Goldberg, Y.1
-
23
-
-
84937849144
-
-
Ghahramani, Z. Welling, M. Cortes, C. Lawrence, N. D. Weinberger, K. Q. Curran Associates, Inc
-
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. In Adv. Neural Inf. Process Syst.; Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N. D.; Weinberger, K. Q., Eds.; Curran Associates, Inc., 2014; pp 2672-2680.
-
(2014)
Adv. Neural Inf. Process Syst.
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
24
-
-
84980022857
-
Deep Learning for Computational Biology
-
Angermueller, C.; Pärnamaa, T.; Parts, L.; Stegle, O. Deep Learning for Computational Biology Mol. Syst. Biol. 2016, 12, 1-16 10.15252/msb.20156651
-
(2016)
Mol. Syst. Biol.
, vol.12
, pp. 1-16
-
-
Angermueller, C.1
Pärnamaa, T.2
Parts, L.3
Stegle, O.4
-
25
-
-
85030705791
-
DeepSite: Protein-binding site predictor using 3D-convolutional neural networks
-
Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A. S.; De Fabritiis, G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks Bioinformatics 2017, 33, 3036-3042 10.1093/bioinformatics/btx350
-
(2017)
Bioinformatics
, vol.33
, pp. 3036-3042
-
-
Jiménez, J.1
Doerr, S.2
Martínez-Rosell, G.3
Rose, A.S.4
De Fabritiis, G.5
-
26
-
-
84987943069
-
DeepTox: Toxicity Prediction using Deep Learning
-
Mayr, A.; Klambauer, G.; Unterthiner, T.; Hochreiter, S. DeepTox: Toxicity Prediction using Deep Learning Front. Environ. Sci. 2016, 3, 1-15 10.3389/fenvs.2015.00080
-
(2016)
Front. Environ. Sci.
, vol.3
, pp. 1-15
-
-
Mayr, A.1
Klambauer, G.2
Unterthiner, T.3
Hochreiter, S.4
-
27
-
-
85018558434
-
Protein-Ligand Scoring with Convolutional Neural Networks
-
Ragoza, M.; Hochuli, J.; Idrobo, E.; Sunseri, J.; Koes, D. R. Protein-Ligand Scoring with Convolutional Neural Networks J. Chem. Inf. Model. 2017, 57, 942-957 10.1021/acs.jcim.6b00740
-
(2017)
J. Chem. Inf. Model.
, vol.57
, pp. 942-957
-
-
Ragoza, M.1
Hochuli, J.2
Idrobo, E.3
Sunseri, J.4
Koes, D.R.5
-
28
-
-
85026627894
-
TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
-
Cang, Z.; Wei, G. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions PLoS Comput. Biol. 2017, 13, e1005690 10.1371/journal.pcbi.1005690
-
(2017)
PLoS Comput. Biol.
, vol.13
, pp. e1005690
-
-
Cang, Z.1
Wei, G.2
-
29
-
-
85008475964
-
Boosting Docking-Based Virtual Screening with Deep Learning
-
Pereira, J. C.; Caffarena, E. R.; Dos Santos, C. N. Boosting Docking-Based Virtual Screening with Deep Learning J. Chem. Inf. Model. 2016, 56, 2495-2506 10.1021/acs.jcim.6b00355
-
(2016)
J. Chem. Inf. Model.
, vol.56
, pp. 2495-2506
-
-
Pereira, J.C.1
Caffarena, E.R.2
Dos Santos, C.N.3
-
30
-
-
85027440798
-
Performance of machine-learning scoring functions in structure-based virtual screening
-
Wójcikowski, M.; Ballester, P. J.; Siedlecki, P. Performance of machine-learning scoring functions in structure-based virtual screening Sci. Rep. 2017, 7, 46710 10.1038/srep46710
-
(2017)
Sci. Rep.
, vol.7
, pp. 46710
-
-
Wójcikowski, M.1
Ballester, P.J.2
Siedlecki, P.3
-
31
-
-
84880542260
-
Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules
-
Lusci, A.; Pollastri, G.; Baldi, P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules J. Chem. Inf. Model. 2013, 53, 1563-1575 10.1021/ci400187y
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1563-1575
-
-
Lusci, A.1
Pollastri, G.2
Baldi, P.3
-
32
-
-
85015387152
-
-
arXiv:1509.09292
-
Duvenaud, D. K.; Maclaurin, D.; Aguilera-Iparraguirre, J.; Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints, 2015, arXiv:1509.09292.
-
(2015)
Convolutional Networks on Graphs for Learning Molecular Fingerprints
-
-
Duvenaud, D.K.1
Maclaurin, D.2
Aguilera-Iparraguirre, J.3
Gómez-Bombarelli, R.4
Hirzel, T.5
Aspuru-Guzik, A.6
Adams, R.P.7
-
33
-
-
85026913013
-
The inner and outer approaches to the design of recursive neural architectures
-
Baldi, P. The inner and outer approaches to the design of recursive neural architectures Data Min. Knowl. Discov 2018, 32, 218 10.1007/s10618-017-0531-0
-
(2018)
Data Min. Knowl. Discov
, vol.32
, pp. 218
-
-
Baldi, P.1
-
34
-
-
85013653033
-
Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions
-
Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions Acc. Chem. Res. 2017, 50, 302-309 10.1021/acs.accounts.6b00491
-
(2017)
Acc. Chem. Res.
, vol.50
, pp. 302-309
-
-
Liu, Z.1
Su, M.2
Han, L.3
Liu, J.4
Yang, Q.5
Li, Y.6
Wang, R.7
-
35
-
-
85008692166
-
CSM-lig: A web server for assessing and comparing protein-small molecule affinities
-
Pires, D. E.; Ascher, D. B. CSM-lig: a web server for assessing and comparing protein-small molecule affinities Nucleic Acids Res. 2016, 44, W557-W561 10.1093/nar/gkw390
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. W557-W561
-
-
Pires, D.E.1
Ascher, D.B.2
-
36
-
-
84894639153
-
Istar: A web platform for large-scale protein-ligand docking
-
Li, H.; Leung, K. S.; Ballester, P. J.; Wong, M. H. Istar: A web platform for large-scale protein-ligand docking. PLoS One 2014, 9. e85678 10.1371/journal.pone.0085678
-
(2014)
PLoS One
, vol.9
, pp. e85678
-
-
Li, H.1
Leung, K.S.2
Ballester, P.J.3
Wong, M.H.4
-
37
-
-
84903302003
-
Comparative Assessment of Scoring Functions on an Updated Benchmark: 1. Compilation of the Test Set
-
Li, Y.; Liu, Z.; Li, J.; Han, L.; Liu, J.; Zhao, Z.; Wang, R. Comparative Assessment of Scoring Functions on an Updated Benchmark: 1. Compilation of the Test Set J. Chem. Inf. Model. 2014, 54, 1700-1716 10.1021/ci500080q
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 1700-1716
-
-
Li, Y.1
Liu, Z.2
Li, J.3
Han, L.4
Liu, J.5
Zhao, Z.6
Wang, R.7
-
38
-
-
66149103553
-
Comparative Assessment of Scoring Functions on a Diverse Test Set
-
Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative Assessment of Scoring Functions on a Diverse Test Set J. Chem. Inf. Model. 2009, 49, 1079-1093 10.1021/ci9000053
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 1079-1093
-
-
Cheng, T.1
Li, X.2
Li, Y.3
Liu, Z.4
Wang, R.5
-
39
-
-
84908242076
-
Beware of machine learning-based scoring functions-on the danger of developing black boxes
-
Gabel, J.; Desaphy, J.; Rognan, D. Beware of machine learning-based scoring functions-on the danger of developing black boxes J. Chem. Inf. Model. 2014, 54, 2807-2815 10.1021/ci500406k
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 2807-2815
-
-
Gabel, J.1
Desaphy, J.2
Rognan, D.3
-
40
-
-
78649517318
-
Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
-
Kramer, C.; Gedeck, P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets J. Chem. Inf. Model. 2010, 50, 1961-1969 10.1021/ci100264e
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 1961-1969
-
-
Kramer, C.1
Gedeck, P.2
-
41
-
-
80051984855
-
Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions
-
Ballester, P. J.; Mitchell, J. B. O. Comments on "leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets": Significance for the validation of scoring functions J. Chem. Inf. Model. 2011, 51, 1739-1741 10.1021/ci200057e
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 1739-1741
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
42
-
-
80053333972
-
CSAR benchmark exercise of 2010: Selection of the protein-ligand complexes
-
Dunbar, J. B.; Smith, R. D.; Yang, C. Y.; Ung, P. M. U.; Lexa, K. W.; Khazanov, N. A.; Stuckey, J. A.; Wang, S.; Carlson, H. A. CSAR benchmark exercise of 2010: Selection of the protein-ligand complexes J. Chem. Inf. Model. 2011, 51, 2036-2046 10.1021/ci200082t
-
(2011)
J. Chem. Inf. Model.
, vol.51
, pp. 2036-2046
-
-
Dunbar, J.B.1
Smith, R.D.2
Yang, C.Y.3
Ung, P.M.U.4
Lexa, K.W.5
Khazanov, N.A.6
Stuckey, J.A.7
Wang, S.8
Carlson, H.A.9
-
43
-
-
38549115559
-
Binding MOAD, a high-quality protein-ligand database
-
Benson, M. L.; Smith, R. D.; Khazanov, N. A.; Dimcheff, B.; Beaver, J.; Dresslar, P.; Nerothin, J.; Carlson, H. A. Binding MOAD, a high-quality protein-ligand database Nucleic Acids Res. 2008, 36, D674 10.1093/nar/gkm911
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. D674
-
-
Benson, M.L.1
Smith, R.D.2
Khazanov, N.A.3
Dimcheff, B.4
Beaver, J.5
Dresslar, P.6
Nerothin, J.7
Carlson, H.A.8
-
44
-
-
84883227058
-
CSAR data set release 2012: Ligands, affinities, complexes, and docking decoys
-
Dunbar, J. B.; Smith, R. D.; Damm-Ganamet, K. L.; Ahmed, A.; Esposito, E. X.; Delproposto, J.; Chinnaswamy, K.; Kang, Y. N.; Kubish, G.; Gestwicki, J. E.; Stuckey, J. A.; Carlson, H. A. CSAR data set release 2012: Ligands, affinities, complexes, and docking decoys J. Chem. Inf. Model. 2013, 53, 1842-1852 10.1021/ci4000486
-
(2013)
J. Chem. Inf. Model.
, vol.53
, pp. 1842-1852
-
-
Dunbar, J.B.1
Smith, R.D.2
Damm-Ganamet, K.L.3
Ahmed, A.4
Esposito, E.X.5
Delproposto, J.6
Chinnaswamy, K.7
Kang, Y.N.8
Kubish, G.9
Gestwicki, J.E.10
Stuckey, J.A.11
Carlson, H.A.12
-
45
-
-
85042722566
-
-
RDKit: Open-source cheminformatics, (accessed January 2018)
-
Landrum, G. RDKit: Open-source cheminformatics, 2012. http://www.rdkit.org (accessed January 2018).
-
(2012)
-
-
Landrum, G.1
-
46
-
-
84901363730
-
RDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids
-
Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.; Morley, S. D. rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins and Nucleic Acids PLoS Comput. Biol. 2014, 10, e1003571 10.1371/journal.pcbi.1003571
-
(2014)
PLoS Comput. Biol.
, vol.10
, pp. e1003571
-
-
Ruiz-Carmona, S.1
Alvarez-Garcia, D.2
Foloppe, N.3
Garmendia-Doval, A.B.4
Juhos, S.5
Schmidtke, P.6
Barril, X.7
Hubbard, R.E.8
Morley, S.D.9
-
47
-
-
84964649164
-
HTMD: High-Throughput Molecular Dynamics for Molecular Discovery
-
Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery J. Chem. Theory Comput. 2016, 12, 1845-1852 10.1021/acs.jctc.6b00049
-
(2016)
J. Chem. Theory Comput.
, vol.12
, pp. 1845-1852
-
-
Doerr, S.1
Harvey, M.J.2
Noé, F.3
De Fabritiis, G.4
-
48
-
-
84986274465
-
-
Deep Residual Learning for Image Recognition; IEEE CVPR
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition; IEEE CVPR; 2016; pp 770-778.
-
(2016)
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
49
-
-
85083953063
-
Very Deep Convolutional Networks for Large-Scale Image Recognition
-
Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition Int. Conf. Learn. Represent. 2015, 1-14
-
(2015)
Int. Conf. Learn. Represent.
, pp. 1-14
-
-
Simonyan, K.1
Zisserman, A.2
-
50
-
-
84988340112
-
-
arXiv:1602.07360
-
Iandola, F. N.; Han, S.; Moskewicz, M. W.; Ashraf, K.; Dally, W. J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and less than 0.5MB model size, 2015, arXiv:1602.07360.
-
(2015)
SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and Less Than 0.5MB Model Size
-
-
Iandola, F.N.1
Han, S.2
Moskewicz, M.W.3
Ashraf, K.4
Dally, W.J.5
Keutzer, K.6
-
51
-
-
85198028989
-
-
IEEE CVPR
-
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Li, F.-F. ImageNet: A Large-Scale Hierarchical Image Database; IEEE CVPR, 2009; pp 248-255.
-
(2009)
ImageNet: A Large-Scale Hierarchical Image Database
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Li, F.-F.6
-
53
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks AISTATS 13 2010, 9, 249-256
-
(2010)
AISTATS 13
, vol.9
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
54
-
-
0036022960
-
Further development and validation of empirical scoring functions for structure-based binding affinity prediction
-
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
-
(2002)
J. Comput.-Aided Mol. Des.
, vol.16
, pp. 11-26
-
-
Wang, R.1
Lai, L.2
Wang, S.3
-
55
-
-
84902438255
-
Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model
-
Cao, Y.; Li, L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model Bioinformatics 2014, 30, 1674-1680 10.1093/bioinformatics/btu104
-
(2014)
Bioinformatics
, vol.30
, pp. 1674-1680
-
-
Cao, Y.1
Li, L.2
-
56
-
-
80555140075
-
Scikit-learn: Machine Learning in Python
-
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python J. Mach. Learn. Res. 2011, 12, 2825-2830
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
57
-
-
77649229098
-
Binding affinity prediction with property-encoded shape distribution signatures
-
Das, S.; Krein, M. P.; Breneman, C. M. Binding affinity prediction with property-encoded shape distribution signatures J. Chem. Inf. Model. 2010, 50, 298-308 10.1021/ci9004139
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 298-308
-
-
Das, S.1
Krein, M.P.2
Breneman, C.M.3
-
58
-
-
84938280812
-
Low-quality structural and interaction data improves binding affinity prediction via random forest
-
Li, H.; Leung, K. S.; Wong, M. H.; Ballester, P. J. Low-quality structural and interaction data improves binding affinity prediction via random forest Molecules 2015, 20, 10947-10962 10.3390/molecules200610947
-
(2015)
Molecules
, vol.20
, pp. 10947-10962
-
-
Li, H.1
Leung, K.S.2
Wong, M.H.3
Ballester, P.J.4
-
59
-
-
85025625893
-
PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations
-
Martínez-Rosell, G.; Giorgino, T.; De Fabritiis, G. PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations J. Chem. Inf. Model. 2017, 57, 1511-1516 10.1021/acs.jcim.7b00190
-
(2017)
J. Chem. Inf. Model.
, vol.57
, pp. 1511-1516
-
-
Martínez-Rosell, G.1
Giorgino, T.2
De Fabritiis, G.3
-
60
-
-
85042708432
-
-
Theano Development Team. Theano: A Python framework for fast computation ofmathematicalexpressions, (, arXiv:1605.02688
-
Theano Development Team. Theano: A Python framework for fast computation ofmathematicalexpressions, (2016, arXiv:1605.02688.
-
(2016)
-
-
-
61
-
-
84995688316
-
Correcting the impact of docking pose generation error on binding affinity prediction
-
Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P. J. Correcting the impact of docking pose generation error on binding affinity prediction BMC Bioinf. 2016, 17, 308 10.1186/s12859-016-1169-4
-
(2016)
BMC Bioinf.
, vol.17
, pp. 308
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
|