메뉴 건너뛰기




Volumn 34, Issue 2-3, 2015, Pages 115-126

Improving autodock vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets

Author keywords

Docking; Drug lead optimization; Machine learning

Indexed keywords

ARTICLE; AUTODOCK VINA; BINDING AFFINITY; CLINICAL ASSESSMENT; COMPUTER PROGRAM; DATA ANALYSIS; LIGAND BINDING; MACHINE LEARNING; MEASUREMENT ACCURACY; MOLECULAR BIOLOGY; MOLECULAR DOCKING; PRIORITY JOURNAL; PROTEIN BINDING; RANDOM FOREST; STRUCTURAL BIOINFORMATICS; STRUCTURE ANALYSIS; TRAINING; SOFTWARE; THEORETICAL MODEL;

EID: 84923588607     PISSN: 18681743     EISSN: 18681751     Source Type: Journal    
DOI: 10.1002/minf.201400132     Document Type: Article
Times cited : (209)

References (69)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.