-
1
-
-
77952825581
-
A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking
-
[CrossRef][PubMed]
-
Ballester, P.J.; Mitchell, J.B.O. A machine learning approach to predicting protein–ligand binding affinity with applications to molecular docking. Bioinformatics 2010, 26, 1169–1175.[CrossRef][PubMed]
-
(2010)
Bioinformatics
, vol.26
, pp. 1169-1175
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
2
-
-
84927634713
-
A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein–ligand binding affinity prediction
-
[CrossRef][PubMed]
-
Ashtawy, H.M.; Mahapatra, N.R. A comparative assessment of predictive accuracies of conventional and machine learning scoring functions for protein–ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 335–347.[CrossRef][PubMed]
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinform
, vol.12
, pp. 335-347
-
-
Ashtawy, H.M.1
Mahapatra, N.R.2
-
3
-
-
84883250593
-
SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein–ligand complexes
-
[CrossRef][PubMed]
-
Zilian, D.; Sotriffer, C.A. SFCscore(RF): A random forest-based scoring function for improved affinity prediction of protein–ligand complexes. J. Chem. Inf. Model. 2013, 53, 1923–1933.[CrossRef][PubMed]
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 1923-1933
-
-
Zilian, D.1
Sotriffer, C.A.2
-
4
-
-
80053313926
-
Support vector regression scoring of receptor–ligand complexes for rank-ordering and virtual screening of chemical libraries
-
[CrossRef][PubMed]
-
Li, L.; Wang, B.; Meroueh, S.O. Support vector regression scoring of receptor–ligand complexes for rank-ordering and virtual screening of chemical libraries. J. Chem. Inf. Model. 2011, 51, 2132–2138.[CrossRef][PubMed]
-
(2011)
J. Chem. Inf. Model
, vol.51
, pp. 2132-2138
-
-
Li, L.1
Wang, B.2
Meroueh, S.O.3
-
5
-
-
84873041650
-
Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening
-
[PubMed]
-
Ding, B.; Wang, J.; Li, N.; Wang, W. Characterization of small molecule binding. I. Accurate identification of strong inhibitors in virtual screening. J. Chem. Inf. Model. 2013, 53, 114–122.[PubMed]
-
(2013)
J. Chem. Inf. Model
, vol.53
, pp. 114-122
-
-
Ding, B.1
Wang, J.2
Li, N.3
Wang, W.4
-
6
-
-
84995688316
-
Correcting the impact of docking pose generation error on binding affinity prediction
-
[CrossRef][PubMed]
-
Li, H.; Leung, K.; Wong, M.; Ballester, P.J. Correcting the impact of docking pose generation error on binding affinity prediction. BMC Bioinform. 2016, 17, 308.[CrossRef][PubMed]
-
(2016)
BMC Bioinform
, vol.17
, pp. 308
-
-
Li, H.1
Leung, K.2
Wong, M.3
Ballester, P.J.4
-
7
-
-
84964225053
-
Constructing and validating high-performance MIEC-SVM models in virtual screening for kinases: A better way for actives discovery
-
[CrossRef][PubMed]
-
Sun, H.; Pan, P.; Tian, S.; Xu, L.; Kong, X.; Li, Y.; Dan, L.; Hou, T. Constructing and validating high-performance MIEC-SVM models in virtual screening for kinases: A better way for actives discovery. Sci. Rep. 2016, 6, 24817.[CrossRef][PubMed]
-
(2016)
Sci. Rep
, vol.6
, pp. 24817
-
-
Sun, H.1
Pan, P.2
Tian, S.3
Xu, L.4
Kong, X.5
Li, Y.6
Dan, L.7
Hou, T.8
-
8
-
-
84945475267
-
Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening
-
[CrossRef][PubMed]
-
Ain, Q.U.; Aleksandrova, A.; Roessler, F.D.; Ballester, P.J. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 405–424.[CrossRef][PubMed]
-
(2015)
Wiley Interdiscip. Rev. Comput. Mol. Sci
, vol.5
, pp. 405-424
-
-
Ain, Q.U.1
Aleksandrova, A.2
Roessler, F.D.3
Ballester, P.J.4
-
9
-
-
85018596195
-
Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein–ligand interactions
-
[CrossRef][PubMed]
-
Li, Y.; Yang, J. Structural and sequence similarity makes a significant impact on machine-learning-based scoring functions for protein–ligand interactions. J. Chem. Inf. Model. 2017, 57, 1007–1012.[CrossRef][PubMed]
-
(2017)
J. Chem. Inf. Model
, vol.57
, pp. 1007-1012
-
-
Li, Y.1
Yang, J.2
-
10
-
-
66149103553
-
Comparative assessment of scoring functions on a diverse test Set
-
[CrossRef][PubMed]
-
Cheng, T.; Li, X.; Li, Y.; Liu, Z.; Wang, R. Comparative assessment of scoring functions on a diverse test Set. J. Chem. Inf. Model. 2009, 49, 1079–1093.[CrossRef][PubMed]
-
(2009)
J. Chem. Inf. Model
, vol.49
, pp. 1079-1093
-
-
Cheng, T.1
Li, X.2
Li, Y.3
Liu, Z.4
Wang, R.5
-
11
-
-
84923588607
-
Improving AutoDock Vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets
-
[CrossRef][PubMed]
-
Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P.J. Improving AutoDock Vina using random forest: The growing accuracy of binding affinity prediction by the effective exploitation of larger data sets. Mol. Inform. 2015, 34, 115–126.[CrossRef][PubMed]
-
(2015)
Mol. Inform
, vol.34
, pp. 115-126
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
12
-
-
0035478854
-
Random forests
-
[CrossRef]
-
Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32.[CrossRef]
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
13
-
-
84906829436
-
Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study
-
[CrossRef][PubMed]
-
Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P.J. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study. BMC Bioinform. 2014, 15, 291.[CrossRef][PubMed]
-
(2014)
BMC Bioinform
, vol.15
, pp. 291
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.J.4
-
14
-
-
84868679998
-
Machine learning scoring functions based on random forest and support vector regression
-
Ballester, P.J. Machine learning scoring functions based on random forest and support vector regression. Lect. Notes Bioinform. 2012, 7632, 14–25.
-
(2012)
Lect. Notes Bioinform
, vol.7632
, pp. 14-25
-
-
Ballester, P.J.1
-
15
-
-
84938280812
-
Low-quality structural and interaction data improves binding affinity prediction via random forest
-
[CrossRef][PubMed]
-
Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P. Low-quality structural and interaction data improves binding affinity prediction via random forest. Molecules 2015, 20, 10947–10962.[CrossRef][PubMed]
-
(2015)
Molecules
, vol.20
, pp. 10947-10962
-
-
Li, H.1
Leung, K.-S.2
Wong, M.-H.3
Ballester, P.4
-
16
-
-
85008692166
-
CSM-lig: A web server for assessing and comparing protein–small molecule affinities
-
[CrossRef][PubMed]
-
Pires, D.E.V.; Ascher, D.B. CSM-lig: A web server for assessing and comparing protein–small molecule affinities. Nucl. Acids Res. 2016, 44, W557–W561.[CrossRef][PubMed]
-
(2016)
Nucl. Acids Res
, vol.44
, pp. W557-W561
-
-
Pires, D.E.V.1
Ascher, D.B.2
-
17
-
-
85044292918
-
Combining SFCscore with Random Forests leads to improved affinity prediction for protein–ligand complexes
-
Zilian, D.; Sotriffer, C.A. Combining SFCscore with Random Forests leads to improved affinity prediction for protein–ligand complexes. J. Cheminform. 2013, 5, P27.
-
(2013)
J. Cheminform
, vol.5
, pp. 27
-
-
Zilian, D.1
Sotriffer, C.A.2
-
18
-
-
78649517318
-
Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets
-
[CrossRef][PubMed]
-
Kramer, C.; Gedeck, P. Leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets. J. Chem. Inf. Model. 2010, 50, 1961–1969.[CrossRef][PubMed]
-
(2010)
J. Chem. Inf. Model
, vol.50
, pp. 1961-1969
-
-
Kramer, C.1
Gedeck, P.2
-
19
-
-
80051984855
-
Comments on “leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets”: Significance for the validation of scoring functions
-
[CrossRef][PubMed]
-
Ballester, P.J.; Mitchell, J.B.O. Comments on “leave-cluster-out cross-validation is appropriate for scoring functions derived from diverse protein data sets”: Significance for the validation of scoring functions. J. Chem. Inf. Model. 2011, 51, 1739–1741.[CrossRef][PubMed]
-
(2011)
J. Chem. Inf. Model
, vol.51
, pp. 1739-1741
-
-
Ballester, P.J.1
Mitchell, J.B.O.2
-
20
-
-
84908242076
-
Beware of machine learning-based scoring functions-on the danger of developing black boxes
-
[CrossRef][PubMed]
-
Gabel, J.; Desaphy, J.; Rognan, D. Beware of machine learning-based scoring functions-on the danger of developing black boxes. J. Chem. Inf. Model. 2014, 54, 2807–2815.[CrossRef][PubMed]
-
(2014)
J. Chem. Inf. Model
, vol.54
, pp. 2807-2815
-
-
Gabel, J.1
Desaphy, J.2
Rognan, D.3
-
21
-
-
82355186299
-
NNScore 2.0: A neural-network receptor–ligand scoring function
-
Durrant, J.D.; McCammon, J.A. NNScore 2.0: A neural-network receptor–ligand scoring function. J. Chem. Inf. Model. 2011, 51, 2897–2903.
-
(2011)
J. Chem. Inf. Model
, vol.51
, pp. 2897-2903
-
-
Durrant, J.D.1
McCammon, J.A.2
-
22
-
-
84961761189
-
Novel scoring based distributed protein docking application to improve enrichment
-
[CrossRef][PubMed]
-
Pradeep, P.; Struble, C.; Neumann, T.; Sem, D.S.; Merrill, S.J. A novel scoring based distributed protein docking application to improve enrichment. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 12, 1464–1469.[CrossRef][PubMed]
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinform
, vol.12
, pp. 1464-1469
-
-
Pradeep, P.1
Struble, C.2
Neumann, T.3
Sem, D.S.4
Merrill, S.5
-
23
-
-
84986915838
-
Enhancing scoring performance of docking-based virtual screening through machine learning
-
[CrossRef]
-
Silva, G.C.; Simoes, C.J.V.; Carreiras, P.; Brito, R.M.M. enhancing scoring performance of docking-based virtual screening through machine learning. Curr. Bioinform. 2016, 11, 408–420.[CrossRef]
-
(2016)
Curr. Bioinform
, vol.11
, pp. 408-420
-
-
Silva, G.C.1
Simoes, C.J.V.2
Carreiras, P.3
Brito, R.4
-
24
-
-
85000454204
-
Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest
-
[CrossRef][PubMed]
-
Wang, C.; Zhang, Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 2017, 38, 169–177.[CrossRef][PubMed]
-
(2017)
J. Comput. Chem
, vol.38
, pp. 169-177
-
-
Wang, C.1
Zhang, Y.2
-
25
-
-
85008475964
-
Boosting docking-based virtual screening with deep learning
-
[CrossRef][PubMed]
-
Pereira, J.C.; Caffarena, E.R.; dos Santos, C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 2016, 56, 2495–2506.[CrossRef][PubMed]
-
(2016)
J. Chem. Inf. Model
, vol.56
, pp. 2495-2506
-
-
Pereira, J.C.1
Caffarena, E.R.2
Dos Santos, C.N.3
-
26
-
-
85027440798
-
Performance of machine-learning scoring functions in structure-based virtual screening
-
[CrossRef][PubMed]
-
Wójcikowski, M.; Ballester, P.J.; Siedlecki, P. Performance of machine-learning scoring functions in structure-based virtual screening. Sci. Rep. 2017, 7, 46710.[CrossRef][PubMed]
-
(2017)
Sci. Rep
, vol.7
, pp. 46710
-
-
Wójcikowski, M.1
Ballester, P.J.2
Siedlecki, P.3
|