메뉴 건너뛰기




Volumn 13, Issue 10, 2017, Pages 572-587

Regulation of hepatic glucose metabolism in health and disease

Author keywords

[No Author keywords available]

Indexed keywords

2,4 THIAZOLIDINEDIONE DERIVATIVE; ADOMEGLIVANT; ANTISENSE OLIGONUCLEOTIDE; BAY 27 9955; BIGUANIDE; DIHYDROXYACETONE PHOSPHATE; GALEGINE; GLUCAGON; GLUCAGON RECEPTOR ANTAGONIST; GLUCOKINASE; GLUCOSE; GLYCEROL; GLYCEROL 3 PHOSPHATE DEHYDROGENASE; GLYCOGEN; GLYCOGEN PHOSPHORYLASE; GLYCOGEN SYNTHASE; INSULIN; LACTATE DEHYDROGENASE; LIRAGLUTIDE; METFORMIN; MK 0893; NICOTINIC ACID; PHENFORMIN; PIOGLITAZONE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); ROSIGLITAZONE; GLYCOGEN LIVER LEVEL;

EID: 85030998024     PISSN: 17595029     EISSN: 17595037     Source Type: Journal    
DOI: 10.1038/nrendo.2017.80     Document Type: Review
Times cited : (767)

References (195)
  • 1
    • 0032969116 scopus 로고    scopus 로고
    • Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting
    • Ekberg, K. et?al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 48, 292-298 (1999).
    • (1999) Diabetes , vol.48 , pp. 292-298
    • Ekberg, K.1
  • 3
    • 78049259220 scopus 로고    scopus 로고
    • Pathogenesis of fasting and postprandial hyperglycemia in type?2 diabetes: Implications for therapy
    • Rizza, R. A. Pathogenesis of fasting and postprandial hyperglycemia in type?2 diabetes: implications for therapy. Diabetes 59, 2697-2707 (2010).
    • (2010) Diabetes , vol.59 , pp. 2697-2707
    • Rizza, R.A.1
  • 4
    • 0025771284 scopus 로고
    • Sources of carbon for hepatic glycogen synthesis in the conscious dog
    • Moore, M. C. et?al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J. Clin. Invest. 88, 578-587 (1991).
    • (1991) J. Clin. Invest. , vol.88 , pp. 578-587
    • Moore, M.C.1
  • 5
    • 0026320213 scopus 로고
    • Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR
    • Rothman, D. L., Magnusson, I., Katz, L. D., Shulman, R. G. & Shulman, G. I. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254, 573-576 (1991).
    • (1991) Science , vol.254 , pp. 573-576
    • Rothman, D.L.1    Magnusson, I.2    Katz, L.D.3    Shulman, R.G.4    Shulman, G.I.5
  • 6
    • 0027942076 scopus 로고
    • Glucose absorption and production following oral glucose: Comparison of compartmental and arteriovenous-difference methods
    • Mari, A., Wahren, J., DeFronzo, R. A. & Ferrannini, E. Glucose absorption and production following oral glucose: comparison of compartmental and arteriovenous-difference methods. Metabolism 43, 1419-1425 (1994).
    • (1994) Metabolism , vol.43 , pp. 1419-1425
    • Mari, A.1    Wahren, J.2    DeFronzo, R.A.3    Ferrannini, E.4
  • 7
    • 0020513612 scopus 로고
    • Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs
    • Ishida, T. et?al. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J. Clin. Invest. 72, 590-601 (1983).
    • (1983) J. Clin. Invest. , vol.72 , pp. 590-601
    • Ishida, T.1
  • 8
    • 0026607988 scopus 로고
    • Regulation of net hepatic glucose uptake in?vivo
    • Pagliassotti, M. J. & Cherrington, A. D. Regulation of net hepatic glucose uptake in?vivo. Annu. Rev. Physiol. 54, 847-860 (1992).
    • (1992) Annu. Rev. Physiol. , vol.54 , pp. 847-860
    • Pagliassotti, M.J.1    Cherrington, A.D.2
  • 9
    • 0021882037 scopus 로고
    • The disposal of an oral glucose load in healthy subjects
    • Ferrannini, E. et?al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes 34, 580-588 (1985).
    • (1985) A Quantitative Study. Diabetes , vol.34 , pp. 580-588
    • Ferrannini, E.1
  • 10
    • 0032520870 scopus 로고    scopus 로고
    • Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
    • Petersen, K. F., Laurent, D., Rothman, D. L., Cline, G. W. & Shulman, G. I. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J. Clin. Invest. 101, 1203-1209 (1998).
    • (1998) J. Clin. Invest. , vol.101 , pp. 1203-1209
    • Petersen, K.F.1    Laurent, D.2    Rothman, D.L.3    Cline, G.W.4    Shulman, G.I.5
  • 11
    • 79959962745 scopus 로고    scopus 로고
    • Hormonal regulation of hepatic glucose production in health and disease
    • Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9-19 (2011).
    • (2011) Cell Metab. , vol.14 , pp. 9-19
    • Lin, H.V.1    Accili, D.2
  • 12
    • 0031851426 scopus 로고    scopus 로고
    • The direct and indirect effects of insulin on hepatic glucose production in?vivo
    • Cherrington, A. D., Edgerton, D. & Sindelar, D. K. The direct and indirect effects of insulin on hepatic glucose production in?vivo. Diabetologia 41, 987-996 (1998).
    • (1998) Diabetologia , vol.41 , pp. 987-996
    • Cherrington, A.D.1    Edgerton, D.2    Sindelar, D.K.3
  • 13
    • 0026784985 scopus 로고
    • Insulin is required for the liver to respond to intraportal glucose delivery in the conscious dog
    • Pagliassotti, M. J., Moore, M. C., Neal, D. W. & Cherrington, A. D. Insulin is required for the liver to respond to intraportal glucose delivery in the conscious dog. Diabetes 41, 1247-1256 (1992).
    • (1992) Diabetes , vol.41 , pp. 1247-1256
    • Pagliassotti, M.J.1    Moore, M.C.2    Neal, D.W.3    Cherrington, A.D.4
  • 14
    • 70349624987 scopus 로고    scopus 로고
    • NIH experiment in centralized mouse phenotyping: The Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse
    • McGuinness, O. P., Ayala, J. E., Laughlin, M. R. & Wasserman, D. H. NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am. J. Physiol. Endocrinol. Metab. 297, E849-E855 (2009).
    • (2009) Am. J. Physiol. Endocrinol. Metab. , vol.297 , pp. E849-E855
    • McGuinness, O.P.1    Ayala, J.E.2    Laughlin, M.R.3    Wasserman, D.H.4
  • 15
    • 84924924178 scopus 로고    scopus 로고
    • The regulation of glucose metabolism: Implications and considerations for the assessment of glucose homeostasis in rodents
    • Kowalski, G. M. & Bruce, C. R. The regulation of glucose metabolism: implications and considerations for the assessment of glucose homeostasis in rodents. Am. J. Physiol. Endocrinol. Metab. 307, E859-E871 (2014).
    • (2014) Am. J. Physiol. Endocrinol. Metab. , vol.307 , pp. E859-E871
    • Kowalski, G.M.1    Bruce, C.R.2
  • 16
    • 0000331917 scopus 로고
    • Inhibition by insulin of hepatic glucose production in the normal dog
    • Steele, R. et?al. Inhibition by insulin of hepatic glucose production in the normal dog. Am. J. Physiol. 208, 301-306 (1965).
    • (1965) Am. J. Physiol. , vol.208 , pp. 301-306
    • Steele, R.1
  • 17
    • 17744405359 scopus 로고
    • Dose-response characteristics for effects of insulin on production and utilization of glucose in man
    • Rizza, R. A., Mandarino, L. J. & Gerich, J. E. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am. J. Physiol. 240, E630-E639 (1981).
    • (1981) Am. J. Physiol. , vol.240 , pp. E630-E639
    • Rizza, R.A.1    Mandarino, L.J.2    Gerich, J.E.3
  • 18
    • 9244264963 scopus 로고    scopus 로고
    • Effects of type?2 diabetes on the regulation of hepatic glucose metabolism
    • Basu, A., Shah, P., Nielsen, M., Basu, R. & Rizza, R. A. Effects of type?2 diabetes on the regulation of hepatic glucose metabolism. J. Investig. Med. 52, 366-374 (2004).
    • (2004) J. Investig. Med. , vol.52 , pp. 366-374
    • Basu, A.1    Shah, P.2    Nielsen, M.3    Basu, R.4    Rizza, R.A.5
  • 19
    • 0026488079 scopus 로고
    • Increased rate of gluconeogenesis in type?II diabetes mellitus. A 13C nuclear magnetic resonance study
    • Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G. & Shulman, G. I. Increased rate of gluconeogenesis in type?II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Invest. 90, 1323-1327 (1992).
    • (1992) J. Clin. Invest. , vol.90 , pp. 1323-1327
    • Magnusson, I.1    Rothman, D.L.2    Katz, L.D.3    Shulman, R.G.4    Shulman, G.I.5
  • 20
    • 84901944641 scopus 로고    scopus 로고
    • The role of hepatic lipids in hepatic insulin resistance and type?2 diabetes
    • Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type?2 diabetes. Nature 510, 84-91 (2014).
    • (2014) Nature , vol.510 , pp. 84-91
    • Perry, R.J.1    Samuel, V.T.2    Petersen, K.F.3    Shulman, G.I.4
  • 21
    • 80053627289 scopus 로고    scopus 로고
    • Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
    • Kumashiro, N. et?al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 108, 16381-16385 (2011).
    • (2011) Proc. Natl Acad. Sci. USA , vol.108 , pp. 16381-16385
    • Kumashiro, N.1
  • 22
    • 14644435731 scopus 로고    scopus 로고
    • Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type?2 diabetes
    • Petersen, K. F. et?al. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type?2 diabetes. Diabetes 54, 603-608 (2005).
    • (2005) Diabetes , vol.54 , pp. 603-608
    • Petersen, K.F.1
  • 23
    • 0036114844 scopus 로고    scopus 로고
    • Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy
    • Petersen, K. F. et?al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345-1350 (2002).
    • (2002) J. Clin. Invest. , vol.109 , pp. 1345-1350
    • Petersen, K.F.1
  • 24
    • 84924778498 scopus 로고    scopus 로고
    • Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats
    • Perry, R. J., Zhang, D., Zhang, X.?M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347, 1253-1256 (2015).
    • (2015) Science , vol.347 , pp. 1253-1256
    • Perry, R.J.1    Zhang, D.2    Zhang, X.M.3    Boyer, J.L.4    Shulman, G.I.5
  • 25
    • 84887432240 scopus 로고    scopus 로고
    • Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler
    • Perry, R. J. et?al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 18, 740-748 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 740-748
    • Perry, R.J.1
  • 27
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: Common threads and missing links
    • Samuel, V. T. & Shulman, G. I. Mechanisms for insulin resistance: common threads and missing links. Cell 148, 852-871 (2012).
    • (2012) Cell , vol.148 , pp. 852-871
    • Samuel, V.T.1    Shulman, G.I.2
  • 28
    • 84861647226 scopus 로고    scopus 로고
    • Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects
    • Magkos, F. et?al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology 142, 1444-1446.e2 (2012).
    • (2012) Gastroenterology , vol.142 , pp. 1444-1446e2
    • Magkos, F.1
  • 29
    • 84959104290 scopus 로고    scopus 로고
    • Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease
    • Luukkonen, P. K. et?al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J. Hepatol. 64, 1167-1175 (2016).
    • (2016) J. Hepatol. , vol.64 , pp. 1167-1175
    • Luukkonen, P.K.1
  • 30
    • 85020297753 scopus 로고    scopus 로고
    • Hepatic diacylglycerol-associated protein kinase C? Translocation links hepatic steatosis to hepatic insulin resistance in humans
    • ter Horst, K. W. et?al. Hepatic diacylglycerol-associated protein kinase C? translocation links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep. 19, 1997-2004 (2017).
    • (2017) Cell Rep. , vol.19 , pp. 1997-2004
    • Ter Horst, K.W.1
  • 31
    • 33847404482 scopus 로고    scopus 로고
    • Inhibition of protein kinase C? Prevents hepatic insulin resistance in nonalcoholic fatty liver disease
    • Samuel, V. T. et?al. Inhibition of protein kinase C? prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J. Clin. Invest. 117, 739-745 (2007).
    • (2007) J. Clin. Invest. , vol.117 , pp. 739-745
    • Samuel, V.T.1
  • 32
    • 3543029821 scopus 로고    scopus 로고
    • Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
    • Samuel, V. T. et?al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J. Biol. Chem. 279, 32345-32353 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 32345-32353
    • Samuel, V.T.1
  • 33
    • 84994613956 scopus 로고    scopus 로고
    • Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance
    • Petersen, M. C. et?al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J. Clin. Invest. 126, 4361-4371 (2016).
    • (2016) J. Clin. Invest. , vol.126 , pp. 4361-4371
    • Petersen, M.C.1
  • 35
    • 85011636628 scopus 로고    scopus 로고
    • Integrin-linked kinase is necessary for the development of diet-induced hepatic insulin resistance
    • Williams, A. S. et?al. Integrin-linked kinase is necessary for the development of diet-induced hepatic insulin resistance. Diabetes 66, 325-334 (2017).
    • (2017) Diabetes , vol.66 , pp. 325-334
    • Williams, A.S.1
  • 36
    • 9244220626 scopus 로고    scopus 로고
    • Gluconeogenesis and glycogenolysis in health and diabetes
    • Boden, G. Gluconeogenesis and glycogenolysis in health and diabetes. J. Investig. Med. 52, 375-378 (2004).
    • (2004) J. Investig. Med. , vol.52 , pp. 375-378
    • Boden, G.1
  • 37
    • 0032905885 scopus 로고    scopus 로고
    • The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects
    • Chen, X., Iqbal, N. & Boden, G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J. Clin. Invest. 103, 365-372 (1999).
    • (1999) J. Clin. Invest. , vol.103 , pp. 365-372
    • Chen, X.1    Iqbal, N.2    Boden, G.3
  • 38
    • 0031695579 scopus 로고    scopus 로고
    • Gluconeogenesis and the Cori cycle in 12-, 20-, and 40? H?Fasted humans
    • Katz, J. & Tayek, J. A. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40? h?fasted humans. Am. J. Physiol. 275, E537-E542 (1998).
    • (1998) Am. J. Physiol. , vol.275 , pp. E537-E542
    • Katz, J.1    Tayek, J.A.2
  • 39
    • 0030017082 scopus 로고    scopus 로고
    • Contributions of gluconeogenesis to glucose production in the fasted state
    • Landau, B. R. et?al. Contributions of gluconeogenesis to glucose production in the fasted state. J. Clin. Invest. 98, 378-385 (1996).
    • (1996) J. Clin. Invest. , vol.98 , pp. 378-385
    • Landau, B.R.1
  • 40
    • 0001563150 scopus 로고
    • The relation of insulin to liver metabolism
    • Levine, R. & Fritz, I. B. The relation of insulin to liver metabolism. Diabetes 5, 209-219 (1956).
    • (1956) Diabetes , vol.5 , pp. 209-219
    • Levine, R.1    Fritz, I.B.2
  • 41
    • 84867123030 scopus 로고    scopus 로고
    • Glucagon secretion and signaling in the development of diabetes
    • Gaisano, H., MacDonald, P. E. & Vranic, M. Glucagon secretion and signaling in the development of diabetes. Front. Physiol. 3, 349 (2012).
    • (2012) Front. Physiol. , vol.3 , pp. 349
    • Gaisano, H.1    MacDonald, P.E.2    Vranic, M.3
  • 42
    • 84975806532 scopus 로고    scopus 로고
    • Clinical trials, triumphs, and tribulations of glucagon receptor antagonists
    • Pearson, M. J., Unger, R. H. & Holland, W. L. Clinical trials, triumphs, and tribulations of glucagon receptor antagonists. Diabetes Care 39, 1075-1077 (2016).
    • (2016) Diabetes Care , vol.39 , pp. 1075-1077
    • Pearson, M.J.1    Unger, R.H.2    Holland, W.L.3
  • 43
    • 0025297310 scopus 로고
    • Peripheral effects of insulin dominate suppression of fasting hepatic glucose production
    • Ader, M. & Bergman, R. N. Peripheral effects of insulin dominate suppression of fasting hepatic glucose production. Am. J. Physiol. 258, E1020-E1032 (1990).
    • (1990) Am. J. Physiol. , vol.258 , pp. E1020-E1032
    • Ader, M.1    Bergman, R.N.2
  • 44
    • 0029936779 scopus 로고    scopus 로고
    • Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans
    • Lewis, G. F., Zinman, B., Groenewoud, Y., Vranic, M. & Giacca, A. Hepatic glucose production is regulated both by direct hepatic and extrahepatic effects of insulin in humans. Diabetes 45, 454-462 (1996).
    • (1996) Diabetes , vol.45 , pp. 454-462
    • Lewis, G.F.1    Zinman, B.2    Groenewoud, Y.3    Vranic, M.4    Giacca, A.5
  • 45
    • 0029969117 scopus 로고    scopus 로고
    • A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog
    • Sindelar, D. K., Balcom, J. H., Chu, C. A., Neal, D. W. & Cherrington, A. D. A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes 45, 1594-1604 (1996).
    • (1996) Diabetes , vol.45 , pp. 1594-1604
    • Sindelar, D.K.1    Balcom, J.H.2    Chu, C.A.3    Neal, D.W.4    Cherrington, A.D.5
  • 46
    • 0023546855 scopus 로고
    • Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects
    • Prager, R., Wallace, P. & Olefsky, J. M. Direct and indirect effects of insulin to inhibit hepatic glucose output in obese subjects. Diabetes 36, 607-611 (1987).
    • (1987) Diabetes , vol.36 , pp. 607-611
    • Prager, R.1    Wallace, P.2    Olefsky, J.M.3
  • 47
    • 0037317868 scopus 로고    scopus 로고
    • Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis
    • Staehr, P. et?al. Effects of free fatty acids per se on glucose production, gluconeogenesis, and glycogenolysis. Diabetes 52, 260-267 (2003).
    • (2003) Diabetes , vol.52 , pp. 260-267
    • Staehr, P.1
  • 48
    • 0030975131 scopus 로고    scopus 로고
    • Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans
    • Lewis, G. F., Vranic, M., Harley, P. & Giacca, A. Fatty acids mediate the acute extrahepatic effects of insulin on hepatic glucose production in humans. Diabetes 46, 1111-1119 (1997).
    • (1997) Diabetes , vol.46 , pp. 1111-1119
    • Lewis, G.F.1    Vranic, M.2    Harley, P.3    Giacca, A.4
  • 49
    • 0030969441 scopus 로고    scopus 로고
    • The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog
    • Sindelar, D. K. et?al. The role of fatty acids in mediating the effects of peripheral insulin on hepatic glucose production in the conscious dog. Diabetes 46, 187-196 (1997).
    • (1997) Diabetes , vol.46 , pp. 187-196
    • Sindelar, D.K.1
  • 50
    • 0029861999 scopus 로고    scopus 로고
    • Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs
    • Rebrin, K., Steil, G. M., Mittelman, S. D. & Bergman, R. N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 98, 741-749 (1996).
    • (1996) J. Clin. Invest. , vol.98 , pp. 741-749
    • Rebrin, K.1    Steil, G.M.2    Mittelman, S.D.3    Bergman, R.N.4
  • 51
    • 84922709227 scopus 로고    scopus 로고
    • Hepatic acetyl coa links adipose tissue inflammation to hepatic insulin resistance and type?2 diabetes
    • Perry, R. J. et?al. Hepatic acetyl coa links adipose tissue inflammation to hepatic insulin resistance and type?2 diabetes. Cell 160, 745-758 (2015).
    • (2015) Cell , vol.160 , pp. 745-758
    • Perry, R.J.1
  • 52
    • 84904000735 scopus 로고    scopus 로고
    • Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
    • Perry, R. J. et?al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat. Med. 20, 759-763 (2014).
    • (2014) Nat. Med. , vol.20 , pp. 759-763
    • Perry, R.J.1
  • 53
    • 85014128257 scopus 로고    scopus 로고
    • Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis
    • Perry, R. J., Peng, L. & Shulman, G. I. Mechanism for leptin's acute insulin-independent effect to reverse diabetic ketoacidosis. J. Clin. Invest. 127, 657-669 (2017).
    • (2017) J. Clin. Invest. , vol.127 , pp. 657-669
    • Perry, R.J.1    Peng, L.2    Shulman, G.I.3
  • 54
    • 0032810949 scopus 로고    scopus 로고
    • A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in?vivo
    • Previs, S. F., Cline, G. W. & Shulman, G. I. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in?vivo. Am. J. Physiol. 277, E154-E160 (1999).
    • (1999) Am. J. Physiol. , vol.277 , pp. E154-E160
    • Previs, S.F.1    Cline, G.W.2    Shulman, G.I.3
  • 55
    • 0000635987 scopus 로고
    • Acceleration of renal gluconeogenesis by ketone bodies and fatty acids
    • Krebs, H. A., Speake, R. N. & Hems, R. Acceleration of renal gluconeogenesis by ketone bodies and fatty acids. Biochem. J. 94, 712-720 (1965).
    • (1965) Biochem. J. , vol.94 , pp. 712-720
    • Krebs, H.A.1    Speake, R.N.2    Hems, R.3
  • 57
    • 0013923479 scopus 로고
    • Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver
    • Williamson, J. R., Kreisberg, R. A. & Felts, P. W. Mechanism for the stimulation of gluconeogenesis by fatty acids in perfused rat liver. Proc. Natl Acad. Sci. USA 56, 247-254 (1966).
    • (1966) Proc. Natl Acad. Sci. USA , vol.56 , pp. 247-254
    • Williamson, J.R.1    Kreisberg, R.A.2    Felts, P.W.3
  • 58
    • 84857934301 scopus 로고    scopus 로고
    • Insulin regulates liver metabolism in?vivo in the absence of hepatic Akt and Foxo1
    • Lu, M. et?al. Insulin regulates liver metabolism in?vivo in the absence of hepatic Akt and Foxo1. Nat. Med. 18, 388-395 (2012).
    • (2012) Nat. Med. , vol.18 , pp. 388-395
    • Lu, M.1
  • 59
    • 18244395309 scopus 로고    scopus 로고
    • Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice
    • Buettner, C. et?al. Severe impairment in liver insulin signaling fails to alter hepatic insulin action in conscious mice. J. Clin. Invest. 115, 1306-1313 (2005).
    • (2005) J. Clin. Invest. , vol.115 , pp. 1306-1313
    • Buettner, C.1
  • 60
    • 18244384200 scopus 로고    scopus 로고
    • Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action
    • Okamoto, H., Obici, S., Accili, D. & Rossetti, L. Restoration of liver insulin signaling in Insr knockout mice fails to normalize hepatic insulin action. J. Clin. Invest. 115, 1314-1322 (2005).
    • (2005) J. Clin. Invest. , vol.115 , pp. 1314-1322
    • Okamoto, H.1    Obici, S.2    Accili, D.3    Rossetti, L.4
  • 61
    • 0023153344 scopus 로고
    • Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus
    • Chen, Y. D., Golay, A., Swislocki, A. L. & Reaven, G. M. Resistance to insulin suppression of plasma free fatty acid concentrations and insulin stimulation of glucose uptake in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 17-21 (1987).
    • (1987) J. Clin. Endocrinol. Metab. , vol.64 , pp. 17-21
    • Chen, Y.D.1    Golay, A.2    Swislocki, A.L.3    Reaven, G.M.4
  • 62
    • 0022388940 scopus 로고
    • Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: Evidence for insulin resistance
    • Fraze, E. et?al. Ambient plasma free fatty acid concentrations in noninsulin-dependent diabetes mellitus: evidence for insulin resistance. J. Clin. Endocrinol. Metab. 61, 807-811 (1985).
    • (1985) J. Clin. Endocrinol. Metab. , vol.61 , pp. 807-811
    • Fraze, E.1
  • 63
    • 0024244339 scopus 로고
    • Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM
    • Reaven, G. M., Hollenbeck, C., Jeng, C. Y., Wu, M. S. & Chen, Y. D. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37, 1020-1024 (1988).
    • (1988) Diabetes , vol.37 , pp. 1020-1024
    • Reaven, G.M.1    Hollenbeck, C.2    Jeng, C.Y.3    Wu, M.S.4    Chen, Y.D.5
  • 64
    • 0023189066 scopus 로고
    • Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals
    • Golay, A., Swislocki, A. L., Chen, Y. D. & Reaven, G. M. Relationships between plasma-free fatty acid concentration, endogenous glucose production, and fasting hyperglycemia in normal and non-insulin-dependent diabetic individuals. Metabolism 36, 692-696 (1987).
    • (1987) Metabolism , vol.36 , pp. 692-696
    • Golay, A.1    Swislocki, A.L.2    Chen, Y.D.3    Reaven, G.M.4
  • 65
    • 0023226232 scopus 로고
    • Insulin suppression of plasma-free fatty acid concentration in normal individuals and patients with type?2 (non-insulin-dependent) diabetes
    • Swislocki, A. L., Chen, Y. D., Golay, A., Chang, M. O. & Reaven, G. M. Insulin suppression of plasma-free fatty acid concentration in normal individuals and patients with type?2 (non-insulin-dependent) diabetes. Diabetologia 30, 622-626 (1987).
    • (1987) Diabetologia , vol.30 , pp. 622-626
    • Swislocki, A.L.1    Chen, Y.D.2    Golay, A.3    Chang, M.O.4    Reaven, G.M.5
  • 66
    • 0030759095 scopus 로고    scopus 로고
    • The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: Results of the Paris Prospective Study
    • Charles, M. A. et?al. The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40, 1101-1106 (1997).
    • (1997) Diabetologia , vol.40 , pp. 1101-1106
    • Charles, M.A.1
  • 67
    • 0029049346 scopus 로고
    • A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM
    • Paolisso, G. et?al. A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38, 1213-1217 (1995).
    • (1995) Diabetologia , vol.38 , pp. 1213-1217
    • Paolisso, G.1
  • 68
    • 84890120647 scopus 로고    scopus 로고
    • Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type?2 diabetic men and men with normal glucose tolerance
    • Jocken, J. W. E. et?al. Insulin-mediated suppression of lipolysis in adipose tissue and skeletal muscle of obese type?2 diabetic men and men with normal glucose tolerance. Diabetologia 56, 2255-2265 (2013).
    • (2013) Diabetologia , vol.56 , pp. 2255-2265
    • Jocken, J.W.E.1
  • 69
    • 0037405967 scopus 로고    scopus 로고
    • In situ evidence that peripheral insulin resistance in adolescents with poorly controlled type?1 diabetes is associated with impaired suppression of lipolysis: A microdialysis study
    • Heptulla, R. A. et?al. In situ evidence that peripheral insulin resistance in adolescents with poorly controlled type?1 diabetes is associated with impaired suppression of lipolysis: a microdialysis study. Pediatr. Res. 53, 830-835 (2003).
    • (2003) Pediatr. Res. , vol.53 , pp. 830-835
    • Heptulla, R.A.1
  • 70
    • 0028891422 scopus 로고
    • Insulin resistance with respect to lipolysis in non-diabetic relatives of European patients with type?2 diabetes
    • Gelding, S. V., Coldham, N., Niththyananthan, R., Anyaoku, V. & Johnston, D. G. Insulin resistance with respect to lipolysis in non-diabetic relatives of European patients with type?2 diabetes. Diabet. Med. 12, 66-73 (1995).
    • (1995) Diabet. Med. , vol.12 , pp. 66-73
    • Gelding, S.V.1    Coldham, N.2    Niththyananthan, R.3    Anyaoku, V.4    Johnston, D.G.5
  • 71
    • 0031958586 scopus 로고    scopus 로고
    • Effect of insulin on glycerol production in obese adolescents
    • Robinson, C. et?al. Effect of insulin on glycerol production in obese adolescents. Am. J. Physiol. 274, E737-E743 (1998).
    • (1998) Am. J. Physiol. , vol.274 , pp. E737-E743
    • Robinson, C.1
  • 72
    • 0026646940 scopus 로고
    • Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus
    • Puhakainen, I., Koivisto, V. A. & Yki-Järvinen, H. Lipolysis and gluconeogenesis from glycerol are increased in patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 75, 789-794 (1992).
    • (1992) J. Clin. Endocrinol. Metab. , vol.75 , pp. 789-794
    • Puhakainen, I.1    Koivisto, V.A.2    Yki-Järvinen, H.3
  • 73
    • 0026518355 scopus 로고
    • Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus
    • Nurjhan, N., Consoli, A. & Gerich, J. Increased lipolysis and its consequences on gluconeogenesis in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 89, 169-175 (1992).
    • (1992) J. Clin. Invest. , vol.89 , pp. 169-175
    • Nurjhan, N.1    Consoli, A.2    Gerich, J.3
  • 75
    • 84960189946 scopus 로고    scopus 로고
    • Approaches to glycemic treatment
    • American Diabetes Association
    • American Diabetes Association. Approaches to glycemic treatment. Diabetes Care 39, S52-S59 (2016).
    • (2016) Diabetes Care , vol.39 , pp. S52-S59
  • 76
    • 0033673203 scopus 로고    scopus 로고
    • Mechanism by which metformin reduces glucose production in type?2 diabetes
    • Hundal, R. S. et?al. Mechanism by which metformin reduces glucose production in type?2 diabetes. Diabetes 49, 2063-2069 (2000).
    • (2000) Diabetes , vol.49 , pp. 2063-2069
    • Hundal, R.S.1
  • 77
    • 0032568257 scopus 로고    scopus 로고
    • Efficacy and metabolic effects of metformin and troglitazone in type?II diabetes mellitus
    • Inzucchi, S. E. et?al. Efficacy and metabolic effects of metformin and troglitazone in type?II diabetes mellitus. N. Engl. J. Med. 338, 867-872 (1998).
    • (1998) N. Engl. J. Med. , vol.338 , pp. 867-872
    • Inzucchi, S.E.1
  • 78
    • 0034773404 scopus 로고    scopus 로고
    • Role of AMP-activated protein kinase in mechanism of metformin action
    • Zhou, G. et?al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167-1174 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1167-1174
    • Zhou, G.1
  • 79
    • 28844433635 scopus 로고    scopus 로고
    • The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin
    • Shaw, R. J. et?al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642-1646 (2005).
    • (2005) Science , vol.310 , pp. 1642-1646
    • Shaw, R.J.1
  • 80
    • 65549136655 scopus 로고    scopus 로고
    • Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
    • He, L. et?al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635-646 (2009).
    • (2009) Cell , vol.137 , pp. 635-646
    • He, L.1
  • 81
    • 84889887123 scopus 로고    scopus 로고
    • Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin
    • Fullerton, M. D. et?al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649-1654 (2013).
    • (2013) Nat. Med. , vol.19 , pp. 1649-1654
    • Fullerton, M.D.1
  • 82
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • Foretz, M. et?al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355-2369 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 2355-2369
    • Foretz, M.1
  • 83
    • 84903524608 scopus 로고    scopus 로고
    • Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase
    • Madiraju, A. K. et?al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546 (2014).
    • (2014) Nature , vol.510 , pp. 542-546
    • Madiraju, A.K.1
  • 84
    • 84905404389 scopus 로고    scopus 로고
    • Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK)
    • Cao, J. et?al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 20435-20446 (2014).
    • (2014) J. Biol. Chem. , vol.289 , pp. 20435-20446
    • Cao, J.1
  • 85
    • 0036324142 scopus 로고    scopus 로고
    • The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism
    • Hawley, S. A., Gadalla, A. E., Olsen, G. S. & Hardie, D. G. The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420-2425 (2002).
    • (2002) Diabetes , vol.51 , pp. 2420-2425
    • Hawley, S.A.1    Gadalla, A.E.2    Olsen, G.S.3    Hardie, D.G.4
  • 86
    • 85009495519 scopus 로고    scopus 로고
    • Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex
    • Howell, J. J. et?al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463-471 (2017).
    • (2017) Cell Metab. , vol.25 , pp. 463-471
    • Howell, J.J.1
  • 87
    • 0034614420 scopus 로고    scopus 로고
    • Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex i
    • El?Mir, M. Y. et?al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223-228 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 223-228
    • Elmir, M.Y.1
  • 88
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: A nutrient and energy sensor that maintains energy homeostasis
    • Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251-262 (2012).
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 89
    • 84873707522 scopus 로고    scopus 로고
    • Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
    • Miller, R. A. et?al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256-260 (2013).
    • (2013) Nature , vol.494 , pp. 256-260
    • Miller, R.A.1
  • 90
    • 84964933150 scopus 로고    scopus 로고
    • Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes
    • Konopka, A. R. et?al. Hyperglucagonemia mitigates the effect of metformin on glucose production in prediabetes. Cell Rep. 15, 1394-1400 (2016).
    • (2016) Cell Rep. , vol.15 , pp. 1394-1400
    • Konopka, A.R.1
  • 91
    • 84905757105 scopus 로고    scopus 로고
    • Metformin - Mode of action and clinical implications for diabetes and cancer
    • Pernicova, I. & Korbonits, M. Metformin - mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 10, 143-156 (2014).
    • (2014) Nat. Rev. Endocrinol. , vol.10 , pp. 143-156
    • Pernicova, I.1    Korbonits, M.2
  • 92
    • 0037031846 scopus 로고    scopus 로고
    • Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase
    • Brown, L. J. et?al. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J. Biol. Chem. 277, 32892-32898 (2002).
    • (2002) J. Biol. Chem. , vol.277 , pp. 32892-32898
    • Brown, L.J.1
  • 93
    • 34548337267 scopus 로고    scopus 로고
    • Citrin/mitochondrial glycerol?3?Phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency
    • Saheki, T. et?al. Citrin/mitochondrial glycerol?3?phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J. Biol. Chem. 282, 25041-25052 (2007).
    • (2007) J. Biol. Chem. , vol.282 , pp. 25041-25052
    • Saheki, T.1
  • 94
    • 84905718750 scopus 로고    scopus 로고
    • Control of gluconeogenesis by metformin: Does redox trump energy charge?
    • Baur, J. A. & Birnbaum, M. J. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab. 20, 197-199 (2014).
    • (2014) Cell Metab. , vol.20 , pp. 197-199
    • Baur, J.A.1    Birnbaum, M.J.2
  • 95
    • 0014429898 scopus 로고
    • Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3?,5 monophosphate on gluconeogenesis in the perfused rat liver.
    • Exton, J. H. & Park, C. R. Control of gluconeogenesis in liver. II. Effects of glucagon, catecholamines, and adenosine 3?,5 monophosphate on gluconeogenesis in the perfused rat liver. J. Biol. Chem. 243, 4189-4196 (1968).
    • (1968) J. Biol. Chem. , vol.243 , pp. 4189-4196
    • Exton, J.H.1    Park, C.R.2
  • 96
    • 84906971483 scopus 로고    scopus 로고
    • Hyperglycemia in rodent models of type?2 diabetes requires insulin-resistant alpha cells
    • Lee, Y. et?al. Hyperglycemia in rodent models of type?2 diabetes requires insulin-resistant alpha cells. Proc. Natl Acad. Sci. USA 111, 13217-13222 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 13217-13222
    • Lee, Y.1
  • 97
    • 0017154247 scopus 로고
    • Hepatic pyruvate kinase Regulation by glucagon, cyclic adenosine 35monophosphate, and insulin in the perfused rat liver
    • Blair, J. B., Cimbala, M. A., Foster, J. L. & Morgan, R. A. Hepatic pyruvate kinase. Regulation by glucagon, cyclic adenosine 35monophosphate, and insulin in the perfused rat liver. J. Biol. Chem. 251, 3756-3762 (1976).
    • (1976) J. Biol. Chem. , vol.251 , pp. 3756-3762
    • Blair, J.B.1    Cimbala, M.A.2    Foster, J.L.3    Morgan, R.A.4
  • 98
    • 4344618856 scopus 로고    scopus 로고
    • 6?Phosphofructo?2?Kinase/fructose?2,6?Bisphosphatase: Head?To?Head with a bifunctional enzyme that controls glycolysis
    • Rider, M. H. et?al. 6?Phosphofructo?2?kinase/fructose?2,6?bisphosphatase: head?to?head with a bifunctional enzyme that controls glycolysis. Biochem. J. 381, 561-579 (2004).
    • (2004) Biochem. J. , vol.381 , pp. 561-579
    • Rider, M.H.1
  • 99
    • 33748451150 scopus 로고    scopus 로고
    • Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia
    • Wu, C. et?al. Perturbation of glucose flux in the liver by decreasing F26P2 levels causes hepatic insulin resistance and hyperglycemia. Am. J. Physiol. Endocrinol. Metab. 291, E536-E543 (2006).
    • (2006) Am. J. Physiol. Endocrinol. Metab. , vol.291 , pp. E536-E543
    • Wu, C.1
  • 100
    • 84896054397 scopus 로고    scopus 로고
    • Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6?Phosphofructo 2?Kinase/fructose 2,6?Bisphosphatase?2 and the glucokinase regulatory protein
    • Cullen, K. S., Al?Oanzi, Z. H., O'Harte, F. P. M., Agius, L. & Arden, C. Glucagon induces translocation of glucokinase from the cytoplasm to the nucleus of hepatocytes by transfer between 6?phosphofructo 2?kinase/fructose 2,6?bisphosphatase?2 and the glucokinase regulatory protein. Biochim. Biophys. Acta 1843, 1123-1134 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 1123-1134
    • Cullen, K.S.1    Aloanzi, Z.H.2    O'Harte, F.P.M.3    Agius, L.4    Arden, C.5
  • 101
    • 84963627618 scopus 로고    scopus 로고
    • Asprosin, a fasting-induced glucogenic protein hormone
    • Romere, C. et?al. Asprosin, a fasting-induced glucogenic protein hormone. Cell 165, 566-579 (2016).
    • (2016) Cell , vol.165 , pp. 566-579
    • Romere, C.1
  • 102
    • 73249136971 scopus 로고    scopus 로고
    • Effects of insulin on the metabolic control of hepatic gluconeogenesis in?vivo
    • Edgerton, D. S. et?al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in?vivo. Diabetes 58, 2766-2775 (2009).
    • (2009) Diabetes , vol.58 , pp. 2766-2775
    • Edgerton, D.S.1
  • 103
    • 77953216482 scopus 로고    scopus 로고
    • Molecular characterization of insulin-mediated suppression of hepatic glucose production in?vivo
    • Ramnanan, C. J. et?al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in?vivo. Diabetes 59, 1302-1311 (2010).
    • (2010) Diabetes , vol.59 , pp. 1302-1311
    • Ramnanan, C.J.1
  • 104
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC?1? Interaction
    • Puigserver, P. et?al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC?1? interaction. Nature 423, 550-555 (2003).
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 105
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC?1
    • Yoon, J. C. et?al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC?1. Nature 413, 131-138 (2001).
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 106
    • 0035185021 scopus 로고    scopus 로고
    • The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose?6?Phosphatase expression
    • Nakae, J., Kitamura, T., Silver, D. L. & Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose?6?phosphatase expression. J. Clin. Invest. 108, 1359-1367 (2001).
    • (2001) J. Clin. Invest. , vol.108 , pp. 1359-1367
    • Nakae, J.1    Kitamura, T.2    Silver, D.L.3    Accili, D.4
  • 107
    • 0034680839 scopus 로고    scopus 로고
    • Regulation of glucose?6?Phosphatase gene expression by protein kinase B? And the forkhead transcription factor FKHR Evidence for insulin response unit-dependent and-independent effects of insulin on promoter activity
    • Schmoll, D. et?al. Regulation of glucose?6?phosphatase gene expression by protein kinase B? and the forkhead transcription factor FKHR. Evidence for insulin response unit-dependent and-independent effects of insulin on promoter activity. J. Biol. Chem. 275, 36324-36333 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 36324-36333
    • Schmoll, D.1
  • 108
    • 33748312093 scopus 로고    scopus 로고
    • Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism
    • Matsumoto, M. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J. Clin. Invest. 116, 2464-2472 (2006).
    • (2006) J. Clin. Invest. , vol.116 , pp. 2464-2472
    • Matsumoto, M.1
  • 109
    • 78149272381 scopus 로고    scopus 로고
    • FoxOs function synergistically to promote glucose production
    • Haeusler, R. A., Kaestner, K. H. & Accili, D. FoxOs function synergistically to promote glucose production. J. Biol. Chem. 285, 35245-35248 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 35245-35248
    • Haeusler, R.A.1    Kaestner, K.H.2    Accili, D.3
  • 110
    • 84929190974 scopus 로고    scopus 로고
    • FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization
    • O.?Sullivan, I. et?al. FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nat. Commun. 6, 7079 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7079
    • Sullivan, I.O.1
  • 111
    • 84929148324 scopus 로고    scopus 로고
    • Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in?vivo
    • Titchenell, P. M., Chu, Q., Monks, B. R. & Birnbaum, M. J. Hepatic insulin signalling is dispensable for suppression of glucose output by insulin in?vivo. Nat. Commun. 6, 7078 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 7078
    • Titchenell, P.M.1    Chu, Q.2    Monks, B.R.3    Birnbaum, M.J.4
  • 112
    • 67749142348 scopus 로고    scopus 로고
    • Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type?2 diabetes
    • Samuel, V. T. et?al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with type?2 diabetes. Proc. Natl Acad. Sci. USA 106, 12121-12126 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 12121-12126
    • Samuel, V.T.1
  • 113
    • 27144506185 scopus 로고    scopus 로고
    • The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
    • Koo, S.?H. et?al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
    • (2005) Nature , vol.437 , pp. 1109-1111
    • Koo, S.H.1
  • 114
    • 34548831102 scopus 로고    scopus 로고
    • Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2
    • Dentin, R. et?al. Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-369 (2007).
    • (2007) Nature , vol.449 , pp. 366-369
    • Dentin, R.1
  • 115
    • 84860510820 scopus 로고    scopus 로고
    • Inositol?1,4,5?Trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes
    • Wang, Y. et?al. Inositol?1,4,5?trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485, 128-132 (2012).
    • (2012) Nature , vol.485 , pp. 128-132
    • Wang, Y.1
  • 116
    • 56249100986 scopus 로고    scopus 로고
    • A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange
    • Liu, Y. et?al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456, 269-273 (2008).
    • (2008) Nature , vol.456 , pp. 269-273
    • Liu, Y.1
  • 117
    • 77649253906 scopus 로고    scopus 로고
    • Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity
    • Wang, Y. et?al. Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc. Natl Acad. Sci. USA 107, 3087-3092 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , pp. 3087-3092
    • Wang, Y.1
  • 118
    • 84944880405 scopus 로고    scopus 로고
    • Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2
    • Hogan, M. F. et?al. Hepatic insulin resistance following chronic activation of the CREB coactivator CRTC2. J. Biol. Chem. 290, 25997-26006 (2015).
    • (2015) J. Biol. Chem. , vol.290 , pp. 25997-26006
    • Hogan, M.F.1
  • 119
    • 84997784987 scopus 로고    scopus 로고
    • Circadian time signatures of fitness and disease
    • Bass, J. & Lazar, M. A. Circadian time signatures of fitness and disease. Science 354, 994-999 (2016).
    • (2016) Science , vol.354 , pp. 994-999
    • Bass, J.1    Lazar, M.A.2
  • 120
    • 77957821693 scopus 로고    scopus 로고
    • Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
    • Zhang, E. E. et?al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat. Med. 16, 1152-1156 (2010).
    • (2010) Nat. Med. , vol.16 , pp. 1152-1156
    • Zhang, E.E.1
  • 121
    • 84255206549 scopus 로고    scopus 로고
    • Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
    • Lamia, K. A. et?al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552-556 (2011).
    • (2011) Nature , vol.480 , pp. 552-556
    • Lamia, K.A.1
  • 122
    • 54449085416 scopus 로고    scopus 로고
    • Physiological significance of a peripheral tissue circadian clock
    • Lamia, K. A., Storch, K.?F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172-15177 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 15172-15177
    • Lamia, K.A.1    Storch, K.F.2    Weitz, C.J.3
  • 123
    • 84862025421 scopus 로고    scopus 로고
    • Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
    • Sun, Z. et?al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat. Med. 18, 934-942 (2012).
    • (2012) Nat. Med. , vol.18 , pp. 934-942
    • Sun, Z.1
  • 124
    • 33947580628 scopus 로고    scopus 로고
    • Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver
    • Burgess, S. C. et?al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5, 313-320 (2007).
    • (2007) Cell Metab. , vol.5 , pp. 313-320
    • Burgess, S.C.1
  • 125
    • 0033979899 scopus 로고    scopus 로고
    • Correction of glycogen storage disease type?1a in a mouse model by gene therapy
    • Zingone, A. et?al. Correction of glycogen storage disease type?1a in a mouse model by gene therapy. J. Biol. Chem. 275, 828-832 (2000).
    • (2000) J. Biol. Chem. , vol.275 , pp. 828-832
    • Zingone, A.1
  • 127
    • 84887347937 scopus 로고    scopus 로고
    • Cooperation between brain and islet in glucose homeostasis and diabetes
    • Schwartz, M. W. et?al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503, 59-66 (2013).
    • (2013) Nature , vol.503 , pp. 59-66
    • Schwartz, M.W.1
  • 128
    • 84869050741 scopus 로고    scopus 로고
    • Central nervous system control of metabolism
    • Myers, M. G. & Olson, D. P. Central nervous system control of metabolism. Nature 491, 357-363 (2012).
    • (2012) Nature , vol.491 , pp. 357-363
    • Myers, M.G.1    Olson, D.P.2
  • 129
    • 84960324641 scopus 로고    scopus 로고
    • Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis
    • Perry, R. J., Petersen, K. F. & Shulman, G. I. Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis. Diabetologia 59, 933-937 (2016).
    • (2016) Diabetologia , vol.59 , pp. 933-937
    • Perry, R.J.1    Petersen, K.F.2    Shulman, G.I.3
  • 130
    • 0023636719 scopus 로고
    • Blood-brain barrier transcytosis of insulin in developing rabbits
    • Duffy, K. R. & Pardridge, W. M. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420, 32-38 (1987).
    • (1987) Brain Res. , vol.420 , pp. 32-38
    • Duffy, K.R.1    Pardridge, W.M.2
  • 132
    • 0034703229 scopus 로고    scopus 로고
    • Role of brain insulin receptor in control of body weight and reproduction
    • Brüning, J. C. et?al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122-2125 (2000).
    • (2000) Science , vol.289 , pp. 2122-2125
    • Brüning, J.C.1
  • 133
    • 0036913187 scopus 로고    scopus 로고
    • Hypothalamic insulin signaling is required for inhibition of glucose production
    • Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376-1382 (2002).
    • (2002) Nat. Med. , vol.8 , pp. 1376-1382
    • Obici, S.1    Zhang, B.B.2    Karkanias, G.3    Rossetti, L.4
  • 134
    • 17844379717 scopus 로고    scopus 로고
    • Hypothalamic KATP channels control hepatic glucose production
    • Pocai, A. et?al. Hypothalamic KATP channels control hepatic glucose production. Nature 434, 1026-1031 (2005).
    • (2005) Nature , vol.434 , pp. 1026-1031
    • Pocai, A.1
  • 135
    • 84903173931 scopus 로고    scopus 로고
    • Insulin action in brain regulates systemic metabolism and brain function
    • Kleinridders, A., Ferris, H. A., Cai, W. & Kahn, C. R. Insulin action in brain regulates systemic metabolism and brain function. Diabetes 63, 2232-2243 (2014).
    • (2014) Diabetes , vol.63 , pp. 2232-2243
    • Kleinridders, A.1    Ferris, H.A.2    Cai, W.3    Kahn, C.R.4
  • 136
    • 32444434587 scopus 로고    scopus 로고
    • Insulin's direct effects on the liver dominate the control of hepatic glucose production
    • Edgerton, D. S. et?al. Insulin's direct effects on the liver dominate the control of hepatic glucose production. J. Clin. Invest. 116, 521-527 (2006).
    • (2006) J. Clin. Invest. , vol.116 , pp. 521-527
    • Edgerton, D.S.1
  • 137
    • 80052345224 scopus 로고    scopus 로고
    • Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs
    • Ramnanan, C. J. et?al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J. Clin. Invest. 121, 3713-3723 (2011).
    • (2011) J. Clin. Invest. , vol.121 , pp. 3713-3723
    • Ramnanan, C.J.1
  • 138
    • 0026448111 scopus 로고
    • Pathways of glycogen repletion
    • Shulman, G. I. & Landau, B. R. Pathways of glycogen repletion. Physiol. Rev. 72, 1019-1035 (1992).
    • (1992) Physiol. Rev. , vol.72 , pp. 1019-1035
    • Shulman, G.I.1    Landau, B.R.2
  • 139
    • 0033802721 scopus 로고    scopus 로고
    • Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol?3 kinase and protein phosphatase?1 in HepG2 cells
    • Syed, N. A. & Khandelwal, R. L. Reciprocal regulation of glycogen phosphorylase and glycogen synthase by insulin involving phosphatidylinositol?3 kinase and protein phosphatase?1 in HepG2 cells. Mol. Cell. Biochem. 211, 123-136 (2000).
    • (2000) Mol. Cell. Biochem. , vol.211 , pp. 123-136
    • Syed, N.A.1    Khandelwal, R.L.2
  • 140
    • 0031803122 scopus 로고    scopus 로고
    • Hepatic glucose disposition during concomitant portal glucose and amino acid infusions in the dog
    • Moore, M. C. et?al. Hepatic glucose disposition during concomitant portal glucose and amino acid infusions in the dog. Am. J. Physiol. 274, E893-E902 (1998).
    • (1998) Am. J. Physiol. , vol.274 , pp. E893-E902
    • Moore, M.C.1
  • 141
    • 0034329627 scopus 로고    scopus 로고
    • Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase
    • Gomis, R. R., Ferrer, J. C. & Guinovart, J. J. Shared control of hepatic glycogen synthesis by glycogen synthase and glucokinase. Biochem. J. 351, 811-816 (2000).
    • (2000) Biochem. J. , vol.351 , pp. 811-816
    • Gomis, R.R.1    Ferrer, J.C.2    Guinovart, J.J.3
  • 142
    • 0029829250 scopus 로고    scopus 로고
    • Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase i overexpression in rat primary hepatocytes
    • O'Doherty, R. M. et?al. Differential metabolic effects of adenovirus-mediated glucokinase and hexokinase I overexpression in rat primary hepatocytes. J. Biol. Chem. 271, 20524-20530 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 20524-20530
    • O'Doherty, R.M.1
  • 143
    • 0030884675 scopus 로고    scopus 로고
    • Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism
    • Niswender, K. D., Shiota, M., Postic, C., Cherrington, A. D. & Magnuson, M. A. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J. Biol. Chem. 272, 22570-22575 (1997).
    • (1997) J. Biol. Chem. , vol.272 , pp. 22570-22575
    • Niswender, K.D.1    Shiota, M.2    Postic, C.3    Cherrington, A.D.4    Magnuson, M.A.5
  • 144
    • 84969951733 scopus 로고    scopus 로고
    • Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production
    • Titchenell, P. M. et?al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metab. 23, 1154-1166 (2016).
    • (2016) Cell Metab. , vol.23 , pp. 1154-1166
    • Titchenell, P.M.1
  • 145
    • 0029864561 scopus 로고    scopus 로고
    • Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY?2) subjects
    • Velho, G. et?al. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY?2) subjects. J. Clin. Invest. 98, 1755-1761 (1996).
    • (1996) J. Clin. Invest. , vol.98 , pp. 1755-1761
    • Velho, G.1
  • 146
    • 84945295827 scopus 로고    scopus 로고
    • Glucokinase regulatory protein: Complexity at the crossroads of triglyceride and glucose metabolism
    • Raimondo, A., Rees, M. G. & Gloyn, A. L. Glucokinase regulatory protein: complexity at the crossroads of triglyceride and glucose metabolism. Curr. Opin. Lipidol. 26, 88-95 (2015).
    • (2015) Curr. Opin. Lipidol. , vol.26 , pp. 88-95
    • Raimondo, A.1    Rees, M.G.2    Gloyn, A.L.3
  • 147
    • 49649099805 scopus 로고    scopus 로고
    • Glucokinase and molecular aspects of liver glycogen metabolism
    • Agius, L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414, 1-18 (2008).
    • (2008) Biochem. J. , vol.414 , pp. 1-18
    • Agius, L.1
  • 148
    • 0029851722 scopus 로고    scopus 로고
    • Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis
    • Agius, L., Peak, M., Newgard, C. B., Gomez-Foix, A. M. & Guinovart, J. J. Evidence for a role of glucose-induced translocation of glucokinase in the control of hepatic glycogen synthesis. J. Biol. Chem. 271, 30479-30486 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 30479-30486
    • Agius, L.1    Peak, M.2    Newgard, C.B.3    Gomez-Foix, A.M.4    Guinovart, J.J.5
  • 149
    • 33645019549 scopus 로고    scopus 로고
    • The role of glucose 6?Phosphate in mediating the effects of glucokinase overexpression on hepatic glucose metabolism
    • Härndahl, L., Schmoll, D., Herling, A. W. & Agius, L. The role of glucose 6?phosphate in mediating the effects of glucokinase overexpression on hepatic glucose metabolism. FEBS J. 273, 336-346 (2006).
    • (2006) FEBS J. , vol.273 , pp. 336-346
    • Härndahl, L.1    Schmoll, D.2    Herling, A.W.3    Agius, L.4
  • 150
    • 84891797370 scopus 로고    scopus 로고
    • Glucose?6?Phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis
    • von Wilamowitz-Moellendorff, A. et?al. Glucose?6?phosphate-mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes 62, 4070-4082 (2013).
    • (2013) Diabetes , vol.62 , pp. 4070-4082
    • Von Wilamowitz-Moellendorff, A.1
  • 151
    • 0032533162 scopus 로고    scopus 로고
    • Specific features of glycogen metabolism in the liver
    • Bollen, M., Keppens, S. & Stalmans, W. Specific features of glycogen metabolism in the liver. Biochem. J. 336, 19-31 (1998).
    • (1998) Biochem. J. , vol.336 , pp. 19-31
    • Bollen, M.1    Keppens, S.2    Stalmans, W.3
  • 152
    • 65249167053 scopus 로고    scopus 로고
    • Control of liver glycogen synthase activity and intracellular distribution by phosphorylation
    • Ros, S., García-Rocha, M., Domínguez, J., Ferrer, J. C. & Guinovart, J. J. Control of liver glycogen synthase activity and intracellular distribution by phosphorylation. J. Biol. Chem. 284, 6370-6378 (2009).
    • (2009) J. Biol. Chem. , vol.284 , pp. 6370-6378
    • Ros, S.1    García-Rocha, M.2    Domínguez, J.3    Ferrer, J.C.4    Guinovart, J.J.5
  • 153
    • 84858311038 scopus 로고    scopus 로고
    • AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase
    • Bultot, L. et?al. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J. 443, 193-203 (2012).
    • (2012) Biochem. J. , vol.443 , pp. 193-203
    • Bultot, L.1
  • 154
    • 78549264131 scopus 로고    scopus 로고
    • Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis
    • Ros, S. et?al. Hepatic overexpression of a constitutively active form of liver glycogen synthase improves glucose homeostasis. J. Biol. Chem. 285, 37170-37177 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 37170-37177
    • Ros, S.1
  • 156
    • 84879857725 scopus 로고    scopus 로고
    • A noncanonical, GSK3?Independent pathway controls postprandial hepatic glycogen deposition
    • Wan, M. et?al. A noncanonical, GSK3?independent pathway controls postprandial hepatic glycogen deposition. Cell Metab. 18, 99-105 (2013).
    • (2013) Cell Metab. , vol.18 , pp. 99-105
    • Wan, M.1
  • 157
    • 0032766006 scopus 로고    scopus 로고
    • Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt
    • Kitamura, T. et?al. Insulin-induced phosphorylation and activation of cyclic nucleotide phosphodiesterase 3B by the serine-threonine kinase Akt. Mol. Cell. Biol. 19, 6286-6296 (1999).
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 6286-6296
    • Kitamura, T.1
  • 158
    • 43449123638 scopus 로고    scopus 로고
    • The role of protein translocation in the regulation of glycogen metabolism
    • Jurczak, M. J., Danos, A. M., Rehrmann, V. R. & Brady, M. J. The role of protein translocation in the regulation of glycogen metabolism. J. Cell. Biochem. 104, 435-443 (2008).
    • (2008) J. Cell. Biochem. , vol.104 , pp. 435-443
    • Jurczak, M.J.1    Danos, A.M.2    Rehrmann, V.R.3    Brady, M.J.4
  • 159
    • 0022536589 scopus 로고
    • Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase?1
    • Alemany, S. & Cohen, P. Phosphorylase a is an allosteric inhibitor of the glycogen and microsomal forms of rat hepatic protein phosphatase?1. FEBS Lett. 198, 194-202 (1986).
    • (1986) FEBS Lett. , vol.198 , pp. 194-202
    • Alemany, S.1    Cohen, P.2
  • 160
    • 0026545981 scopus 로고
    • Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes
    • Carabaza, A., Ciudad, C. J., Baqué, S. & Guinovart, J. J. Glucose has to be phosphorylated to activate glycogen synthase, but not to inactivate glycogen phosphorylase in hepatocytes. FEBS Lett. 296, 211-214 (1992).
    • (1992) FEBS Lett. , vol.296 , pp. 211-214
    • Carabaza, A.1    Ciudad, C.J.2    Baqué, S.3    Guinovart, J.J.4
  • 161
    • 84956666350 scopus 로고    scopus 로고
    • The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux
    • Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12-22 (2016).
    • (2016) J. Clin. Invest. , vol.126 , pp. 12-22
    • Samuel, V.T.1    Shulman, G.I.2
  • 162
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky, J. M. & Glass, C. K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219-246 (2010).
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 163
    • 33847629709 scopus 로고    scopus 로고
    • Spectrum of liver disease in type?2 diabetes and management of patients with diabetes and liver disease
    • Tolman, K. G., Fonseca, V., Dalpiaz, A. & Tan, M. H. Spectrum of liver disease in type?2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 30, 734-743 (2007).
    • (2007) Diabetes Care , vol.30 , pp. 734-743
    • Tolman, K.G.1    Fonseca, V.2    Dalpiaz, A.3    Tan, M.H.4
  • 164
    • 84975221895 scopus 로고    scopus 로고
    • Glucagon is the key factor in the development of diabetes
    • Lee, Y. H., Wang, M.?Y., Yu, X.?X. & Unger, R. H. Glucagon is the key factor in the development of diabetes. Diabetologia 59, 1372-1375 (2016).
    • (2016) Diabetologia , vol.59 , pp. 1372-1375
    • Lee, Y.H.1    Wang, M.Y.2    Yu, X.X.3    Unger, R.H.4
  • 165
    • 0022412905 scopus 로고
    • Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus
    • Henry, R. R., Scheaffer, L. & Olefsky, J. M. Glycemic effects of intensive caloric restriction and isocaloric refeeding in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 61, 917-925 (1985).
    • (1985) J. Clin. Endocrinol. Metab. , vol.61 , pp. 917-925
    • Henry, R.R.1    Scheaffer, L.2    Olefsky, J.M.3
  • 166
    • 84962463376 scopus 로고    scopus 로고
    • Obesity management for the treatment of type?2 diabetes
    • American Diabetes Association
    • American Diabetes Association. Obesity management for the treatment of type?2 diabetes. Diabetes Care 39, S47-S51 (2016).
    • (2016) Diabetes Care , vol.39 , pp. S47-S51
  • 167
    • 0018746972 scopus 로고
    • Glucagon and diabetes: A reappraisal
    • Lefebvre, P. J. & Luyckx, A. S. Glucagon and diabetes: a reappraisal. Diabetologia 16, 347-354 (1979).
    • (1979) Diabetologia , vol.16 , pp. 347-354
    • Lefebvre, P.J.1    Luyckx, A.S.2
  • 168
    • 84928989530 scopus 로고    scopus 로고
    • Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus
    • Lotfy, M., Kalasz, H., Szalai, G., Singh, J. & Adeghate, E. Recent progress in the use of glucagon and glucagon receptor antagonists in the treatment of diabetes mellitus. Open Med. Chem. J. 8, 28-35 (2014).
    • (2014) Open Med. Chem. J. , vol.8 , pp. 28-35
    • Lotfy, M.1    Kalasz, H.2    Szalai, G.3    Singh, J.4    Adeghate, E.5
  • 169
    • 80053389354 scopus 로고    scopus 로고
    • Glucagon antagonism as a potential therapeutic target in type?2 diabetes
    • Bagger, J. I., Knop, F. K., Holst, J. J. & Vilsbøll, T. Glucagon antagonism as a potential therapeutic target in type?2 diabetes. Diabetes Obes. Metab. 13, 965-971 (2011).
    • (2011) Diabetes Obes. Metab. , vol.13 , pp. 965-971
    • Bagger, J.I.1    Knop, F.K.2    Holst, J.J.3    Vilsbøll, T.4
  • 170
    • 78649444434 scopus 로고    scopus 로고
    • The metabolic actions of glucagon revisited
    • Habegger, K. M. et?al. The metabolic actions of glucagon revisited. Nat. Rev. Endocrinol. 6, 689-697 (2010).
    • (2010) Nat. Rev. Endocrinol. , vol.6 , pp. 689-697
    • Habegger, K.M.1
  • 171
    • 0023109225 scopus 로고
    • Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus
    • Reaven, G. M., Chen, Y. D., Golay, A., Swislocki, A. L. & Jaspan, J. B. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64, 106-110 (1987).
    • (1987) J. Clin. Endocrinol. Metab. , vol.64 , pp. 106-110
    • Reaven, G.M.1    Chen, Y.D.2    Golay, A.3    Swislocki, A.L.4    Jaspan, J.B.5
  • 172
    • 0023589251 scopus 로고
    • Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type?II diabetics
    • Baron, A. D., Schaeffer, L., Shragg, P. & Kolterman, O. G. Role of hyperglucagonemia in maintenance of increased rates of hepatic glucose output in type?II diabetics. Diabetes 36, 274-283 (1987).
    • (1987) Diabetes , vol.36 , pp. 274-283
    • Baron, A.D.1    Schaeffer, L.2    Shragg, P.3    Kolterman, O.G.4
  • 173
    • 33644874034 scopus 로고    scopus 로고
    • Mechanisms for abnormal postprandial glucose metabolism in type?2 diabetes
    • Woerle, H. J. et?al. Mechanisms for abnormal postprandial glucose metabolism in type?2 diabetes. Am. J. Physiol. Endocrinol. Metab. 290, E67-E77 (2006).
    • (2006) Am. J. Physiol. Endocrinol. Metab. , vol.290 , pp. E67-E77
    • Woerle, H.J.1
  • 174
    • 80052824604 scopus 로고    scopus 로고
    • Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type?2 diabetes
    • Menge, B. A. et?al. Loss of inverse relationship between pulsatile insulin and glucagon secretion in patients with type?2 diabetes. Diabetes 60, 2160-2168 (2011).
    • (2011) Diabetes , vol.60 , pp. 2160-2168
    • Menge, B.A.1
  • 175
    • 84866299596 scopus 로고    scopus 로고
    • Metabolic manifestations of insulin deficiency do not occur without glucagon action
    • Lee, Y. et?al. Metabolic manifestations of insulin deficiency do not occur without glucagon action. Proc. Natl Acad. Sci. USA 109, 14972-14976 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , pp. 14972-14976
    • Lee, Y.1
  • 176
    • 84989935619 scopus 로고    scopus 로고
    • Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival
    • Neumann, U. H. et?al. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol. Metab. 5, 731-736 (2016).
    • (2016) Mol. Metab. , vol.5 , pp. 731-736
    • Neumann, U.H.1
  • 177
    • 0035195977 scopus 로고    scopus 로고
    • Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans
    • Petersen, K. F. & Sullivan, J. T. Effects of a novel glucagon receptor antagonist (Bay 27-9955) on glucagon-stimulated glucose production in humans. Diabetologia 44, 2018-2024 (2001).
    • (2001) Diabetologia , vol.44 , pp. 2018-2024
    • Petersen, K.F.1    Sullivan, J.T.2
  • 178
    • 84948761469 scopus 로고    scopus 로고
    • Glucagon receptor antagonism induces increased cholesterol absorption
    • Guan, H.?P. et?al. Glucagon receptor antagonism induces increased cholesterol absorption. J. Lipid Res. 56, 2183-2195 (2015).
    • (2015) J. Lipid Res. , vol.56 , pp. 2183-2195
    • Guan, H.P.1
  • 179
    • 84924670428 scopus 로고    scopus 로고
    • Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type?2 diabetes
    • Kelly, R. P. et?al. Short-term administration of the glucagon receptor antagonist LY2409021 lowers blood glucose in healthy people and in those with type?2 diabetes. Diabetes Obes. Metab. 17, 414-422 (2015).
    • (2015) Diabetes Obes. Metab. , vol.17 , pp. 414-422
    • Kelly, R.P.1
  • 180
    • 84994338973 scopus 로고    scopus 로고
    • Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type?2 diabetes: 12-and 24?Week phase?2 studies
    • Kazda, C. M. et?al. Evaluation of efficacy and safety of the glucagon receptor antagonist LY2409021 in patients with type?2 diabetes: 12-and 24?week phase?2 studies. Diabetes Care 39, 1241-1249 (2016).
    • (2016) Diabetes Care , vol.39 , pp. 1241-1249
    • Kazda, C.M.1
  • 181
    • 54849431792 scopus 로고    scopus 로고
    • The glucagon receptor is required for the adaptive metabolic response to fasting
    • Longuet, C. et?al. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8, 359-371 (2008).
    • (2008) Cell Metab. , vol.8 , pp. 359-371
    • Longuet, C.1
  • 182
    • 84879596112 scopus 로고    scopus 로고
    • Thyroid hormone receptor agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways
    • Vatner, D. F. et?al. Thyroid hormone receptor agonists prevent hepatic steatosis in fat-fed rats but impair insulin sensitivity via discrete pathways. Am. J. Physiol. Endocrinol. Metab. 305, E89-E100 (2013).
    • (2013) Am. J. Physiol. Endocrinol. Metab. , vol.305 , pp. E89-E100
    • Vatner, D.F.1
  • 183
    • 84927551485 scopus 로고    scopus 로고
    • The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice
    • Martagón, A. J., Lin, J. Z., Cimini, S. L., Webb, P. & Phillips, K. J. The amelioration of hepatic steatosis by thyroid hormone receptor agonists is insufficient to restore insulin sensitivity in ob/ob mice. PLoS ONE 10, e0122987 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0122987
    • Martagón, A.J.1    Lin, J.Z.2    Cimini, S.L.3    Webb, P.4    Phillips, K.J.5
  • 184
    • 84992036608 scopus 로고    scopus 로고
    • Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease
    • Finan, B. et?al. Chemical hybridization of glucagon and thyroid hormone optimizes therapeutic impact for metabolic disease. Cell 167, 843-857.e14 (2016).
    • (2016) Cell , vol.167 , pp. 843-857e14
    • Finan, B.1
  • 185
    • 84957840942 scopus 로고    scopus 로고
    • Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase?2 study
    • Armstrong, M. J. et?al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase?2 study. Lancet 387, 679-690 (2016).
    • (2016) Lancet , vol.387 , pp. 679-690
    • Armstrong, M.J.1
  • 186
    • 84925282923 scopus 로고    scopus 로고
    • A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents
    • Finan, B. et?al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27-36 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 27-36
    • Finan, B.1
  • 187
    • 84907990392 scopus 로고    scopus 로고
    • Thiazolidinediones and the promise of insulin sensitization in type?2 diabetes
    • Soccio, R. E., Chen, E. R. & Lazar, M. A. Thiazolidinediones and the promise of insulin sensitization in type?2 diabetes. Cell Metab. 20, 573-591 (2014).
    • (2014) Cell Metab. , vol.20 , pp. 573-591
    • Soccio, R.E.1    Chen, E.R.2    Lazar, M.A.3
  • 188
    • 0036310037 scopus 로고    scopus 로고
    • The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type?2 diabetes
    • Mayerson, A. B. et?al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type?2 diabetes. Diabetes 51, 797-802 (2002).
    • (2002) Diabetes , vol.51 , pp. 797-802
    • Mayerson, A.B.1
  • 189
    • 33751545838 scopus 로고    scopus 로고
    • A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis
    • Belfort, R. et?al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N. Engl. J. Med. 355, 2297-2307 (2006).
    • (2006) N. Engl. J. Med. , vol.355 , pp. 2297-2307
    • Belfort, R.1
  • 190
    • 70350064027 scopus 로고    scopus 로고
    • Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis
    • Gastaldelli, A. et?al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 50, 1087-1093 (2009).
    • (2009) Hepatology , vol.50 , pp. 1087-1093
    • Gastaldelli, A.1
  • 191
    • 84966668415 scopus 로고    scopus 로고
    • The current role of thiazolidinediones in diabetes management
    • Rizos, C. V., Kei, A. & Elisaf, M. S. The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 90, 1861-1881 (2016).
    • (2016) Arch. Toxicol. , vol.90 , pp. 1861-1881
    • Rizos, C.V.1    Kei, A.2    Elisaf, M.S.3
  • 192
    • 0037352280 scopus 로고    scopus 로고
    • PUMA?G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect
    • Tunaru, S. et?al. PUMA?G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat. Med. 9, 352-355 (2003).
    • (2003) Nat. Med. , vol.9 , pp. 352-355
    • Tunaru, S.1
  • 193
    • 84872286345 scopus 로고    scopus 로고
    • Effects of niacin on glucose levels, coronary stenosis progression, and clinical events in subjects with normal baseline glucose levels (100 mg/dl): A combined analysis of the familial atherosclerosis treatment study (fats), hdl-atherosclerosis treatment study (hats), armed forces regression study (afregs), and carotid plaque composition by mri during lipid-lowering (cpc) study
    • Phan, B. A. P. et?al. Effects of niacin on glucose levels, coronary stenosis progression, and clinical events in subjects with normal baseline glucose levels (100 mg/dl): a combined analysis of the Familial Atherosclerosis Treatment Study (FATS), HDL-Atherosclerosis Treatment Study (HATS), Armed Forces Regression Study (AFREGS), and Carotid Plaque Composition by MRI during lipid-lowering (CPC) study. Am. J. Cardiol. 111, 352-355 (2013).
    • (2013) Am. J. Cardiol. , vol.111 , pp. 352-355
    • Phan, B.A.P.1
  • 194
    • 34447335060 scopus 로고    scopus 로고
    • Niacin in cardiovascular prevention: Mechanisms, efficacy, and safety
    • Guyton, J. R. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr. Opin. Lipidol. 18, 415-420 (2007).
    • (2007) Curr. Opin. Lipidol. , vol.18 , pp. 415-420
    • Guyton, J.R.1
  • 195
    • 84940989761 scopus 로고    scopus 로고
    • Dosing profile profoundly influences nicotinic acid's ability to improve metabolic control in rats
    • Kroon, T., Kjellstedt, A., Thalén, P., Gabrielsson, J. & Oakes, N. D. Dosing profile profoundly influences nicotinic acid's ability to improve metabolic control in rats. J. Lipid Res. 56, 1679-1690 (2015).
    • (2015) J. Lipid Res. , vol.56 , pp. 1679-1690
    • Kroon, T.1    Kjellstedt, A.2    Thalén, P.3    Gabrielsson, J.4    Oakes, N.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.