메뉴 건너뛰기




Volumn 126, Issue 1, 2016, Pages 12-22

The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux

Author keywords

[No Author keywords available]

Indexed keywords

GLUCOSE; INSULIN; LIPID; TRIACYLGLYCEROL;

EID: 84956666350     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI77812     Document Type: Review
Times cited : (954)

References (130)
  • 1
    • 0032520870 scopus 로고    scopus 로고
    • Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
    • Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 1998;101(6):1203-1209.
    • (1998) J Clin Invest. , vol.101 , Issue.6 , pp. 1203-1209
    • Petersen, K.F.1    Laurent, D.2    Rothman, D.L.3    Cline, G.W.4    Shulman, G.I.5
  • 2
    • 0028847792 scopus 로고
    • Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study
    • Hwang JH, et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 1995;95(2):783-787.
    • (1995) J Clin Invest. , vol.95 , Issue.2 , pp. 783-787
    • Hwang, J.H.1
  • 3
    • 0018243091 scopus 로고
    • Synergistic regulation of phosphorylase a by glucose and caffeine
    • Kasvinsky PJ, Shechosky S, Fletterick RJ. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978;253(24):9102-9106.
    • (1978) J Biol Chem. , vol.253 , Issue.24 , pp. 9102-9106
    • Kasvinsky, P.J.1    Shechosky, S.2    Fletterick, R.J.3
  • 4
    • 0034981831 scopus 로고    scopus 로고
    • Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans
    • Petersen KF, Laurent D, Yu C, Cline GW, Shulman GI. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes. 2001;50(6):1263-1268.
    • (2001) Diabetes. , vol.50 , Issue.6 , pp. 1263-1268
    • Petersen, K.F.1    Laurent, D.2    Yu, C.3    Cline, G.W.4    Shulman, G.I.5
  • 5
    • 84857861919 scopus 로고    scopus 로고
    • Mechanisms for insulin resistance: Common threads and missing links
    • Samuel Varman T, Shulman Gerald I. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852-871.
    • (2012) Cell. , vol.148 , Issue.5 , pp. 852-871
    • Samuel Varman, T.1    Shulman Gerald, I.2
  • 6
    • 34347220473 scopus 로고    scopus 로고
    • Defining the role of mTOR in cancer
    • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9-22.
    • (2007) Cancer Cell. , vol.12 , Issue.1 , pp. 9-22
    • Guertin, D.A.1    Sabatini, D.M.2
  • 7
    • 0031127305 scopus 로고    scopus 로고
    • Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα
    • Alessi DR, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261-269.
    • (1997) Curr Biol. , vol.7 , Issue.4 , pp. 261-269
    • Alessi, D.R.1
  • 8
    • 0032578999 scopus 로고    scopus 로고
    • Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphatedependent activation of protein kinase B
    • Stephens L, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphatedependent activation of protein kinase B. Science. 1998;279(5351):710-714.
    • (1998) Science. , vol.279 , Issue.5351 , pp. 710-714
    • Stephens, L.1
  • 9
    • 84865470537 scopus 로고    scopus 로고
    • Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling
    • Matveyenko AV, et al. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes. 2012;61(9):2269-2279.
    • (2012) Diabetes. , vol.61 , Issue.9 , pp. 2269-2279
    • Matveyenko, A.V.1
  • 10
    • 84879857725 scopus 로고    scopus 로고
    • A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition
    • Wan M, et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab. 2013;18(1):99-105.
    • (2013) Cell Metab. , vol.18 , Issue.1 , pp. 99-105
    • Wan, M.1
  • 11
    • 84857934301 scopus 로고    scopus 로고
    • Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1
    • Lu M, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18(3):388-395.
    • (2012) Nat Med. , vol.18 , Issue.3 , pp. 388-395
    • Lu, M.1
  • 12
    • 0021882037 scopus 로고
    • The disposal of an oral glucose load in healthy subjects. A quantitative study
    • Ferrannini E, et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34(6):580-588.
    • (1985) Diabetes. , vol.34 , Issue.6 , pp. 580-588
    • Ferrannini, E.1
  • 13
    • 0018194945 scopus 로고
    • Initial splanchnic extraction of ingested glucose in normal man
    • Radziuk J, McDonald TJ, Rubenstein D, Dupre J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism. 1978;27(6):657-669.
    • (1978) Metabolism. , vol.27 , Issue.6 , pp. 657-669
    • Radziuk, J.1    McDonald, T.J.2    Rubenstein, D.3    Dupre, J.4
  • 14
    • 77953216482 scopus 로고    scopus 로고
    • Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo
    • Ramnanan CJ, et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes. 2010;59(6):1302-1311.
    • (2010) Diabetes. , vol.59 , Issue.6 , pp. 1302-1311
    • Ramnanan, C.J.1
  • 15
    • 0001563150 scopus 로고
    • The relation of insulin to liver metabolism
    • Levine R, Fritz IB. The relation of insulin to liver metabolism. Diabetes. 1956;5(3):209-219.
    • (1956) Diabetes. , vol.5 , Issue.3 , pp. 209-219
    • Levine, R.1    Fritz, I.B.2
  • 16
    • 0029861999 scopus 로고    scopus 로고
    • Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs
    • Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98(3):741-749.
    • (1996) J Clin Invest. , vol.98 , Issue.3 , pp. 741-749
    • Rebrin, K.1    Steil, G.M.2    Mittelman, S.D.3    Bergman, R.N.4
  • 17
    • 84922709227 scopus 로고    scopus 로고
    • Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
    • Perry RJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-758.
    • (2015) Cell. , vol.160 , Issue.4 , pp. 745-758
    • Perry, R.J.1
  • 18
    • 84904000735 scopus 로고    scopus 로고
    • Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
    • Perry RJ, et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 2014;20(7):759-763.
    • (2014) Nat Med. , vol.20 , Issue.7 , pp. 759-763
    • Perry, R.J.1
  • 19
    • 0032810949 scopus 로고    scopus 로고
    • A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo
    • Previs SF, Cline GW, Shulman GI. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am J Physiol. 1999;277(1 pt 1):E154-E160.
    • (1999) Am J Physiol. , vol.277 , Issue.1 , pp. E154-E160
    • Previs, S.F.1    Cline, G.W.2    Shulman, G.I.3
  • 20
    • 0037677096 scopus 로고    scopus 로고
    • Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
    • Sano H, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278(17):14599-14602.
    • (2003) J Biol Chem. , vol.278 , Issue.17 , pp. 14599-14602
    • Sano, H.1
  • 21
    • 12144271277 scopus 로고    scopus 로고
    • Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity
    • Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes. 2005;54(1):41-50.
    • (2005) Diabetes. , vol.54 , Issue.1 , pp. 41-50
    • Bruss, M.D.1    Arias, E.B.2    Lienhard, G.E.3    Cartee, G.D.4
  • 22
    • 44349161745 scopus 로고    scopus 로고
    • Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle
    • Taylor EB, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283(15):9787-9796.
    • (2008) J Biol Chem. , vol.283 , Issue.15 , pp. 9787-9796
    • Taylor, E.B.1
  • 23
    • 84861890085 scopus 로고    scopus 로고
    • Regulation of glucose transporter translocation in health and diabetes
    • Bogan JS. Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem. 2012;81:507-532.
    • (2012) Annu Rev Biochem. , vol.81 , pp. 507-532
    • Bogan, J.S.1
  • 24
    • 0142184334 scopus 로고    scopus 로고
    • Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking
    • Bogan JS, Hendon N, McKee AE, Tsao TS, Lodish HF. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature. 2003;425(6959):727-733.
    • (2003) Nature. , vol.425 , Issue.6959 , pp. 727-733
    • Bogan, J.S.1    Hendon, N.2    McKee, A.E.3    Tsao, T.S.4    Lodish, H.F.5
  • 25
    • 84863621392 scopus 로고    scopus 로고
    • Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation
    • Bogan JS, et al. Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. J Biol Chem. 2012;287(28):23932-23947.
    • (2012) J Biol Chem. , vol.287 , Issue.28 , pp. 23932-23947
    • Bogan, J.S.1
  • 26
    • 84880058904 scopus 로고    scopus 로고
    • Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle
    • Loffler MG, et al. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle. J Biol Chem. 2013;288(28):20135-20150.
    • (2013) J Biol Chem. , vol.288 , Issue.28 , pp. 20135-20150
    • Loffler, M.G.1
  • 27
    • 0033917321 scopus 로고    scopus 로고
    • Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle
    • Kim JK, et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest. 2000;105(12):1791-1797.
    • (2000) J Clin Invest. , vol.105 , Issue.12 , pp. 1791-1797
    • Kim, J.K.1
  • 28
    • 0032697037 scopus 로고    scopus 로고
    • Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice
    • Wojtaszewski J, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest. 1999;104(9):1257-1264.
    • (1999) J Clin Invest. , vol.104 , Issue.9 , pp. 1257-1264
    • Wojtaszewski, J.1
  • 29
    • 80053163909 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
    • O'Neill HM, et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A. 2011;108(38):16092-16097.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , Issue.38 , pp. 16092-16097
    • O'Neill, H.M.1
  • 30
    • 84929148548 scopus 로고    scopus 로고
    • Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle
    • Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38(4):308-314.
    • (2014) Adv Physiol Educ. , vol.38 , Issue.4 , pp. 308-314
    • Stanford, K.I.1    Goodyear, L.J.2
  • 31
    • 18544368076 scopus 로고    scopus 로고
    • Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans
    • Virtanen KA, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87(8):3902-3910.
    • (2002) J Clin Endocrinol Metab. , vol.87 , Issue.8 , pp. 3902-3910
    • Virtanen, K.A.1
  • 32
    • 84868333588 scopus 로고    scopus 로고
    • PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans
    • Ng JM, et al. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol Endocrinol Metab. 2012;303(9):E1134-E1141.
    • (2012) Am J Physiol Endocrinol Metab. , vol.303 , Issue.9 , pp. E1134-E1141
    • Ng, J.M.1
  • 33
    • 84899465714 scopus 로고    scopus 로고
    • Physiological regulation of lipoprotein lipase
    • Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919-933.
    • (2014) Biochim Biophys Acta. , vol.1841 , Issue.7 , pp. 919-933
    • Kersten, S.1
  • 35
    • 0027482040 scopus 로고
    • Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men
    • Fried SK, Russell CD, Grauso NL, Brolin RE. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest. 1993;92(5):2191-2198.
    • (1993) J Clin Invest. , vol.92 , Issue.5 , pp. 2191-2198
    • Fried, S.K.1    Russell, C.D.2    Grauso, N.L.3    Brolin, R.E.4
  • 36
    • 80053312124 scopus 로고    scopus 로고
    • Fasting and post-prandial adipose tissue lipoprotein lipase and hormonesensitive lipase in obesity and type 2 diabetes
    • Costabile G, et al. Fasting and post-prandial adipose tissue lipoprotein lipase and hormonesensitive lipase in obesity and type 2 diabetes. J Endocrinol Invest. 2011;34(5):e110-e114.
    • (2011) J Endocrinol Invest. , vol.34 , Issue.5 , pp. e110-e114
    • Costabile, G.1
  • 37
    • 0037000654 scopus 로고    scopus 로고
    • Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner
    • Panarotto D, Rémillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Invest. 2002;32(2):84-92.
    • (2002) Eur J Clin Invest. , vol.32 , Issue.2 , pp. 84-92
    • Panarotto, D.1    Rémillard, P.2    Bouffard, L.3    Maheux, P.4
  • 38
    • 84899465714 scopus 로고    scopus 로고
    • Physiological regulation of lipoprotein lipase
    • Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919-933.
    • (2014) Biochim Biophys Acta. , vol.1841 , Issue.7 , pp. 919-933
    • Kersten, S.1
  • 39
    • 84896532233 scopus 로고    scopus 로고
    • Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise
    • Catoire M, et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci U S A. 2014;111(11):E1043-E1052.
    • (2014) Proc Natl Acad Sci U S A. , vol.111 , Issue.11 , pp. E1043-E1052
    • Catoire, M.1
  • 40
    • 0032934826 scopus 로고    scopus 로고
    • Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study
    • Krssak M, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113-116.
    • (1999) Diabetologia. , vol.42 , Issue.1 , pp. 113-116
    • Krssak, M.1
  • 41
    • 0032764784 scopus 로고    scopus 로고
    • Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents
    • Perseghin G, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600-1606.
    • (1999) Diabetes. , vol.48 , Issue.8 , pp. 1600-1606
    • Perseghin, G.1
  • 42
    • 0036224883 scopus 로고    scopus 로고
    • Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: Relationships to insulin sensitivity, total body fat, and central adiposity
    • Sinha R, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022-1027.
    • (2002) Diabetes. , vol.51 , Issue.4 , pp. 1022-1027
    • Sinha, R.1
  • 43
    • 50549202600 scopus 로고
    • The glucose fatty-acid cycle: Its role in insulin sensitivity and the metabolic disturbancess of diabetes mellitus
    • Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbancess of diabetes mellitus. Lancet. 1963;1(7285):785-789.
    • (1963) Lancet. , vol.1 , Issue.7285 , pp. 785-789
    • Randle, P.J.1    Garland, P.B.2    Hales, C.N.3    Newsholme, E.A.4
  • 44
    • 0029948212 scopus 로고    scopus 로고
    • Mechanism of free fatty acidinduced insulin resistance in humans
    • Roden M, et al. Mechanism of free fatty acidinduced insulin resistance in humans. J Clin Invest. 1996;97(12):2859-2865.
    • (1996) J Clin Invest. , vol.97 , Issue.12 , pp. 2859-2865
    • Roden, M.1
  • 45
    • 0032954778 scopus 로고    scopus 로고
    • Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity
    • Dresner A, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253-259.
    • (1999) J Clin Invest. , vol.103 , Issue.2 , pp. 253-259
    • Dresner, A.1
  • 46
    • 0031594368 scopus 로고    scopus 로고
    • 13C/31P NMR studies on the mechanism of insulin resistance in obesity
    • Petersen KF, et al. 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes. 1998;47(3):381-386.
    • (1998) Diabetes. , vol.47 , Issue.3 , pp. 381-386
    • Petersen, K.F.1
  • 47
    • 0033595120 scopus 로고    scopus 로고
    • Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
    • Cline GW, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240-246.
    • (1999) N Engl J Med. , vol.341 , Issue.4 , pp. 240-246
    • Cline, G.W.1
  • 48
    • 0029849462 scopus 로고    scopus 로고
    • Increased glucose transportphosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects
    • Perseghin G, et al. Increased glucose transportphosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335(18):1357-1362.
    • (1996) N Engl J Med. , vol.335 , Issue.18 , pp. 1357-1362
    • Perseghin, G.1
  • 49
    • 0030941820 scopus 로고    scopus 로고
    • Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study
    • Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes. 1997;46(6):1001-1009.
    • (1997) Diabetes. , vol.46 , Issue.6 , pp. 1001-1009
    • Perseghin, G.1    Ghosh, S.2    Gerow, K.3    Shulman, G.I.4
  • 50
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
    • Petersen KF, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140-1142.
    • (2003) Science. , vol.300 , Issue.5622 , pp. 1140-1142
    • Petersen, K.F.1
  • 51
    • 78649497300 scopus 로고    scopus 로고
    • Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance
    • Lee HY, et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010;12(6):668-674.
    • (2010) Cell Metab. , vol.12 , Issue.6 , pp. 668-674
    • Lee, H.Y.1
  • 52
    • 1642377274 scopus 로고    scopus 로고
    • Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
    • Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664-671.
    • (2004) N Engl J Med. , vol.350 , Issue.7 , pp. 664-671
    • Petersen, K.F.1    Dufour, S.2    Befroy, D.3    Garcia, R.4    Shulman, G.I.5
  • 53
    • 34248141686 scopus 로고    scopus 로고
    • Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
    • Befroy DE, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376-1381.
    • (2007) Diabetes. , vol.56 , Issue.5 , pp. 1376-1381
    • Befroy, D.E.1
  • 54
    • 31044433308 scopus 로고    scopus 로고
    • Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
    • Morino K, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587-3593.
    • (2005) J Clin Invest. , vol.115 , Issue.12 , pp. 3587-3593
    • Morino, K.1
  • 55
    • 84859544293 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes
    • Morino K, et al. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes. 2012;61(4):877-887.
    • (2012) Diabetes. , vol.61 , Issue.4 , pp. 877-887
    • Morino, K.1
  • 56
    • 0037184925 scopus 로고    scopus 로고
    • Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
    • Yu C, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230-50236.
    • (2002) J Biol Chem. , vol.277 , Issue.52 , pp. 50230-50236
    • Yu, C.1
  • 57
    • 0345086474 scopus 로고    scopus 로고
    • Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
    • Griffin ME, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270-1274.
    • (1999) Diabetes. , vol.48 , Issue.6 , pp. 1270-1274
    • Griffin, M.E.1
  • 58
    • 0036300538 scopus 로고    scopus 로고
    • Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α
    • Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51(7):2005-2011.
    • (2002) Diabetes. , vol.51 , Issue.7 , pp. 2005-2011
    • Itani, S.I.1    Ruderman, N.B.2    Schmieder, F.3    Boden, G.4
  • 59
    • 84903691827 scopus 로고    scopus 로고
    • Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans
    • Szendroedi J, et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A. 2014;111(26):9597-9602.
    • (2014) Proc Natl Acad Sci U S A. , vol.111 , Issue.26 , pp. 9597-9602
    • Szendroedi, J.1
  • 60
    • 0034946949 scopus 로고    scopus 로고
    • Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
    • Kim JK, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 2001;108(1):153-160.
    • (2001) J Clin Invest. , vol.108 , Issue.1 , pp. 153-160
    • Kim, J.K.1
  • 61
    • 0034946949 scopus 로고    scopus 로고
    • Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
    • Kim JK, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 2001;108(1):153-160.
    • (2001) J Clin Invest. , vol.108 , Issue.1 , pp. 153-160
    • Kim, J.K.1
  • 62
    • 34547911800 scopus 로고    scopus 로고
    • The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome
    • Petersen KF, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587-12594.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , Issue.31 , pp. 12587-12594
    • Petersen, K.F.1
  • 63
    • 0036114844 scopus 로고    scopus 로고
    • Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy
    • Petersen KF, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1345-1350.
    • (2002) J Clin Invest. , vol.109 , Issue.10 , pp. 1345-1350
    • Petersen, K.F.1
  • 65
    • 0035912744 scopus 로고    scopus 로고
    • Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
    • Kim JK, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001;98(13):7522-7527.
    • (2001) Proc Natl Acad Sci U S A. , vol.98 , Issue.13 , pp. 7522-7527
    • Kim, J.K.1
  • 66
    • 3543029821 scopus 로고    scopus 로고
    • Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
    • Samuel VT, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345-32353.
    • (2004) J Biol Chem. , vol.279 , Issue.31 , pp. 32345-32353
    • Samuel, V.T.1
  • 67
    • 0032813243 scopus 로고    scopus 로고
    • Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats-effects of feeding
    • Qu X, Seale JP, Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats-effects of feeding. J Endocrinol. 1999;162(2):207-214.
    • (1999) J Endocrinol. , vol.162 , Issue.2 , pp. 207-214
    • Qu, X.1    Seale, J.P.2    Donnelly, R.3
  • 68
    • 33847404482 scopus 로고    scopus 로고
    • Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
    • Samuel VT, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117(3):739-745.
    • (2007) J Clin Invest. , vol.117 , Issue.3 , pp. 739-745
    • Samuel, V.T.1
  • 69
    • 80052538157 scopus 로고    scopus 로고
    • Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice
    • Raddatz K, et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia. 2011;54(6):1447-1456.
    • (2011) Diabetologia. , vol.54 , Issue.6 , pp. 1447-1456
    • Raddatz, K.1
  • 70
    • 80053627289 scopus 로고    scopus 로고
    • Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
    • Kumashiro N, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108(39):16381-16385.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , Issue.39 , pp. 16381-16385
    • Kumashiro, N.1
  • 71
    • 84861647226 scopus 로고    scopus 로고
    • Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects
    • Magkos F, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142(7):1444-1446.
    • (2012) Gastroenterology. , vol.142 , Issue.7 , pp. 1444-1446
    • Magkos, F.1
  • 72
    • 78149346457 scopus 로고    scopus 로고
    • CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance
    • Brown JM, et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res. 2010;51(11):3306-3315.
    • (2010) J Lipid Res. , vol.51 , Issue.11 , pp. 3306-3315
    • Brown, J.M.1
  • 73
    • 84873178604 scopus 로고    scopus 로고
    • CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance
    • Cantley JL, et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A. 2013;110(5):1869-1874.
    • (2013) Proc Natl Acad Sci U S A. , vol.110 , Issue.5 , pp. 1869-1874
    • Cantley, J.L.1
  • 74
    • 56749096610 scopus 로고    scopus 로고
    • Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
    • Romeo S, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-1465.
    • (2008) Nat Genet. , vol.40 , Issue.12 , pp. 1461-1465
    • Romeo, S.1
  • 75
    • 84920955177 scopus 로고    scopus 로고
    • Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis
    • Smagris E, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61(1):108-118.
    • (2015) Hepatology. , vol.61 , Issue.1 , pp. 108-118
    • Smagris, E.1
  • 76
    • 84926660045 scopus 로고    scopus 로고
    • PNPLA3 variant I148M is associated with altered hepatic lipid composition in humans
    • Peter A, et al. PNPLA3 variant I148M is associated with altered hepatic lipid composition in humans. Diabetologia. 2014;57(10):2103-2107.
    • (2014) Diabetologia. , vol.57 , Issue.10 , pp. 2103-2107
    • Peter, A.1
  • 77
    • 84904337541 scopus 로고    scopus 로고
    • Hepatic glucose uptake and disposition during short-term high-fat vs. Highfructose feeding
    • Coate KC, et al. Hepatic glucose uptake and disposition during short-term high-fat vs. highfructose feeding. Am J Physiol Endocrinol Metab. 2014;307(2):E151-E160.
    • (2014) Am J Physiol Endocrinol Metab. , vol.307 , Issue.2 , pp. E151-E160
    • Coate, K.C.1
  • 78
    • 0025123408 scopus 로고
    • 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo
    • Turinsky J, O'Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990;265(28):16880-16885.
    • (1990) J Biol Chem. , vol.265 , Issue.28 , pp. 16880-16885
    • Turinsky, J.1    O'Sullivan, D.M.2    Bayly, B.P.3
  • 79
    • 33847332202 scopus 로고    scopus 로고
    • Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturatedfat-, and obesity-induced insulin resistance
    • Holland WL, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturatedfat-, and obesity-induced insulin resistance. Cell Metab. 2007;5(3):167-179.
    • (2007) Cell Metab. , vol.5 , Issue.3 , pp. 167-179
    • Holland, W.L.1
  • 80
    • 77956022194 scopus 로고    scopus 로고
    • Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption
    • Ussher JR, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. 2010;59(10):2453-2464.
    • (2010) Diabetes. , vol.59 , Issue.10 , pp. 2453-2464
    • Ussher, J.R.1
  • 81
    • 84887432240 scopus 로고    scopus 로고
    • Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler
    • Perry RJ, et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 2013;18(5):740-748.
    • (2013) Cell Metab. , vol.18 , Issue.5 , pp. 740-748
    • Perry, R.J.1
  • 82
    • 84907984591 scopus 로고    scopus 로고
    • CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to dietinduced steatohepatitis and insulin resistance
    • Raichur S, et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to dietinduced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687-695.
    • (2014) Cell Metab. , vol.20 , Issue.4 , pp. 687-695
    • Raichur, S.1
  • 83
    • 84907978697 scopus 로고    scopus 로고
    • Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
    • Turpin SM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678-686.
    • (2014) Cell Metab. , vol.20 , Issue.4 , pp. 678-686
    • Turpin, S.M.1
  • 84
    • 0035825643 scopus 로고    scopus 로고
    • Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
    • Abel ED, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729-733.
    • (2001) Nature. , vol.409 , Issue.6821 , pp. 729-733
    • Abel, E.D.1
  • 85
    • 84859921736 scopus 로고    scopus 로고
    • A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
    • Herman MA, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484(7394):333-338.
    • (2012) Nature. , vol.484 , Issue.7394 , pp. 333-338
    • Herman, M.A.1
  • 86
    • 75149114696 scopus 로고    scopus 로고
    • Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans
    • Stefan N, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405-407.
    • (2010) Diabetes Care. , vol.33 , Issue.2 , pp. 405-407
    • Stefan, N.1
  • 87
    • 51549107903 scopus 로고    scopus 로고
    • Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
    • Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933-944.
    • (2008) Cell. , vol.134 , Issue.6 , pp. 933-944
    • Cao, H.1    Gerhold, K.2    Mayers, J.R.3    Wiest, M.M.4    Watkins, S.M.5    Hotamisligil, G.S.6
  • 88
    • 84922635429 scopus 로고    scopus 로고
    • Adipose tissue monomethyl branchedchain fatty acids and insulin sensitivity: Effects of obesity and weight loss
    • Su X, et al. Adipose tissue monomethyl branchedchain fatty acids and insulin sensitivity: Effects of obesity and weight loss. Obesity (Silver Spring). 2015;23(2):329-334.
    • (2015) Obesity (Silver Spring). , vol.23 , Issue.2 , pp. 329-334
    • Su, X.1
  • 89
    • 84916898719 scopus 로고    scopus 로고
    • Discovery of a class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects
    • Yore Mark M, et al. Discovery of a class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects. Cell. 2014;159(2):318-332.
    • (2014) Cell. , vol.159 , Issue.2 , pp. 318-332
    • Yore Mark, M.1
  • 90
    • 2942650969 scopus 로고    scopus 로고
    • Adipose tissue as an endocrine organ
    • Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89(6):2548-2556.
    • (2004) J Clin Endocrinol Metab. , vol.89 , Issue.6 , pp. 2548-2556
    • Kershaw, E.E.1    Flier, J.S.2
  • 91
    • 70349678823 scopus 로고    scopus 로고
    • Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis
    • Asano T, et al. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol. 2009;24(10):1669-1676.
    • (2009) J Gastroenterol Hepatol. , vol.24 , Issue.10 , pp. 1669-1676
    • Asano, T.1
  • 92
    • 33646346627 scopus 로고    scopus 로고
    • Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists
    • Nawrocki AR, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem. 2006;281(5):2654-2660.
    • (2006) J Biol Chem. , vol.281 , Issue.5 , pp. 2654-2660
    • Nawrocki, A.R.1
  • 93
    • 34848872799 scopus 로고    scopus 로고
    • Obesity-associated improvements in metabolic profile through expansion of adipose tissue
    • Kim J-Y, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621-2637.
    • (2007) J Clin Invest. , vol.117 , Issue.9 , pp. 2621-2637
    • Kim, J.-Y.1
  • 94
    • 77950202777 scopus 로고    scopus 로고
    • Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease
    • Petersen KF, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082-1089.
    • (2010) N Engl J Med. , vol.362 , Issue.12 , pp. 1082-1089
    • Petersen, K.F.1
  • 95
    • 84862193848 scopus 로고    scopus 로고
    • Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content
    • Peter A, et al. Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content. Int J Obes (Lond). 2012;36(6):774-782.
    • (2012) Int J Obes (Lond). , vol.36 , Issue.6 , pp. 774-782
    • Peter, A.1
  • 97
    • 9144223683 scopus 로고    scopus 로고
    • Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance
    • Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. J Clin Invest. 2003;112(12):1821-1830.
    • (2003) J Clin Invest. , vol.112 , Issue.12 , pp. 1821-1830
    • Xu, H.1
  • 98
    • 34248172323 scopus 로고    scopus 로고
    • NF-κB is important for TNF-α-induced lipolysis in human adipocytes
    • Laurencikiene J, et al. NF-κB is important for TNF-α-induced lipolysis in human adipocytes. J Lipid Res. 2007;48(5):1069-1077.
    • (2007) J Lipid Res. , vol.48 , Issue.5 , pp. 1069-1077
    • Laurencikiene, J.1
  • 99
    • 69949187947 scopus 로고    scopus 로고
    • Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis
    • Bezaire V, Mairal A, Anesia R, Lefort C, Langin D. Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett. 2009;583(18):3045-3049.
    • (2009) FEBS Lett. , vol.583 , Issue.18 , pp. 3045-3049
    • Bezaire, V.1    Mairal, A.2    Anesia, R.3    Lefort, C.4    Langin, D.5
  • 100
    • 78751524862 scopus 로고    scopus 로고
    • Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes
    • Ranjit S, et al. Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. J Lipid Res. 2011;52(2):221-236.
    • (2011) J Lipid Res. , vol.52 , Issue.2 , pp. 221-236
    • Ranjit, S.1
  • 101
    • 79551506567 scopus 로고    scopus 로고
    • Brain insulin controls adipose tissue lipolysis and lipogenesis
    • Scherer T, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13(2):183-194.
    • (2011) Cell Metab. , vol.13 , Issue.2 , pp. 183-194
    • Scherer, T.1
  • 102
    • 84866525104 scopus 로고    scopus 로고
    • Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis
    • Scherer T, Lindtner C, Zielinski E, O'Hare J, Filatova N, Buettner C. Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem. 2012;287(39):33061-33069.
    • (2012) J Biol Chem. , vol.287 , Issue.39 , pp. 33061-33069
    • Scherer, T.1    Lindtner, C.2    Zielinski, E.3    O'Hare, J.4    Filatova, N.5    Buettner, C.6
  • 103
    • 84893726788 scopus 로고    scopus 로고
    • Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans
    • Iwen KA, et al. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J Clin Endocrinol Metab. 2014;99(2):E246-E251.
    • (2014) J Clin Endocrinol Metab. , vol.99 , Issue.2 , pp. E246-E251
    • Iwen, K.A.1
  • 104
    • 84855459920 scopus 로고    scopus 로고
    • Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover
    • Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J Clin Invest. 2012;122(1):4-12.
    • (2012) J Clin Invest. , vol.122 , Issue.1 , pp. 4-12
    • Unger, R.H.1    Cherrington, A.D.2
  • 105
    • 79951638003 scopus 로고    scopus 로고
    • Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia
    • German JP, et al. Schwartz MW, and Morton GJ. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology. 2011;152(2):394-404.
    • (2011) Endocrinology. , vol.152 , Issue.2 , pp. 394-404
    • German, J.P.1    Schwartz, M.W.2    Morton, G.J.3
  • 107
    • 84928790920 scopus 로고    scopus 로고
    • FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitaryadrenal axis
    • Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitaryadrenal axis. Nat Commun. 2015;6:6980.
    • (2015) Nat Commun. , vol.6 , pp. 6980
    • Perry, R.J.1    Lee, S.2    Ma, L.3    Zhang, D.4    Schlessinger, J.5    Shulman, G.I.6
  • 108
    • 84920268071 scopus 로고    scopus 로고
    • Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice
    • Willecke F, et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler Thromb Vasc Biol. 2015;35(1):102-110.
    • (2015) Arterioscler Thromb Vasc Biol. , vol.35 , Issue.1 , pp. 102-110
    • Willecke, F.1
  • 109
    • 84921818351 scopus 로고    scopus 로고
    • Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
    • Vatner DF, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A. 2015;112(4):1143-1148.
    • (2015) Proc Natl Acad Sci U S A. , vol.112 , Issue.4 , pp. 1143-1148
    • Vatner, D.F.1
  • 110
    • 33845315534 scopus 로고    scopus 로고
    • Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men
    • Petersen KF, et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A. 2006;103(48):18273-18277.
    • (2006) Proc Natl Acad Sci U S A. , vol.103 , Issue.48 , pp. 18273-18277
    • Petersen, K.F.1
  • 111
    • 10744228031 scopus 로고    scopus 로고
    • Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice
    • Matsuzaka T, et al. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes. 2004;53(3):560-569.
    • (2004) Diabetes. , vol.53 , Issue.3 , pp. 560-569
    • Matsuzaka, T.1
  • 112
    • 84862023939 scopus 로고    scopus 로고
    • Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
    • Haas Joel T, et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 2012;15(6):873-884.
    • (2012) Cell Metab. , vol.15 , Issue.6 , pp. 873-884
    • Haas Joel, T.1
  • 113
    • 66449093225 scopus 로고    scopus 로고
    • Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
    • Stanhope KL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334.
    • (2009) J Clin Invest. , vol.119 , Issue.5 , pp. 1322-1334
    • Stanhope, K.L.1
  • 114
    • 33746536677 scopus 로고    scopus 로고
    • Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
    • Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 2006;4(2):107-110.
    • (2006) Cell Metab. , vol.4 , Issue.2 , pp. 107-110
    • Uyeda, K.1    Repa, J.J.2
  • 115
    • 84871709488 scopus 로고    scopus 로고
    • The role of the carbohydrate response element-binding protein in male fructose-fed rats
    • Erion DM, et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology. 2013;154(1):36-44.
    • (2013) Endocrinology. , vol.154 , Issue.1 , pp. 36-44
    • Erion, D.M.1
  • 116
    • 60649109153 scopus 로고    scopus 로고
    • The role of peroxisome proliferator-activated receptor gamma coactivator-1β in the pathogenesis of fructose-induced insulin resistance
    • Nagai Y, et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1β in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009;9(3):252-264.
    • (2009) Cell Metab. , vol.9 , Issue.3 , pp. 252-264
    • Nagai, Y.1
  • 117
    • 84927593686 scopus 로고    scopus 로고
    • Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity
    • Bindesbøll C, et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J Lipid Res. 2015;56(4):771-785.
    • (2015) J Lipid Res. , vol.56 , Issue.4 , pp. 771-785
    • Bindesbøll, C.1
  • 118
    • 84924778498 scopus 로고    scopus 로고
    • Controlled-release mitochondrial protonophore reverses diabetes steatohepatitis in rats
    • Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes steatohepatitis in rats. Science. 2015;347(6227):1253-1256.
    • (2015) Science. , vol.347 , Issue.6227 , pp. 1253-1256
    • Perry, R.J.1    Zhang, D.2    Zhang, X.M.3    Boyer, J.L.4    Shulman, G.I.5
  • 119
    • 14644435731 scopus 로고    scopus 로고
    • Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes
    • Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603-608.
    • (2005) Diabetes. , vol.54 , Issue.3 , pp. 603-608
    • Petersen, K.F.1    Dufour, S.2    Befroy, D.3    Lehrke, M.4    Hendler, R.E.5    Shulman, G.I.6
  • 120
    • 80054091845 scopus 로고    scopus 로고
    • Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol
    • Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506-2514.
    • (2011) Diabetologia. , vol.54 , Issue.10 , pp. 2506-2514
    • Lim, E.L.1    Hollingsworth, K.G.2    Aribisala, B.S.3    Chen, M.J.4    Mathers, J.C.5    Taylor, R.6
  • 121
    • 84903550422 scopus 로고    scopus 로고
    • 'Exercise snacks' before meals: A novel strategy to improve glycaemic control in individuals with insulin resistance
    • Francois ME, et al. 'Exercise snacks' before meals: A novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia. 2014;57(7):1437-1445.
    • (2014) Diabetologia. , vol.57 , Issue.7 , pp. 1437-1445
    • Francois, M.E.1
  • 122
    • 80051971972 scopus 로고    scopus 로고
    • Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals
    • Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705-13709.
    • (2011) Proc Natl Acad Sci U S A. , vol.108 , Issue.33 , pp. 13705-13709
    • Rabol, R.1    Petersen, K.F.2    Dufour, S.3    Flannery, C.4    Shulman, G.I.5
  • 123
    • 77954029795 scopus 로고    scopus 로고
    • Personal responsibility and obesity: A constructive approach to a controversial issue
    • Brownell KD, et al. Personal responsibility and obesity: A constructive approach to a controversial issue. Health Aff (Millwood). 2010;29(3):379-387.
    • (2010) Health Aff (Millwood). , vol.29 , Issue.3 , pp. 379-387
    • Brownell, K.D.1
  • 124
    • 84883167011 scopus 로고    scopus 로고
    • Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
    • Camporez JP, et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology. 2013;154(9):3099-3109.
    • (2013) Endocrinology. , vol.154 , Issue.9 , pp. 3099-3109
    • Camporez, J.P.1
  • 125
    • 84883481988 scopus 로고    scopus 로고
    • The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
    • Gaich G, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333-340.
    • (2013) Cell Metab. , vol.18 , Issue.3 , pp. 333-340
    • Gaich, G.1
  • 126
    • 33644654777 scopus 로고    scopus 로고
    • Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
    • Savage DB, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116(3):817-824.
    • (2006) J Clin Invest. , vol.116 , Issue.3 , pp. 817-824
    • Savage, D.B.1
  • 128
    • 84884231101 scopus 로고    scopus 로고
    • Spirolactam-based acetyl-CoA carboxylase inhibitors: Toward improved metabolic stability of a chromanone lead structure
    • Griffith DA, et al. Spirolactam-based acetyl-CoA carboxylase inhibitors: toward improved metabolic stability of a chromanone lead structure. J Med Chem. 2013;56(17):7110-7119.
    • (2013) J Med Chem. , vol.56 , Issue.17 , pp. 7110-7119
    • Griffith, D.A.1
  • 129
    • 84922080375 scopus 로고    scopus 로고
    • Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice
    • Tao H, Zhang Y, Zeng X, Shulman GI, Jin S. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med. 2014;20(11):1263-1269.
    • (2014) Nat Med. , vol.20 , Issue.11 , pp. 1263-1269
    • Tao, H.1    Zhang, Y.2    Zeng, X.3    Shulman, G.I.4    Jin, S.5
  • 130
    • 78149373656 scopus 로고    scopus 로고
    • Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence
    • Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.
    • (2010) Popul Health Metr. , vol.8 , pp. 29
    • Boyle, J.P.1    Thompson, T.J.2    Gregg, E.W.3    Barker, L.E.4    Williamson, D.F.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.