-
1
-
-
0032520870
-
Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans
-
Petersen KF, Laurent D, Rothman DL, Cline GW, Shulman GI. Mechanism by which glucose and insulin inhibit net hepatic glycogenolysis in humans. J Clin Invest. 1998;101(6):1203-1209.
-
(1998)
J Clin Invest.
, vol.101
, Issue.6
, pp. 1203-1209
-
-
Petersen, K.F.1
Laurent, D.2
Rothman, D.L.3
Cline, G.W.4
Shulman, G.I.5
-
2
-
-
0028847792
-
Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study
-
Hwang JH, et al. Impaired net hepatic glycogen synthesis in insulin-dependent diabetic subjects during mixed meal ingestion. A 13C nuclear magnetic resonance spectroscopy study. J Clin Invest. 1995;95(2):783-787.
-
(1995)
J Clin Invest.
, vol.95
, Issue.2
, pp. 783-787
-
-
Hwang, J.H.1
-
3
-
-
0018243091
-
Synergistic regulation of phosphorylase a by glucose and caffeine
-
Kasvinsky PJ, Shechosky S, Fletterick RJ. Synergistic regulation of phosphorylase a by glucose and caffeine. J Biol Chem. 1978;253(24):9102-9106.
-
(1978)
J Biol Chem.
, vol.253
, Issue.24
, pp. 9102-9106
-
-
Kasvinsky, P.J.1
Shechosky, S.2
Fletterick, R.J.3
-
4
-
-
0034981831
-
Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans
-
Petersen KF, Laurent D, Yu C, Cline GW, Shulman GI. Stimulating effects of low-dose fructose on insulin-stimulated hepatic glycogen synthesis in humans. Diabetes. 2001;50(6):1263-1268.
-
(2001)
Diabetes.
, vol.50
, Issue.6
, pp. 1263-1268
-
-
Petersen, K.F.1
Laurent, D.2
Yu, C.3
Cline, G.W.4
Shulman, G.I.5
-
5
-
-
84857861919
-
Mechanisms for insulin resistance: Common threads and missing links
-
Samuel Varman T, Shulman Gerald I. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852-871.
-
(2012)
Cell.
, vol.148
, Issue.5
, pp. 852-871
-
-
Samuel Varman, T.1
Shulman Gerald, I.2
-
6
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9-22.
-
(2007)
Cancer Cell.
, vol.12
, Issue.1
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
7
-
-
0031127305
-
Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα
-
Alessi DR, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997;7(4):261-269.
-
(1997)
Curr Biol.
, vol.7
, Issue.4
, pp. 261-269
-
-
Alessi, D.R.1
-
8
-
-
0032578999
-
Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphatedependent activation of protein kinase B
-
Stephens L, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphatedependent activation of protein kinase B. Science. 1998;279(5351):710-714.
-
(1998)
Science.
, vol.279
, Issue.5351
, pp. 710-714
-
-
Stephens, L.1
-
9
-
-
84865470537
-
Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling
-
Matveyenko AV, et al. Pulsatile portal vein insulin delivery enhances hepatic insulin action and signaling. Diabetes. 2012;61(9):2269-2279.
-
(2012)
Diabetes.
, vol.61
, Issue.9
, pp. 2269-2279
-
-
Matveyenko, A.V.1
-
10
-
-
84879857725
-
A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition
-
Wan M, et al. A noncanonical, GSK3-independent pathway controls postprandial hepatic glycogen deposition. Cell Metab. 2013;18(1):99-105.
-
(2013)
Cell Metab.
, vol.18
, Issue.1
, pp. 99-105
-
-
Wan, M.1
-
11
-
-
84857934301
-
Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1
-
Lu M, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18(3):388-395.
-
(2012)
Nat Med.
, vol.18
, Issue.3
, pp. 388-395
-
-
Lu, M.1
-
12
-
-
0021882037
-
The disposal of an oral glucose load in healthy subjects. A quantitative study
-
Ferrannini E, et al. The disposal of an oral glucose load in healthy subjects. A quantitative study. Diabetes. 1985;34(6):580-588.
-
(1985)
Diabetes.
, vol.34
, Issue.6
, pp. 580-588
-
-
Ferrannini, E.1
-
13
-
-
0018194945
-
Initial splanchnic extraction of ingested glucose in normal man
-
Radziuk J, McDonald TJ, Rubenstein D, Dupre J. Initial splanchnic extraction of ingested glucose in normal man. Metabolism. 1978;27(6):657-669.
-
(1978)
Metabolism.
, vol.27
, Issue.6
, pp. 657-669
-
-
Radziuk, J.1
McDonald, T.J.2
Rubenstein, D.3
Dupre, J.4
-
14
-
-
77953216482
-
Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo
-
Ramnanan CJ, et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes. 2010;59(6):1302-1311.
-
(2010)
Diabetes.
, vol.59
, Issue.6
, pp. 1302-1311
-
-
Ramnanan, C.J.1
-
15
-
-
0001563150
-
The relation of insulin to liver metabolism
-
Levine R, Fritz IB. The relation of insulin to liver metabolism. Diabetes. 1956;5(3):209-219.
-
(1956)
Diabetes.
, vol.5
, Issue.3
, pp. 209-219
-
-
Levine, R.1
Fritz, I.B.2
-
16
-
-
0029861999
-
Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs
-
Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest. 1996;98(3):741-749.
-
(1996)
J Clin Invest.
, vol.98
, Issue.3
, pp. 741-749
-
-
Rebrin, K.1
Steil, G.M.2
Mittelman, S.D.3
Bergman, R.N.4
-
17
-
-
84922709227
-
Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes
-
Perry RJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160(4):745-758.
-
(2015)
Cell.
, vol.160
, Issue.4
, pp. 745-758
-
-
Perry, R.J.1
-
18
-
-
84904000735
-
Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis
-
Perry RJ, et al. Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med. 2014;20(7):759-763.
-
(2014)
Nat Med.
, vol.20
, Issue.7
, pp. 759-763
-
-
Perry, R.J.1
-
19
-
-
0032810949
-
A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo
-
Previs SF, Cline GW, Shulman GI. A critical evaluation of mass isotopomer distribution analysis of gluconeogenesis in vivo. Am J Physiol. 1999;277(1 pt 1):E154-E160.
-
(1999)
Am J Physiol.
, vol.277
, Issue.1
, pp. E154-E160
-
-
Previs, S.F.1
Cline, G.W.2
Shulman, G.I.3
-
20
-
-
0037677096
-
Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation
-
Sano H, et al. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem. 2003;278(17):14599-14602.
-
(2003)
J Biol Chem.
, vol.278
, Issue.17
, pp. 14599-14602
-
-
Sano, H.1
-
21
-
-
12144271277
-
Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity
-
Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes. 2005;54(1):41-50.
-
(2005)
Diabetes.
, vol.54
, Issue.1
, pp. 41-50
-
-
Bruss, M.D.1
Arias, E.B.2
Lienhard, G.E.3
Cartee, G.D.4
-
22
-
-
44349161745
-
Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle
-
Taylor EB, et al. Discovery of TBC1D1 as an insulin-, AICAR-, and contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem. 2008;283(15):9787-9796.
-
(2008)
J Biol Chem.
, vol.283
, Issue.15
, pp. 9787-9796
-
-
Taylor, E.B.1
-
23
-
-
84861890085
-
Regulation of glucose transporter translocation in health and diabetes
-
Bogan JS. Regulation of glucose transporter translocation in health and diabetes. Annu Rev Biochem. 2012;81:507-532.
-
(2012)
Annu Rev Biochem.
, vol.81
, pp. 507-532
-
-
Bogan, J.S.1
-
24
-
-
0142184334
-
Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking
-
Bogan JS, Hendon N, McKee AE, Tsao TS, Lodish HF. Functional cloning of TUG as a regulator of GLUT4 glucose transporter trafficking. Nature. 2003;425(6959):727-733.
-
(2003)
Nature.
, vol.425
, Issue.6959
, pp. 727-733
-
-
Bogan, J.S.1
Hendon, N.2
McKee, A.E.3
Tsao, T.S.4
Lodish, H.F.5
-
25
-
-
84863621392
-
Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation
-
Bogan JS, et al. Endoproteolytic cleavage of TUG protein regulates GLUT4 glucose transporter translocation. J Biol Chem. 2012;287(28):23932-23947.
-
(2012)
J Biol Chem.
, vol.287
, Issue.28
, pp. 23932-23947
-
-
Bogan, J.S.1
-
26
-
-
84880058904
-
Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle
-
Loffler MG, et al. Enhanced fasting glucose turnover in mice with disrupted action of TUG protein in skeletal muscle. J Biol Chem. 2013;288(28):20135-20150.
-
(2013)
J Biol Chem.
, vol.288
, Issue.28
, pp. 20135-20150
-
-
Loffler, M.G.1
-
27
-
-
0033917321
-
Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle
-
Kim JK, et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest. 2000;105(12):1791-1797.
-
(2000)
J Clin Invest.
, vol.105
, Issue.12
, pp. 1791-1797
-
-
Kim, J.K.1
-
28
-
-
0032697037
-
Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice
-
Wojtaszewski J, et al. Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. J Clin Invest. 1999;104(9):1257-1264.
-
(1999)
J Clin Invest.
, vol.104
, Issue.9
, pp. 1257-1264
-
-
Wojtaszewski, J.1
-
29
-
-
80053163909
-
AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise
-
O'Neill HM, et al. AMP-activated protein kinase (AMPK) β1β2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A. 2011;108(38):16092-16097.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.38
, pp. 16092-16097
-
-
O'Neill, H.M.1
-
30
-
-
84929148548
-
Exercise and type 2 diabetes: Molecular mechanisms regulating glucose uptake in skeletal muscle
-
Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Adv Physiol Educ. 2014;38(4):308-314.
-
(2014)
Adv Physiol Educ.
, vol.38
, Issue.4
, pp. 308-314
-
-
Stanford, K.I.1
Goodyear, L.J.2
-
31
-
-
18544368076
-
Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans
-
Virtanen KA, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab. 2002;87(8):3902-3910.
-
(2002)
J Clin Endocrinol Metab.
, vol.87
, Issue.8
, pp. 3902-3910
-
-
Virtanen, K.A.1
-
32
-
-
84868333588
-
PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans
-
Ng JM, et al. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol Endocrinol Metab. 2012;303(9):E1134-E1141.
-
(2012)
Am J Physiol Endocrinol Metab.
, vol.303
, Issue.9
, pp. E1134-E1141
-
-
Ng, J.M.1
-
33
-
-
84899465714
-
Physiological regulation of lipoprotein lipase
-
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919-933.
-
(2014)
Biochim Biophys Acta.
, vol.1841
, Issue.7
, pp. 919-933
-
-
Kersten, S.1
-
34
-
-
34547125141
-
Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue
-
Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 2007;293(1):G1-G4.
-
(2007)
Am J Physiol Gastrointest Liver Physiol.
, vol.293
, Issue.1
, pp. G1-G4
-
-
Jaworski, K.1
Sarkadi-Nagy, E.2
Duncan, R.E.3
Ahmadian, M.4
Sul, H.S.5
-
35
-
-
0027482040
-
Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men
-
Fried SK, Russell CD, Grauso NL, Brolin RE. Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest. 1993;92(5):2191-2198.
-
(1993)
J Clin Invest.
, vol.92
, Issue.5
, pp. 2191-2198
-
-
Fried, S.K.1
Russell, C.D.2
Grauso, N.L.3
Brolin, R.E.4
-
36
-
-
80053312124
-
Fasting and post-prandial adipose tissue lipoprotein lipase and hormonesensitive lipase in obesity and type 2 diabetes
-
Costabile G, et al. Fasting and post-prandial adipose tissue lipoprotein lipase and hormonesensitive lipase in obesity and type 2 diabetes. J Endocrinol Invest. 2011;34(5):e110-e114.
-
(2011)
J Endocrinol Invest.
, vol.34
, Issue.5
, pp. e110-e114
-
-
Costabile, G.1
-
37
-
-
0037000654
-
Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner
-
Panarotto D, Rémillard P, Bouffard L, Maheux P. Insulin resistance affects the regulation of lipoprotein lipase in the postprandial period and in an adipose tissue-specific manner. Eur J Clin Invest. 2002;32(2):84-92.
-
(2002)
Eur J Clin Invest.
, vol.32
, Issue.2
, pp. 84-92
-
-
Panarotto, D.1
Rémillard, P.2
Bouffard, L.3
Maheux, P.4
-
38
-
-
84899465714
-
Physiological regulation of lipoprotein lipase
-
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919-933.
-
(2014)
Biochim Biophys Acta.
, vol.1841
, Issue.7
, pp. 919-933
-
-
Kersten, S.1
-
39
-
-
84896532233
-
Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise
-
Catoire M, et al. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise. Proc Natl Acad Sci U S A. 2014;111(11):E1043-E1052.
-
(2014)
Proc Natl Acad Sci U S A.
, vol.111
, Issue.11
, pp. E1043-E1052
-
-
Catoire, M.1
-
40
-
-
0032934826
-
Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study
-
Krssak M, et al. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia. 1999;42(1):113-116.
-
(1999)
Diabetologia.
, vol.42
, Issue.1
, pp. 113-116
-
-
Krssak, M.1
-
41
-
-
0032764784
-
Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents
-
Perseghin G, et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: A 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes. 1999;48(8):1600-1606.
-
(1999)
Diabetes.
, vol.48
, Issue.8
, pp. 1600-1606
-
-
Perseghin, G.1
-
42
-
-
0036224883
-
Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: Relationships to insulin sensitivity, total body fat, and central adiposity
-
Sinha R, et al. Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 2002;51(4):1022-1027.
-
(2002)
Diabetes.
, vol.51
, Issue.4
, pp. 1022-1027
-
-
Sinha, R.1
-
43
-
-
50549202600
-
The glucose fatty-acid cycle: Its role in insulin sensitivity and the metabolic disturbancess of diabetes mellitus
-
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbancess of diabetes mellitus. Lancet. 1963;1(7285):785-789.
-
(1963)
Lancet.
, vol.1
, Issue.7285
, pp. 785-789
-
-
Randle, P.J.1
Garland, P.B.2
Hales, C.N.3
Newsholme, E.A.4
-
44
-
-
0029948212
-
Mechanism of free fatty acidinduced insulin resistance in humans
-
Roden M, et al. Mechanism of free fatty acidinduced insulin resistance in humans. J Clin Invest. 1996;97(12):2859-2865.
-
(1996)
J Clin Invest.
, vol.97
, Issue.12
, pp. 2859-2865
-
-
Roden, M.1
-
45
-
-
0032954778
-
Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity
-
Dresner A, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103(2):253-259.
-
(1999)
J Clin Invest.
, vol.103
, Issue.2
, pp. 253-259
-
-
Dresner, A.1
-
46
-
-
0031594368
-
13C/31P NMR studies on the mechanism of insulin resistance in obesity
-
Petersen KF, et al. 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes. 1998;47(3):381-386.
-
(1998)
Diabetes.
, vol.47
, Issue.3
, pp. 381-386
-
-
Petersen, K.F.1
-
47
-
-
0033595120
-
Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes
-
Cline GW, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341(4):240-246.
-
(1999)
N Engl J Med.
, vol.341
, Issue.4
, pp. 240-246
-
-
Cline, G.W.1
-
48
-
-
0029849462
-
Increased glucose transportphosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects
-
Perseghin G, et al. Increased glucose transportphosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996;335(18):1357-1362.
-
(1996)
N Engl J Med.
, vol.335
, Issue.18
, pp. 1357-1362
-
-
Perseghin, G.1
-
49
-
-
0030941820
-
Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study
-
Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes. 1997;46(6):1001-1009.
-
(1997)
Diabetes.
, vol.46
, Issue.6
, pp. 1001-1009
-
-
Perseghin, G.1
Ghosh, S.2
Gerow, K.3
Shulman, G.I.4
-
50
-
-
0038025371
-
Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
-
Petersen KF, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140-1142.
-
(2003)
Science.
, vol.300
, Issue.5622
, pp. 1140-1142
-
-
Petersen, K.F.1
-
51
-
-
78649497300
-
Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance
-
Lee HY, et al. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010;12(6):668-674.
-
(2010)
Cell Metab.
, vol.12
, Issue.6
, pp. 668-674
-
-
Lee, H.Y.1
-
52
-
-
1642377274
-
Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
-
Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664-671.
-
(2004)
N Engl J Med.
, vol.350
, Issue.7
, pp. 664-671
-
-
Petersen, K.F.1
Dufour, S.2
Befroy, D.3
Garcia, R.4
Shulman, G.I.5
-
53
-
-
34248141686
-
Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
-
Befroy DE, et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376-1381.
-
(2007)
Diabetes.
, vol.56
, Issue.5
, pp. 1376-1381
-
-
Befroy, D.E.1
-
54
-
-
31044433308
-
Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
-
Morino K, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Invest. 2005;115(12):3587-3593.
-
(2005)
J Clin Invest.
, vol.115
, Issue.12
, pp. 3587-3593
-
-
Morino, K.1
-
55
-
-
84859544293
-
Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes
-
Morino K, et al. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes. 2012;61(4):877-887.
-
(2012)
Diabetes.
, vol.61
, Issue.4
, pp. 877-887
-
-
Morino, K.1
-
56
-
-
0037184925
-
Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle
-
Yu C, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002;277(52):50230-50236.
-
(2002)
J Biol Chem.
, vol.277
, Issue.52
, pp. 50230-50236
-
-
Yu, C.1
-
57
-
-
0345086474
-
Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
-
Griffin ME, et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 1999;48(6):1270-1274.
-
(1999)
Diabetes.
, vol.48
, Issue.6
, pp. 1270-1274
-
-
Griffin, M.E.1
-
58
-
-
0036300538
-
Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α
-
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB-α. Diabetes. 2002;51(7):2005-2011.
-
(2002)
Diabetes.
, vol.51
, Issue.7
, pp. 2005-2011
-
-
Itani, S.I.1
Ruderman, N.B.2
Schmieder, F.3
Boden, G.4
-
59
-
-
84903691827
-
Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans
-
Szendroedi J, et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A. 2014;111(26):9597-9602.
-
(2014)
Proc Natl Acad Sci U S A.
, vol.111
, Issue.26
, pp. 9597-9602
-
-
Szendroedi, J.1
-
60
-
-
0034946949
-
Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
-
Kim JK, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 2001;108(1):153-160.
-
(2001)
J Clin Invest.
, vol.108
, Issue.1
, pp. 153-160
-
-
Kim, J.K.1
-
61
-
-
0034946949
-
Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4
-
Kim JK, et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. J Clin Invest. 2001;108(1):153-160.
-
(2001)
J Clin Invest.
, vol.108
, Issue.1
, pp. 153-160
-
-
Kim, J.K.1
-
62
-
-
34547911800
-
The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome
-
Petersen KF, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587-12594.
-
(2007)
Proc Natl Acad Sci U S A.
, vol.104
, Issue.31
, pp. 12587-12594
-
-
Petersen, K.F.1
-
63
-
-
0036114844
-
Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy
-
Petersen KF, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest. 2002;109(10):1345-1350.
-
(2002)
J Clin Invest.
, vol.109
, Issue.10
, pp. 1345-1350
-
-
Petersen, K.F.1
-
64
-
-
0034708580
-
Mechanism of insulin resistance in A-ZIP/F-1 fatless mice
-
Kim JK, Gavrilova O, Chen Y, Reitman ML, Shulman GI. Mechanism of insulin resistance in A-ZIP/F-1 fatless mice. J Biol Chem. 2000;275(12):8456-8460.
-
(2000)
J Biol Chem.
, vol.275
, Issue.12
, pp. 8456-8460
-
-
Kim, J.K.1
Gavrilova, O.2
Chen, Y.3
Reitman, M.L.4
Shulman, G.I.5
-
65
-
-
0035912744
-
Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance
-
Kim JK, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001;98(13):7522-7527.
-
(2001)
Proc Natl Acad Sci U S A.
, vol.98
, Issue.13
, pp. 7522-7527
-
-
Kim, J.K.1
-
66
-
-
3543029821
-
Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease
-
Samuel VT, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem. 2004;279(31):32345-32353.
-
(2004)
J Biol Chem.
, vol.279
, Issue.31
, pp. 32345-32353
-
-
Samuel, V.T.1
-
67
-
-
0032813243
-
Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats-effects of feeding
-
Qu X, Seale JP, Donnelly R. Tissue and isoform-selective activation of protein kinase C in insulin-resistant obese Zucker rats-effects of feeding. J Endocrinol. 1999;162(2):207-214.
-
(1999)
J Endocrinol.
, vol.162
, Issue.2
, pp. 207-214
-
-
Qu, X.1
Seale, J.P.2
Donnelly, R.3
-
68
-
-
33847404482
-
Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease
-
Samuel VT, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest. 2007;117(3):739-745.
-
(2007)
J Clin Invest.
, vol.117
, Issue.3
, pp. 739-745
-
-
Samuel, V.T.1
-
69
-
-
80052538157
-
Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice
-
Raddatz K, et al. Time-dependent effects of Prkce deletion on glucose homeostasis and hepatic lipid metabolism on dietary lipid oversupply in mice. Diabetologia. 2011;54(6):1447-1456.
-
(2011)
Diabetologia.
, vol.54
, Issue.6
, pp. 1447-1456
-
-
Raddatz, K.1
-
70
-
-
80053627289
-
Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease
-
Kumashiro N, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011;108(39):16381-16385.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.39
, pp. 16381-16385
-
-
Kumashiro, N.1
-
71
-
-
84861647226
-
Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects
-
Magkos F, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142(7):1444-1446.
-
(2012)
Gastroenterology.
, vol.142
, Issue.7
, pp. 1444-1446
-
-
Magkos, F.1
-
72
-
-
78149346457
-
CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance
-
Brown JM, et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res. 2010;51(11):3306-3315.
-
(2010)
J Lipid Res.
, vol.51
, Issue.11
, pp. 3306-3315
-
-
Brown, J.M.1
-
73
-
-
84873178604
-
CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance
-
Cantley JL, et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A. 2013;110(5):1869-1874.
-
(2013)
Proc Natl Acad Sci U S A.
, vol.110
, Issue.5
, pp. 1869-1874
-
-
Cantley, J.L.1
-
74
-
-
56749096610
-
Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease
-
Romeo S, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40(12):1461-1465.
-
(2008)
Nat Genet.
, vol.40
, Issue.12
, pp. 1461-1465
-
-
Romeo, S.1
-
75
-
-
84920955177
-
Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis
-
Smagris E, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61(1):108-118.
-
(2015)
Hepatology.
, vol.61
, Issue.1
, pp. 108-118
-
-
Smagris, E.1
-
76
-
-
84926660045
-
PNPLA3 variant I148M is associated with altered hepatic lipid composition in humans
-
Peter A, et al. PNPLA3 variant I148M is associated with altered hepatic lipid composition in humans. Diabetologia. 2014;57(10):2103-2107.
-
(2014)
Diabetologia.
, vol.57
, Issue.10
, pp. 2103-2107
-
-
Peter, A.1
-
77
-
-
84904337541
-
Hepatic glucose uptake and disposition during short-term high-fat vs. Highfructose feeding
-
Coate KC, et al. Hepatic glucose uptake and disposition during short-term high-fat vs. highfructose feeding. Am J Physiol Endocrinol Metab. 2014;307(2):E151-E160.
-
(2014)
Am J Physiol Endocrinol Metab.
, vol.307
, Issue.2
, pp. E151-E160
-
-
Coate, K.C.1
-
78
-
-
0025123408
-
1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo
-
Turinsky J, O'Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990;265(28):16880-16885.
-
(1990)
J Biol Chem.
, vol.265
, Issue.28
, pp. 16880-16885
-
-
Turinsky, J.1
O'Sullivan, D.M.2
Bayly, B.P.3
-
79
-
-
33847332202
-
Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturatedfat-, and obesity-induced insulin resistance
-
Holland WL, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturatedfat-, and obesity-induced insulin resistance. Cell Metab. 2007;5(3):167-179.
-
(2007)
Cell Metab.
, vol.5
, Issue.3
, pp. 167-179
-
-
Holland, W.L.1
-
80
-
-
77956022194
-
Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption
-
Ussher JR, et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes. 2010;59(10):2453-2464.
-
(2010)
Diabetes.
, vol.59
, Issue.10
, pp. 2453-2464
-
-
Ussher, J.R.1
-
81
-
-
84887432240
-
Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler
-
Perry RJ, et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab. 2013;18(5):740-748.
-
(2013)
Cell Metab.
, vol.18
, Issue.5
, pp. 740-748
-
-
Perry, R.J.1
-
82
-
-
84907984591
-
CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to dietinduced steatohepatitis and insulin resistance
-
Raichur S, et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to dietinduced steatohepatitis and insulin resistance. Cell Metab. 2014;20(4):687-695.
-
(2014)
Cell Metab.
, vol.20
, Issue.4
, pp. 687-695
-
-
Raichur, S.1
-
83
-
-
84907978697
-
Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance
-
Turpin SM, et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20(4):678-686.
-
(2014)
Cell Metab.
, vol.20
, Issue.4
, pp. 678-686
-
-
Turpin, S.M.1
-
84
-
-
0035825643
-
Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver
-
Abel ED, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409(6821):729-733.
-
(2001)
Nature.
, vol.409
, Issue.6821
, pp. 729-733
-
-
Abel, E.D.1
-
85
-
-
84859921736
-
A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism
-
Herman MA, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature. 2012;484(7394):333-338.
-
(2012)
Nature.
, vol.484
, Issue.7394
, pp. 333-338
-
-
Herman, M.A.1
-
86
-
-
75149114696
-
Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans
-
Stefan N, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405-407.
-
(2010)
Diabetes Care.
, vol.33
, Issue.2
, pp. 405-407
-
-
Stefan, N.1
-
87
-
-
51549107903
-
Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism
-
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933-944.
-
(2008)
Cell.
, vol.134
, Issue.6
, pp. 933-944
-
-
Cao, H.1
Gerhold, K.2
Mayers, J.R.3
Wiest, M.M.4
Watkins, S.M.5
Hotamisligil, G.S.6
-
88
-
-
84922635429
-
Adipose tissue monomethyl branchedchain fatty acids and insulin sensitivity: Effects of obesity and weight loss
-
Su X, et al. Adipose tissue monomethyl branchedchain fatty acids and insulin sensitivity: Effects of obesity and weight loss. Obesity (Silver Spring). 2015;23(2):329-334.
-
(2015)
Obesity (Silver Spring).
, vol.23
, Issue.2
, pp. 329-334
-
-
Su, X.1
-
89
-
-
84916898719
-
Discovery of a class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects
-
Yore Mark M, et al. Discovery of a class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects. Cell. 2014;159(2):318-332.
-
(2014)
Cell.
, vol.159
, Issue.2
, pp. 318-332
-
-
Yore Mark, M.1
-
91
-
-
70349678823
-
Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis
-
Asano T, et al. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J Gastroenterol Hepatol. 2009;24(10):1669-1676.
-
(2009)
J Gastroenterol Hepatol.
, vol.24
, Issue.10
, pp. 1669-1676
-
-
Asano, T.1
-
92
-
-
33646346627
-
Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists
-
Nawrocki AR, et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J Biol Chem. 2006;281(5):2654-2660.
-
(2006)
J Biol Chem.
, vol.281
, Issue.5
, pp. 2654-2660
-
-
Nawrocki, A.R.1
-
93
-
-
34848872799
-
Obesity-associated improvements in metabolic profile through expansion of adipose tissue
-
Kim J-Y, et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest. 2007;117(9):2621-2637.
-
(2007)
J Clin Invest.
, vol.117
, Issue.9
, pp. 2621-2637
-
-
Kim, J.-Y.1
-
94
-
-
77950202777
-
Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease
-
Petersen KF, et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N Engl J Med. 2010;362(12):1082-1089.
-
(2010)
N Engl J Med.
, vol.362
, Issue.12
, pp. 1082-1089
-
-
Petersen, K.F.1
-
95
-
-
84862193848
-
Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content
-
Peter A, et al. Visceral obesity modulates the impact of apolipoprotein C3 gene variants on liver fat content. Int J Obes (Lond). 2012;36(6):774-782.
-
(2012)
Int J Obes (Lond).
, vol.36
, Issue.6
, pp. 774-782
-
-
Peter, A.1
-
96
-
-
0348230958
-
Obesity is associated with macrophage accumulation in adipose tissue
-
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AWJ. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796-1808.
-
(2003)
J Clin Invest.
, vol.112
, Issue.12
, pp. 1796-1808
-
-
Weisberg, S.P.1
McCann, D.2
Desai, M.3
Rosenbaum, M.4
Leibel, R.L.5
Ferrante, A.W.J.6
-
97
-
-
9144223683
-
Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance
-
Xu H, et al. Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. J Clin Invest. 2003;112(12):1821-1830.
-
(2003)
J Clin Invest.
, vol.112
, Issue.12
, pp. 1821-1830
-
-
Xu, H.1
-
98
-
-
34248172323
-
NF-κB is important for TNF-α-induced lipolysis in human adipocytes
-
Laurencikiene J, et al. NF-κB is important for TNF-α-induced lipolysis in human adipocytes. J Lipid Res. 2007;48(5):1069-1077.
-
(2007)
J Lipid Res.
, vol.48
, Issue.5
, pp. 1069-1077
-
-
Laurencikiene, J.1
-
99
-
-
69949187947
-
Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis
-
Bezaire V, Mairal A, Anesia R, Lefort C, Langin D. Chronic TNFalpha and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett. 2009;583(18):3045-3049.
-
(2009)
FEBS Lett.
, vol.583
, Issue.18
, pp. 3045-3049
-
-
Bezaire, V.1
Mairal, A.2
Anesia, R.3
Lefort, C.4
Langin, D.5
-
100
-
-
78751524862
-
Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes
-
Ranjit S, et al. Regulation of fat specific protein 27 by isoproterenol and TNF-α to control lipolysis in murine adipocytes. J Lipid Res. 2011;52(2):221-236.
-
(2011)
J Lipid Res.
, vol.52
, Issue.2
, pp. 221-236
-
-
Ranjit, S.1
-
101
-
-
79551506567
-
Brain insulin controls adipose tissue lipolysis and lipogenesis
-
Scherer T, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13(2):183-194.
-
(2011)
Cell Metab.
, vol.13
, Issue.2
, pp. 183-194
-
-
Scherer, T.1
-
102
-
-
84866525104
-
Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis
-
Scherer T, Lindtner C, Zielinski E, O'Hare J, Filatova N, Buettner C. Short term voluntary overfeeding disrupts brain insulin control of adipose tissue lipolysis. J Biol Chem. 2012;287(39):33061-33069.
-
(2012)
J Biol Chem.
, vol.287
, Issue.39
, pp. 33061-33069
-
-
Scherer, T.1
Lindtner, C.2
Zielinski, E.3
O'Hare, J.4
Filatova, N.5
Buettner, C.6
-
103
-
-
84893726788
-
Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans
-
Iwen KA, et al. Intranasal insulin suppresses systemic but not subcutaneous lipolysis in healthy humans. J Clin Endocrinol Metab. 2014;99(2):E246-E251.
-
(2014)
J Clin Endocrinol Metab.
, vol.99
, Issue.2
, pp. E246-E251
-
-
Iwen, K.A.1
-
104
-
-
84855459920
-
Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover
-
Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J Clin Invest. 2012;122(1):4-12.
-
(2012)
J Clin Invest.
, vol.122
, Issue.1
, pp. 4-12
-
-
Unger, R.H.1
Cherrington, A.D.2
-
105
-
-
79951638003
-
Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia
-
German JP, et al. Schwartz MW, and Morton GJ. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology. 2011;152(2):394-404.
-
(2011)
Endocrinology.
, vol.152
, Issue.2
, pp. 394-404
-
-
German, J.P.1
Schwartz, M.W.2
Morton, G.J.3
-
107
-
-
84928790920
-
FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitaryadrenal axis
-
Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitaryadrenal axis. Nat Commun. 2015;6:6980.
-
(2015)
Nat Commun.
, vol.6
, pp. 6980
-
-
Perry, R.J.1
Lee, S.2
Ma, L.3
Zhang, D.4
Schlessinger, J.5
Shulman, G.I.6
-
108
-
-
84920268071
-
Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice
-
Willecke F, et al. Lipolysis, and not hepatic lipogenesis, is the primary modulator of triglyceride levels in streptozotocin-induced diabetic mice. Arterioscler Thromb Vasc Biol. 2015;35(1):102-110.
-
(2015)
Arterioscler Thromb Vasc Biol.
, vol.35
, Issue.1
, pp. 102-110
-
-
Willecke, F.1
-
109
-
-
84921818351
-
Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids
-
Vatner DF, et al. Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A. 2015;112(4):1143-1148.
-
(2015)
Proc Natl Acad Sci U S A.
, vol.112
, Issue.4
, pp. 1143-1148
-
-
Vatner, D.F.1
-
110
-
-
33845315534
-
Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men
-
Petersen KF, et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc Natl Acad Sci U S A. 2006;103(48):18273-18277.
-
(2006)
Proc Natl Acad Sci U S A.
, vol.103
, Issue.48
, pp. 18273-18277
-
-
Petersen, K.F.1
-
111
-
-
10744228031
-
Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice
-
Matsuzaka T, et al. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes. 2004;53(3):560-569.
-
(2004)
Diabetes.
, vol.53
, Issue.3
, pp. 560-569
-
-
Matsuzaka, T.1
-
112
-
-
84862023939
-
Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression
-
Haas Joel T, et al. Hepatic insulin signaling is required for obesity-dependent expression of SREBP-1c mRNA but not for feeding-dependent expression. Cell Metab. 2012;15(6):873-884.
-
(2012)
Cell Metab.
, vol.15
, Issue.6
, pp. 873-884
-
-
Haas Joel, T.1
-
113
-
-
66449093225
-
Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans
-
Stanhope KL, et al. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest. 2009;119(5):1322-1334.
-
(2009)
J Clin Invest.
, vol.119
, Issue.5
, pp. 1322-1334
-
-
Stanhope, K.L.1
-
114
-
-
33746536677
-
Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis
-
Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis. Cell Metab. 2006;4(2):107-110.
-
(2006)
Cell Metab.
, vol.4
, Issue.2
, pp. 107-110
-
-
Uyeda, K.1
Repa, J.J.2
-
115
-
-
84871709488
-
The role of the carbohydrate response element-binding protein in male fructose-fed rats
-
Erion DM, et al. The role of the carbohydrate response element-binding protein in male fructose-fed rats. Endocrinology. 2013;154(1):36-44.
-
(2013)
Endocrinology.
, vol.154
, Issue.1
, pp. 36-44
-
-
Erion, D.M.1
-
116
-
-
60649109153
-
The role of peroxisome proliferator-activated receptor gamma coactivator-1β in the pathogenesis of fructose-induced insulin resistance
-
Nagai Y, et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1β in the pathogenesis of fructose-induced insulin resistance. Cell Metab. 2009;9(3):252-264.
-
(2009)
Cell Metab.
, vol.9
, Issue.3
, pp. 252-264
-
-
Nagai, Y.1
-
117
-
-
84927593686
-
Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity
-
Bindesbøll C, et al. Liver X receptor regulates hepatic nuclear O-GlcNAc signaling and carbohydrate responsive element-binding protein activity. J Lipid Res. 2015;56(4):771-785.
-
(2015)
J Lipid Res.
, vol.56
, Issue.4
, pp. 771-785
-
-
Bindesbøll, C.1
-
118
-
-
84924778498
-
Controlled-release mitochondrial protonophore reverses diabetes steatohepatitis in rats
-
Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes steatohepatitis in rats. Science. 2015;347(6227):1253-1256.
-
(2015)
Science.
, vol.347
, Issue.6227
, pp. 1253-1256
-
-
Perry, R.J.1
Zhang, D.2
Zhang, X.M.3
Boyer, J.L.4
Shulman, G.I.5
-
119
-
-
14644435731
-
Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes
-
Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes. Diabetes. 2005;54(3):603-608.
-
(2005)
Diabetes.
, vol.54
, Issue.3
, pp. 603-608
-
-
Petersen, K.F.1
Dufour, S.2
Befroy, D.3
Lehrke, M.4
Hendler, R.E.5
Shulman, G.I.6
-
120
-
-
80054091845
-
Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol
-
Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506-2514.
-
(2011)
Diabetologia.
, vol.54
, Issue.10
, pp. 2506-2514
-
-
Lim, E.L.1
Hollingsworth, K.G.2
Aribisala, B.S.3
Chen, M.J.4
Mathers, J.C.5
Taylor, R.6
-
121
-
-
84903550422
-
'Exercise snacks' before meals: A novel strategy to improve glycaemic control in individuals with insulin resistance
-
Francois ME, et al. 'Exercise snacks' before meals: A novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia. 2014;57(7):1437-1445.
-
(2014)
Diabetologia.
, vol.57
, Issue.7
, pp. 1437-1445
-
-
Francois, M.E.1
-
122
-
-
80051971972
-
Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals
-
Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705-13709.
-
(2011)
Proc Natl Acad Sci U S A.
, vol.108
, Issue.33
, pp. 13705-13709
-
-
Rabol, R.1
Petersen, K.F.2
Dufour, S.3
Flannery, C.4
Shulman, G.I.5
-
123
-
-
77954029795
-
Personal responsibility and obesity: A constructive approach to a controversial issue
-
Brownell KD, et al. Personal responsibility and obesity: A constructive approach to a controversial issue. Health Aff (Millwood). 2010;29(3):379-387.
-
(2010)
Health Aff (Millwood).
, vol.29
, Issue.3
, pp. 379-387
-
-
Brownell, K.D.1
-
124
-
-
84883167011
-
Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
-
Camporez JP, et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology. 2013;154(9):3099-3109.
-
(2013)
Endocrinology.
, vol.154
, Issue.9
, pp. 3099-3109
-
-
Camporez, J.P.1
-
125
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333-340.
-
(2013)
Cell Metab.
, vol.18
, Issue.3
, pp. 333-340
-
-
Gaich, G.1
-
126
-
-
33644654777
-
Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2
-
Savage DB, et al. Reversal of diet-induced hepatic steatosis and hepatic insulin resistance by antisense oligonucleotide inhibitors of acetyl-CoA carboxylases 1 and 2. J Clin Invest. 2006;116(3):817-824.
-
(2006)
J Clin Invest.
, vol.116
, Issue.3
, pp. 817-824
-
-
Savage, D.B.1
-
127
-
-
84956626553
-
Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis and delays diabetes progression in ZDF rats
-
Boston, Massachusetts, USA; June 5-9. Poster 1280-P
-
Harriman G, Greenwood J, Bhat S, Westlin WF, Kapeller R, and Harwood HJ. Acetyl-CoA Carboxylase Inhibition by ND-630 Reduces Hepatic Steatosis and Delays Diabetes Progression in ZDF Rats. Presented at: 75th Annual American Diabetes Association Annual Scientific Session; Boston, Massachusetts, USA; June 5-9, 2015. Poster 1280-P.
-
(2015)
75th Annual American Diabetes Association Annual Scientific Session
-
-
Harriman, G.1
Greenwood, J.2
Bhat, S.3
Westlin, W.F.4
Kapeller, R.5
Harwood, H.J.6
-
128
-
-
84884231101
-
Spirolactam-based acetyl-CoA carboxylase inhibitors: Toward improved metabolic stability of a chromanone lead structure
-
Griffith DA, et al. Spirolactam-based acetyl-CoA carboxylase inhibitors: toward improved metabolic stability of a chromanone lead structure. J Med Chem. 2013;56(17):7110-7119.
-
(2013)
J Med Chem.
, vol.56
, Issue.17
, pp. 7110-7119
-
-
Griffith, D.A.1
-
129
-
-
84922080375
-
Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice
-
Tao H, Zhang Y, Zeng X, Shulman GI, Jin S. Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nat Med. 2014;20(11):1263-1269.
-
(2014)
Nat Med.
, vol.20
, Issue.11
, pp. 1263-1269
-
-
Tao, H.1
Zhang, Y.2
Zeng, X.3
Shulman, G.I.4
Jin, S.5
-
130
-
-
78149373656
-
Projection of the year 2050 burden of diabetes in the US adult population: Dynamic modeling of incidence, mortality, and prediabetes prevalence
-
Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr. 2010;8:29.
-
(2010)
Popul Health Metr.
, vol.8
, pp. 29
-
-
Boyle, J.P.1
Thompson, T.J.2
Gregg, E.W.3
Barker, L.E.4
Williamson, D.F.5
|