-
1
-
-
0035368548
-
Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta)
-
Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292, 1728-1731 (2001).
-
(2001)
Science
, vol.292
, pp. 1728-1731
-
-
Cho, H.1
-
2
-
-
0033522897
-
Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmanninsensitive pathway
-
Nakae, J., Park, B. C. & Accili, D. Insulin stimulates phosphorylation of the forkhead transcription factor FKHR on serine 253 through a Wortmanninsensitive pathway. J. Biol. Chem. 274, 15982-15985 (1999).
-
(1999)
J. Biol. Chem
, vol.274
, pp. 15982-15985
-
-
Nakae, J.1
Park, B.C.2
Accili, D.3
-
3
-
-
33646148946
-
Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ
-
Taniguchi, C. M. et al. Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell Metab. 3, 343-353 (2006).
-
(2006)
Cell Metab
, vol.3
, pp. 343-353
-
-
Taniguchi, C.M.1
-
4
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis via the co-activator PGC-1
-
Herzig, S. et al. CREB regulates hepatic gluconeogenesis via the co-activator PGC-1. Nature 413, 179-183 (2001).
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
-
5
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction
-
Puigserver, P. et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1a interaction. Nature 423, 550-555 (2003).
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
-
6
-
-
0141706357
-
Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation
-
Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl Acad. Sci. USA 100, 11285-11290 (2003).
-
(2003)
Proc. Natl Acad. Sci. USA
, vol.100
, pp. 11285-11290
-
-
Matsuzaki, H.1
Daitoku, H.2
Hatta, M.3
Tanaka, K.4
Fukamizu, A.5
-
7
-
-
33645386113
-
More TORC for the gluconeogenic engine
-
Cheng, A. & Saltiel, A. R. More TORC for the gluconeogenic engine. Bioessays 28, 231-234 (2006).
-
(2006)
Bioessays
, vol.28
, pp. 231-234
-
-
Cheng, A.1
Saltiel, A.R.2
-
8
-
-
27144506185
-
The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism
-
Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109-1111 (2005).
-
(2005)
Nature
, vol.437
, pp. 1109-1111
-
-
Koo, S.H.1
-
9
-
-
0029858012
-
Regulatable promoters for use in gene therapy applications: Modification of the 59-flanking region of the CFTR gene with multiple cAMP response elements to support basal, low-level gene expression that can be upregulated by exogenous agents that raise intracellular levels of cAMP
-
Suzuki, M., Singh, R. N. & Crystal, R. G. Regulatable promoters for use in gene therapy applications: modification of the 59-flanking region of the CFTR gene with multiple cAMP response elements to support basal, low-level gene expression that can be upregulated by exogenous agents that raise intracellular levels of cAMP. Hum. Gene Ther. 7, 1883-1893 (1996).
-
(1996)
Hum. Gene Ther
, vol.7
, pp. 1883-1893
-
-
Suzuki, M.1
Singh, R.N.2
Crystal, R.G.3
-
10
-
-
5344228270
-
The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector
-
Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61-74 (2004).
-
(2004)
Cell
, vol.119
, pp. 61-74
-
-
Screaton, R.A.1
-
11
-
-
0036314978
-
Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein
-
Groulx, I. & Lee, S. Oxygen-dependent ubiquitination and degradation of hypoxia-inducible factor requires nuclear-cytoplasmic trafficking of the von Hippel-Lindau tumor suppressor protein. Mol. Cell. Biol. 22, 5319-5336 (2002).
-
(2002)
Mol. Cell. Biol
, vol.22
, pp. 5319-5336
-
-
Groulx, I.1
Lee, S.2
-
12
-
-
0042692785
-
Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination
-
O'Keefe, K., Li, H. & Zhang, Y. Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol. Cell. Biol. 23, 6396-6405 (2003).
-
(2003)
Mol. Cell. Biol
, vol.23
, pp. 6396-6405
-
-
O'Keefe, K.1
Li, H.2
Zhang, Y.3
-
13
-
-
33745046562
-
Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2
-
Itahana, Y., Yeh, E. T. & Zhang, Y. Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol. Cell. Biol. 26, 4675-4689 (2006).
-
(2006)
Mol. Cell. Biol
, vol.26
, pp. 4675-4689
-
-
Itahana, Y.1
Yeh, E.T.2
Zhang, Y.3
-
14
-
-
0035863052
-
Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1
-
Holm, M., Hardtke, C. S., Gaudet, R. & Deng, X. W. Identification of a structural motif that confers specific interaction with the WD40 repeat domain of Arabidopsis COP1. EMBO J. 20, 118-127 (2001).
-
(2001)
EMBO J
, vol.20
, pp. 118-127
-
-
Holm, M.1
Hardtke, C.S.2
Gaudet, R.3
Deng, X.W.4
-
15
-
-
0038165532
-
Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity
-
Bianchi, E. et al. Characterization of human constitutive photomorphogenesis protein 1, a RING finger ubiquitin ligase that interacts with Jun transcription factors and modulates their transcriptional activity. J. Biol. Chem. 278, 19682-19690 (2003).
-
(2003)
J. Biol. Chem
, vol.278
, pp. 19682-19690
-
-
Bianchi, E.1
-
16
-
-
1342275414
-
Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase
-
Wertz, I. E. et al. Human De-etiolated-1 regulates c-Jun by assembling a CUL4A ubiquitin ligase. Science 303, 1371-1374 (2004).
-
(2004)
Science
, vol.303
, pp. 1371-1374
-
-
Wertz, I.E.1
-
17
-
-
2342447397
-
The ubiquitin ligase COP1 is a critical negative regulator of p53
-
Dornan, D. et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429, 86-92 (2004).
-
(2004)
Nature
, vol.429
, pp. 86-92
-
-
Dornan, D.1
-
18
-
-
33745498417
-
TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism
-
Qi, L. et al. TRB3 links the E3 ubiquitin ligase COP1 to lipid metabolism. Science 312, 1763-1766 (2006).
-
(2006)
Science
, vol.312
, pp. 1763-1766
-
-
Qi, L.1
-
19
-
-
33748054298
-
ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage
-
Dornan, D. et al. ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage. Science 313, 1122-1126 (2006).
-
(2006)
Science
, vol.313
, pp. 1122-1126
-
-
Dornan, D.1
-
20
-
-
18444391517
-
Shotgun identification of protein modifications from protein complexes and lens tissue
-
MacCoss, M. J. et al. Shotgun identification of protein modifications from protein complexes and lens tissue. Proc. Natl Acad. Sci. USA 99, 7900-7905 (2002).
-
(2002)
Proc. Natl Acad. Sci. USA
, vol.99
, pp. 7900-7905
-
-
MacCoss, M.J.1
-
21
-
-
2442489891
-
Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression
-
Dentin, R. et al. Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J. Biol. Chem. 279, 20314-20326 (2004).
-
(2004)
J. Biol. Chem
, vol.279
, pp. 20314-20326
-
-
Dentin, R.1
-
22
-
-
0141922981
-
TORCs: Transducers of regulated CREB activity
-
Conkright, M. D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413-423 (2003).
-
(2003)
Mol. Cell
, vol.12
, pp. 413-423
-
-
Conkright, M.D.1
-
23
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
-
Koo, S. H. et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Med. 10, 530-534 (2004).
-
(2004)
Nature Med
, vol.10
, pp. 530-534
-
-
Koo, S.H.1
|