메뉴 건너뛰기




Volumn 9, Issue 1, 2017, Pages

A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications

Author keywords

[No Author keywords available]

Indexed keywords

SMALL CYTOPLASMIC RNA;

EID: 85027696020     PISSN: None     EISSN: 1756994X     Source Type: Journal    
DOI: 10.1186/s13073-017-0467-4     Document Type: Review
Times cited : (676)

References (101)
  • 1
    • 84856278095 scopus 로고    scopus 로고
    • Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes
    • Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity. 2012;36:142-52.
    • (2012) Immunity , vol.36 , pp. 142-152
    • Newell, E.W.1    Sigal, N.2    Bendall, S.C.3    Nolan, G.P.4    Davis, M.M.5
  • 2
    • 84897954497 scopus 로고    scopus 로고
    • Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
    • Giesen C, Wang HA, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods. 2014;11:417-22.
    • (2014) Nat Methods , vol.11 , pp. 417-422
    • Giesen, C.1    Wang, H.A.2    Schapiro, D.3    Zivanovic, N.4    Jacobs, A.5    Hattendorf, B.6
  • 3
    • 85027934223 scopus 로고    scopus 로고
    • Mapping the human DC lineage through the integration of high-dimensional techniques
    • eaag3009.
    • See P, Dutertre CA, Chen J, Günther P, McGovern N, Irac SE, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017;356:eaag3009.
    • (2017) Science , vol.356
    • See, P.1    Dutertre, C.A.2    Chen, J.3    Günther, P.4    McGovern, N.5    Irac, S.E.6
  • 4
    • 85016147467 scopus 로고    scopus 로고
    • A 17-gene stemness score for rapid determination of risk in acute leukaemia
    • Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433-7.
    • (2016) Nature , vol.540 , pp. 433-437
    • Ng, S.W.1    Mitchell, A.2    Kennedy, J.A.3    Chen, W.C.4    McLeod, J.5    Ibrahimova, N.6
  • 6
    • 84876085773 scopus 로고    scopus 로고
    • Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity
    • Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013;14:R31.
    • (2013) Genome Biol , vol.14 , pp. R31
    • Sasagawa, Y.1    Nikaido, I.2    Hayashi, T.3    Danno, H.4    Uno, K.D.5    Imai, T.6
  • 8
    • 84901188210 scopus 로고    scopus 로고
    • Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
    • Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7:1130-42.
    • (2014) Cell Rep , vol.7 , pp. 1130-1142
    • Mahata, B.1    Zhang, X.2    Kolodziejczyk, A.A.3    Proserpio, V.4    Haim-Vilmovsky, L.5    Taylor, A.E.6
  • 9
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343:193-6.
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 10
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 11
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371-5.
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1    Brownfield, D.G.2    Wu, A.R.3    Neff, N.F.4    Mantalas, G.L.5    Espinoza, F.H.6
  • 12
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236-40.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1    Satija, R.2    Adiconis, X.3    Gertner, R.S.4    Gaublomme, J.T.5    Raychowdhury, R.6
  • 13
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363-9.
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1    Satija, R.2    Shuga, J.3    Trombetta, J.J.4    Gennert, D.5    Lu, D.6
  • 15
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3    Lönnerberg, P.4    Manno, G.5    Juréus, A.6
  • 17
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131-9.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1131-1139
    • Yan, L.1    Yang, M.2    Guo, H.3    Yang, L.4    Wu, J.5    Li, R.6
  • 18
    • 84942904757 scopus 로고    scopus 로고
    • RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance
    • Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT, et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science. 2015;349:1351-6.
    • (2015) Science , vol.349 , pp. 1351-1356
    • Miyamoto, D.T.1    Zheng, Y.2    Wittner, B.S.3    Lee, R.J.4    Zhu, H.5    Broderick, K.T.6
  • 19
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh I, Izar B, Prakadan SM, Wadsworth MH, Treacy D, Trombetta JJ, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science. 2016;352:189-96.
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1    Izar, B.2    Prakadan, S.M.3    Wadsworth, M.H.4    Treacy, D.5    Trombetta, J.J.6
  • 21
    • 84942163495 scopus 로고    scopus 로고
    • Defining the three cell lineages of the human blastocyst by single-cell RNA-seq
    • Blakeley P, Fogarty NM, Del Valle I, Wamaitha SE, Hu TX, Elder K, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142:3613.
    • (2015) Development , vol.142 , pp. 3613
    • Blakeley, P.1    Fogarty, N.M.2    Valle, I.3    Wamaitha, S.E.4    Hu, T.X.5    Elder, K.6
  • 22
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 23
    • 84988651210 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos
    • Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, et al. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell. 2016;167:285.
    • (2016) Cell , vol.167 , pp. 285
    • Petropoulos, S.1    Edsgärd, D.2    Reinius, B.3    Deng, Q.4    Panula, S.P.5    Codeluppi, S.6
  • 24
    • 85040750667 scopus 로고    scopus 로고
    • Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria
    • eaal2192.
    • Lonnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, et al. Single-cell RNA-seq and computational analysis using temporal mixture modelling resolves Th1/Tfh fate bifurcation in malaria. Sci Immunol. 2017;2:eaal2192.
    • (2017) Sci Immunol , vol.2
    • Lonnberg, T.1    Svensson, V.2    James, K.R.3    Fernandez-Ruiz, D.4    Sebina, I.5    Montandon, R.6
  • 25
    • 85016574289 scopus 로고    scopus 로고
    • Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq
    • eaai8478.
    • Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017;355:eaai8478.
    • (2017) Science , vol.355
    • Venteicher, A.S.1    Tirosh, I.2    Hebert, C.3    Yizhak, K.4    Neftel, C.5    Filbin, M.G.6
  • 26
    • 79959567069 scopus 로고    scopus 로고
    • Deterministic and stochastic allele specific gene expression in single mouse blastomeres
    • Tang F, Barbacioru C, Nordman E, Bao S, Lee C, Wang X, et al. Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS One. 2011;6:e21208.
    • (2011) PLoS One , vol.6
    • Tang, F.1    Barbacioru, C.2    Nordman, E.3    Bao, S.4    Lee, C.5    Wang, X.6
  • 27
    • 84988692357 scopus 로고    scopus 로고
    • Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq
    • Reinius B, Mold JE, Ramsköld D, Deng Q, Johnsson P, Michaëlsson J, et al. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet. 2016;48:1430-5.
    • (2016) Nat Genet , vol.48 , pp. 1430-1435
    • Reinius, B.1    Mold, J.E.2    Ramsköld, D.3    Deng, Q.4    Johnsson, P.5    Michaëlsson, J.6
  • 28
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim JK, Kolodziejczyk AA, Ilicic T, Illicic T, Teichmann SA, Marioni JC. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2015;6:8687.
    • (2015) Nat Commun , vol.6 , pp. 8687
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Ilicic, T.3    Illicic, T.4    Teichmann, S.A.5    Marioni, J.C.6
  • 29
    • 85021663714 scopus 로고    scopus 로고
    • Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression
    • Kar G, Kim JK, Kolodziejczyk AA, Natarajan KN, Torlai Triglia E, Mifsud B, et al. Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression. Nat Commun. 2017;8:36.
    • (2017) Nat Commun , vol.8 , pp. 36
    • Kar, G.1    Kim, J.K.2    Kolodziejczyk, A.A.3    Natarajan, K.N.4    Torlai Triglia, E.5    Mifsud, B.6
  • 30
    • 84964545059 scopus 로고    scopus 로고
    • Single-cell transcriptome sequencing: recent advances and remaining challenges
    • Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res. 2016;5:182.
    • (2016) F1000Res , vol.5 , pp. 182
    • Liu, S.1    Trapnell, C.2
  • 31
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016;34:1145-60.
    • (2016) Nat Biotechnol , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 36
    • 85016139621 scopus 로고    scopus 로고
    • Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity
    • Zeng W, Jiang S, Kong X, El-Ali N, Ball AR, Ma CI, et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. Nucleic Acids Res. 2016;44:e158.
    • (2016) Nucleic Acids Res , vol.44
    • Zeng, W.1    Jiang, S.2    Kong, X.3    El-Ali, N.4    Ball, A.R.5    Ma, C.I.6
  • 37
    • 85019371807 scopus 로고    scopus 로고
    • Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing
    • Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, et al. Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing. In BioRxiv. 2017. https://doi.org/10.1101/104844.
    • (2017) In BioRxiv
    • Cao, J.1    Packer, J.S.2    Ramani, V.3    Cusanovich, D.A.4    Huynh, C.5    Daza, R.6
  • 39
    • 85009809647 scopus 로고    scopus 로고
    • Effective detection of variation in single-cell transcriptomes using MATQ-seq
    • Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat Methods. 2017;14:267-70.
    • (2017) Nat Methods , vol.14 , pp. 267-270
    • Sheng, K.1    Cao, W.2    Niu, Y.3    Deng, Q.4    Zong, C.5
  • 40
    • 84937703271 scopus 로고    scopus 로고
    • Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos
    • Fan X, Zhang X, Wu X, Guo H, Hu Y, Tang F, et al. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol. 2015;16:148.
    • (2015) Genome Biol , vol.16 , pp. 148
    • Fan, X.1    Zhang, X.2    Wu, X.3    Guo, H.4    Hu, Y.5    Tang, F.6
  • 42
    • 84961136621 scopus 로고    scopus 로고
    • The niche in single-cell technologies
    • Donati G. The niche in single-cell technologies. Immunol Cell Biol. 2016;94:250-5.
    • (2016) Immunol Cell Biol , vol.94 , pp. 250-255
    • Donati, G.1
  • 45
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 46
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 48
    • 84921466417 scopus 로고    scopus 로고
    • Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing
    • Usoskin D, Furlan A, Islam S, Abdo H, Lönnerberg P, Lou D, et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat Neurosci. 2015;18:145-53.
    • (2015) Nat Neurosci , vol.18 , pp. 145-153
    • Usoskin, D.1    Furlan, A.2    Islam, S.3    Abdo, H.4    Lönnerberg, P.5    Lou, D.6
  • 49
    • 84949196321 scopus 로고    scopus 로고
    • CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity
    • Wang C, Yosef N, Gaublomme J, Wu C, Lee Y, Clish CB, et al. CD5L/AIM Regulates Lipid Biosynthesis and Restrains Th17 Cell Pathogenicity. Cell. 2015;163:1413-27.
    • (2015) Cell , vol.163 , pp. 1413-1427
    • Wang, C.1    Yosef, N.2    Gaublomme, J.3    Wu, C.4    Lee, Y.5    Clish, C.B.6
  • 50
    • 84949252174 scopus 로고    scopus 로고
    • Single-cell genomics unveils critical regulators of Th17 cell pathogenicity
    • Gaublomme JT, Yosef N, Lee Y, Gertner RS, Yang LV, Wu C, et al. Single-cell genomics unveils critical regulators of Th17 cell pathogenicity. Cell. 2015;163:1400-12.
    • (2015) Cell , vol.163 , pp. 1400-1412
    • Gaublomme, J.T.1    Yosef, N.2    Lee, Y.3    Gertner, R.S.4    Yang, L.V.5    Wu, C.6
  • 52
    • 85027682796 scopus 로고    scopus 로고
    • Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes
    • Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, Wan E, et al. Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes. BioRxiv. 2017. https://doi.org/10.1101/118778.
    • (2017) BioRxiv
    • Kang, H.M.1    Subramaniam, M.2    Targ, S.3    Nguyen, M.4    Maliskova, L.5    Wan, E.6
  • 55
    • 84955681537 scopus 로고    scopus 로고
    • Fixed single-cell transcriptomic characterization of human radial glial diversity
    • Thomsen ER, Mich JK, Yao Z, Hodge RD, Doyle AM, Jang S, et al. Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods. 2016;13:87-93.
    • (2016) Nat Methods , vol.13 , pp. 87-93
    • Thomsen, E.R.1    Mich, J.K.2    Yao, Z.3    Hodge, R.D.4    Doyle, A.M.5    Jang, S.6
  • 57
    • 84887101406 scopus 로고    scopus 로고
    • Smart-seq2 for sensitive full-length transcriptome profiling in single cells
    • Picelli S, Björklund Å, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096-8.
    • (2013) Nat Methods , vol.10 , pp. 1096-1098
    • Picelli, S.1    Björklund, F.O.R.2    Sagasser, S.3    Winberg, G.4    Sandberg, R.5
  • 58
    • 27844529344 scopus 로고    scopus 로고
    • Proposed methods for testing and selecting the ERCC external RNA controls
    • Consortium ERC. Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics. 2005;6:150.
    • (2005) BMC Genomics , vol.6 , pp. 150
    • Consortium, E.R.C.1
  • 59
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896-902.
    • (2014) Nat Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 61
    • 85013150833 scopus 로고    scopus 로고
    • Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing
    • Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, et al. Early transcriptional and epigenetic regulation of CD8(+) T cell differentiation revealed by single-cell RNA sequencing. Nat Immunol. 2017;18:422-32.
    • (2017) Nat Immunol , vol.18 , pp. 422-432
    • Kakaradov, B.1    Arsenio, J.2    Widjaja, C.E.3    He, Z.4    Aigner, S.5    Metz, P.J.6
  • 62
    • 85027719383 scopus 로고    scopus 로고
    • powsimR: Power analysis for bulk and single cell RNA-seq experiments
    • Vieth B, Ziegenhain C, Parekh S, Enard W, Hellmann I. powsimR: Power analysis for bulk and single cell RNA-seq experiments. BioRxiv. 2017. https://doi.org/10.1101/117150.
    • (2017) BioRxiv
    • Vieth, B.1    Ziegenhain, C.2    Parekh, S.3    Enard, W.4    Hellmann, I.5
  • 63
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053-8.
    • (2014) Nat Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3    Wang, X.4    Leyrat, A.A.5    Lui, J.H.6
  • 64
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
    • Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666-73.
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 65
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160-7.
    • (2011) Genome Res , vol.21 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3    Zajac, P.4    Fan, J.B.5    Lönnerberg, P.6
  • 66
    • 84872033704 scopus 로고    scopus 로고
    • Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples
    • Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281-5.
    • (2012) Theory Biosci , vol.131 , pp. 281-285
    • Wagner, G.P.1    Kin, K.2    Lynch, V.J.3
  • 68
    • 84928214314 scopus 로고    scopus 로고
    • Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms
    • Padovan-Merhar O, Nair GP, Biaesch AG, Mayer A, Scarfone S, Foley SW, et al. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms. Mol Cell. 2015;58:339-52.
    • (2015) Mol Cell , vol.58 , pp. 339-352
    • Padovan-Merhar, O.1    Nair, G.P.2    Biaesch, A.G.3    Mayer, A.4    Scarfone, S.5    Foley, S.W.6
  • 69
    • 84922776628 scopus 로고    scopus 로고
    • The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise
    • Kempe H, Schwabe A, Crémazy F, Verschure PJ, Bruggeman FJ. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise. Mol Biol Cell. 2015;26:797-804.
    • (2015) Mol Biol Cell , vol.26 , pp. 797-804
    • Kempe, H.1    Schwabe, A.2    Crémazy, F.3    Verschure, P.J.4    Bruggeman, F.J.5
  • 70
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155-60.
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 71
    • 84988815163 scopus 로고    scopus 로고
    • Identifying and removing the cell-cycle effect from single-cell RNA-sequencing data
    • Barron M, Li J. Identifying and removing the cell-cycle effect from single-cell RNA-sequencing data. Sci Rep. 2016;6:33892.
    • (2016) Sci Rep , vol.6 , pp. 33892
    • Barron, M.1    Li, J.2
  • 72
    • 84961918745 scopus 로고    scopus 로고
    • Single-cell states versus single-cell atlases - two classes of heterogeneity that differ in meaning and method
    • Janes KA. Single-cell states versus single-cell atlases - two classes of heterogeneity that differ in meaning and method. Curr Opin Biotechnol. 2016;39:120-5.
    • (2016) Curr Opin Biotechnol , vol.39 , pp. 120-125
    • Janes, K.A.1
  • 73
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    Oudenaarden, A.3
  • 74
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 2016;17:63.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 75
    • 85027686854 scopus 로고    scopus 로고
    • Granatum: a graphical single-cell RNA-seq analysis pipeline for genomics scientists
    • Zhu X, Wolfgruber T, Tasato A, Garmire L. Granatum: a graphical single-cell RNA-seq analysis pipeline for genomics scientists. BioRxiv. 2017. https://doi.org/10.1101/110759.
    • (2017) BioRxiv
    • Zhu, X.1    Wolfgruber, T.2    Tasato, A.3    Garmire, L.4
  • 76
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor
    • Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 2016;5:2122.
    • (2016) F1000Res , vol.5 , pp. 2122
    • Lun, A.T.1    McCarthy, D.J.2    Marioni, J.C.3
  • 77
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 78
    • 84983372594 scopus 로고    scopus 로고
    • Quality control of single-cell RNA-seq by SinQC
    • Jiang P, Thomson JA, Stewart R. Quality control of single-cell RNA-seq by SinQC. Bioinformatics. 2016;32:2514-6.
    • (2016) Bioinformatics , vol.32 , pp. 2514-2516
    • Jiang, P.1    Thomson, J.A.2    Stewart, R.3
  • 80
    • 85019072518 scopus 로고    scopus 로고
    • Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33:1179-86.
    • (2017) Bioinformatics , vol.33 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.3    Wills, Q.F.4
  • 82
    • 84992163193 scopus 로고    scopus 로고
    • Single-cell transcriptomics bioinformatics and computational challenges
    • Poirion OB, Zhu X, Ching T, Garmire L. Single-cell transcriptomics bioinformatics and computational challenges. Front Genet. 2016;7:163.
    • (2016) Front Genet , vol.7 , pp. 163
    • Poirion, O.B.1    Zhu, X.2    Ching, T.3    Garmire, L.4
  • 83
    • 85021301728 scopus 로고    scopus 로고
    • Computational approaches for interpreting scRNA-seq data
    • Rostom R, Svensson V, Teichmann SA, Kar G. Computational approaches for interpreting scRNA-seq data. FEBS Lett. 2017. doi: 10.1002/1873-3468.12684.
    • (2017) FEBS Lett
    • Rostom, R.1    Svensson, V.2    Teichmann, S.A.3    Kar, G.4
  • 84
    • 84974809055 scopus 로고    scopus 로고
    • Avoiding common pitfalls when clustering biological data
    • Ronan T, Qi Z, Naegle KM. Avoiding common pitfalls when clustering biological data. Sci Signal. 2016;9:re6.
    • (2016) Sci Signal , vol.9
    • Ronan, T.1    Qi, Z.2    Naegle, K.M.3
  • 86
    • 84977499231 scopus 로고    scopus 로고
    • pcaReduce: hierarchical clustering of single cell transcriptional profiles
    • Žurauskiene J, Yau C. pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinf. 2016;17:140.
    • (2016) BMC Bioinf , vol.17 , pp. 140
    • Žurauskiene, J.1    Yau, C.2
  • 87
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015;31:1974-80.
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 89
    • 85037359221 scopus 로고    scopus 로고
    • Comparison of methods to detect differentially expressed genes between single-cell populations
    • Jaakkola MK, Seyednasrollah F, Mehmood A, Elo LL. Comparison of methods to detect differentially expressed genes between single-cell populations. Brief Bioinform. 2016. doi: 10.1093/bib/bbw057.
    • (2016) Brief Bioinform
    • Jaakkola, M.K.1    Seyednasrollah, F.2    Mehmood, A.3    Elo, L.L.4
  • 90
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    • Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, et al. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A. 2014;111:E5643-50.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E5643-E5650
    • Marco, E.1    Karp, R.L.2    Guo, G.3    Robson, P.4    Hart, A.H.5    Trippa, L.6
  • 92
    • 84977080410 scopus 로고    scopus 로고
    • Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development
    • Chen J, Schlitzer A, Chakarov S, Ginhoux F, Poidinger M. Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nat Commun. 2016;7:11988.
    • (2016) Nat Commun , vol.7 , pp. 11988
    • Chen, J.1    Schlitzer, A.2    Chakarov, S.3    Ginhoux, F.4    Poidinger, M.5
  • 93
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics. 2015;31:2989-98.
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1    Buettner, F.2    Theis, F.J.3
  • 95
    • 84969505817 scopus 로고    scopus 로고
    • SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
    • Welch JD, Hartemink AJ, Prins JF. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 2016;17:106.
    • (2016) Genome Biol , vol.17 , pp. 106
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 96
    • 85027718838 scopus 로고    scopus 로고
    • Moore's law in single cell transcriptomics
    • arXiv:1704.01379v2 [q-bio.GN]
    • Svensson V, Vento-Tormo R, Teichmann SA. Moore's law in single cell transcriptomics. ArXiv preprint arXiv:1704.01379v2 [q-bio.GN]. 2017.
    • (2017) ArXiv preprint
    • Svensson, V.1    Vento-Tormo, R.2    Teichmann, S.A.3
  • 97
    • 85018474650 scopus 로고    scopus 로고
    • JingleBells: a repository of immune-related single-cell RNA-sequencing datasets
    • Ner-Gaon H, Melchior A, Golan N, Ben-Haim Y, Shay T. JingleBells: a repository of immune-related single-cell RNA-sequencing datasets. J Immunol. 2017;198:3375-9.
    • (2017) J Immunol , vol.198 , pp. 3375-3379
    • Ner-Gaon, H.1    Melchior, A.2    Golan, N.3    Ben-Haim, Y.4    Shay, T.5
  • 98
    • 85006345820 scopus 로고    scopus 로고
    • A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response
    • Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK, Chen Y, et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 2016;167:1867-82. e21.
    • (2016) Cell , vol.167 , pp. 1867-1882
    • Adamson, B.1    Norman, T.M.2    Jost, M.3    Cho, M.Y.4    Nuñez, J.K.5    Chen, Y.6
  • 99
    • 85006488344 scopus 로고    scopus 로고
    • Perturb-Seq. Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens
    • Dixit A, Parnas O, Li B, Chen J, Fulco CP, Jerby-Arnon L, et al. Perturb-Seq. Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell. 2016;167:1853-66. e17.
    • (2016) Cell , vol.167 , pp. 1853-1866
    • Dixit, A.1    Parnas, O.2    Li, B.3    Chen, J.4    Fulco, C.P.5    Jerby-Arnon, L.6
  • 100
    • 85009781625 scopus 로고    scopus 로고
    • Single-cell multiomics: multiple measurements from single cells
    • Macaulay IC, Ponting CP, Voet T. Single-cell multiomics: multiple measurements from single cells. Trends Genet. 2017;33:155-68.
    • (2017) Trends Genet , vol.33 , pp. 155-168
    • Macaulay, I.C.1    Ponting, C.P.2    Voet, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.