메뉴 건너뛰기




Volumn 9, Issue 432, 2016, Pages

Avoiding common pitfalls when clustering biological data

Author keywords

[No Author keywords available]

Indexed keywords

EPIDERMAL GROWTH FACTOR RECEPTOR; MESSENGER RNA; MICRORNA; MITOGEN ACTIVATED PROTEIN KINASE;

EID: 84974809055     PISSN: 19450877     EISSN: 19379145     Source Type: Journal    
DOI: 10.1126/scisignal.aad1932     Document Type: Review
Times cited : (117)

References (77)
  • 2
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: A review
    • R. Xu, D. C. Wunsch II, Clustering algorithms in biomedical research: A review. IEEE Rev. Biomed. Eng. 3, 120-154 (2010).
    • (2010) IEEE Rev. Biomed. Eng. , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.C.2
  • 3
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: Finding a match for a biomedical application
    • B. Andreopoulos, A. An, X. Wang, M. Schroeder, A roadmap of clustering algorithms: Finding a match for a biomedical application. Brief. Bioinform. 10, 297-314 (2009).
    • (2009) Brief. Bioinform. , vol.10 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, X.3    Schroeder, M.4
  • 8
    • 84865803278 scopus 로고    scopus 로고
    • Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions
    • K. M. Naegle, F. M. White, D. A. Lauffenburger, M. B. Yaffe, Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol. Biosyst. 8, 2771-2782 (2012).
    • (2012) Mol. Biosyst. , vol.8 , pp. 2771-2782
    • Naegle, K.M.1    White, F.M.2    Lauffenburger, D.A.3    Yaffe, M.B.4
  • 11
    • 79953746083 scopus 로고    scopus 로고
    • Proteolytic activity matrix analysis (Prama) for simultaneous determination of multiple protease activities
    • M. A. Miller, L Barkal, K. Jeng, A. Herrlich, M. Moss, L G. Griffith, D. A. Lauffenburger, Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities. Integr. Biol. 3, 422-438 (2011).
    • (2011) Integr. Biol. , vol.3 , pp. 422-438
    • Miller, M.A.1    Barkal, L.2    Jeng, K.3    Herrlich, A.4    Moss, M.5    Griffith, L.G.6    Lauffenburger, D.A.7
  • 13
    • 34250722602 scopus 로고    scopus 로고
    • Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks
    • A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, F. M. White, Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. U.S.A. 104, 5860-5865 (2007).
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 5860-5865
    • Wolf-Yadlin, A.1    Hautaniemi, S.2    Lauffenburger, D.A.3    White, F.M.4
  • 16
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • A. Zimek, E. Schubert, H.-P. Kriegel, A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. 5, 363-387 (2012).
    • (2012) Stat. Anal. Data Min. , vol.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3
  • 19
    • 0033909182 scopus 로고    scopus 로고
    • On the geometry of similarity search: Dimensionality curse and concentration of measure
    • V. Pestov, On the geometry of similarity search: Dimensionality curse and concentration of measure. Inform. Process. Lett. 73, 47-51 (2000).
    • (2000) Inform. Process. Lett. , vol.73 , pp. 47-51
    • Pestov, V.1
  • 20
  • 21
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering
    • A. Hinneburg, D. A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Int. Conf. Very Large Databases, 506-517 (1999).
    • (1999) Int. Conf. Very Large Databases , pp. 506-517
    • Hinneburg, A.1    Keim, D.A.2
  • 23
    • 70349730070 scopus 로고    scopus 로고
    • MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering
    • E.-Y. Kim, S.-Y. Kim, D. Ashlock, D. Nam, MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinformatics 10, 260 (2009).
    • (2009) BMC Bioinformatics , vol.10 , pp. 260
    • Kim, E.-Y.1    Kim, S.-Y.2    Ashlock, D.3    Nam, D.4
  • 24
    • 84920282665 scopus 로고    scopus 로고
    • Resampling-based similarity measures for high-dimensional data
    • D. Amaratunga, J. Cabrera, Y.-S. Lee, Resampling-based similarity measures for high-dimensional data. J. Comput. Biol. 22, 54-62 (2015).
    • (2015) J. Comput. Biol. , vol.22 , pp. 54-62
    • Amaratunga, D.1    Cabrera, J.2    Lee, Y.-S.3
  • 25
    • 60649105760 scopus 로고    scopus 로고
    • Simultaneously removing noise and selecting relevant features for high dimensional noisy data
    • B. Byeon, K. Rasheed, Simultaneously removing noise and selecting relevant features for high dimensional noisy data. Proc. 7th Int. Conf. Mach. Learn. Appl. ICMLA 2008, 147-152 (2008).
    • (2008) Proc. 7th Int. Conf. Mach. Learn. Appl. ICMLA 2008 , pp. 147-152
    • Byeon, B.1    Rasheed, K.2
  • 26
    • 84930210143 scopus 로고    scopus 로고
    • Discriminative embedded clustering: A framework for grouping high-dimensional data
    • C. Hou, F. Nie, D. Yi, D. Tao, Discriminative embedded clustering: A framework for grouping high-dimensional data. IEEE Trans. Neural Netw. Learn. Syst. 26, 1287-1299 (2014).
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , pp. 1287-1299
    • Hou, C.1    Nie, F.2    Yi, D.3    Tao, D.4
  • 27
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on Subspace clustering, pattern-based clustering, and correlation clustering
    • H.-P. Kriegel, P. Kröger, A. Zimek, Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3, 1-58 (2009).
    • (2009) ACM Trans. Knowl. Discov. Data , vol.3 , pp. 1-58
    • Kriegel, H.-P.1    Kröger, P.2    Zimek, A.3
  • 29
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • K. Y. Yeung, W. L. Ruzzo, Principal component analysis for clustering gene expression data. Bioinformatics 17, 763-774 (2001).
    • (2001) Bioinformatics , vol.17 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 30
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional data: A review. ACM SIGKDD Explor. Newsl. 6, 90-105 (2004).
    • (2004) Acm Sigkdd Explor. Newsl. , vol.6 , pp. 90-105
    • Parsons, E.L.1    Haque, H.L.2
  • 31
    • 33747019547 scopus 로고    scopus 로고
    • Centering, scaling, and transformations: Improving the biological information content of metabolomics data
    • R. A. van denBerg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. van der Werf, Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).
    • (2006) BMC Genomics , vol.7 , pp. 142
    • Van Den Berg, R.A.1    Hoefsloot, H.C.J.2    Westerhuis, J.A.3    Smilde, A.K.4    Van Der Werf, M.J.5
  • 32
    • 79960956222 scopus 로고    scopus 로고
    • MCAM: Multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets
    • K. M. Naegle, R. E. Welsch, M. B. Yaffe, F. M. White, D. A. Lauffenburger, MCAM: Multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLOS Comput. Biol. 7, e1002119 (2011).
    • (2011) PLOS Comput. Biol. , vol.7
    • Naegle, K.M.1    Welsch, R.E.2    Yaffe, M.B.3    White, F.M.4    Lauffenburger, D.A.5
  • 34
    • 0003856524 scopus 로고    scopus 로고
    • (John Wiley & Sons Inc., New York, 1996)
    • S. Sharma, Applied Multivariate Techniques (John Wiley & Sons Inc., New York, 1996), Vol. 39, p. 512.
    • Applied Multivariate Techniques , vol.39 , pp. 512
    • Sharma, S.1
  • 36
    • 0000008146 scopus 로고
    • Comparing partitions
    • L. Hubert, P. Arabie, Comparing partitions. J. Classif. 2, 193-218 (1985).
    • (1985) J. Classif. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 37
    • 2442514312 scopus 로고    scopus 로고
    • K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization
    • C. Ding, X. He, K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization, Proc. 2004 ACM Symp. Appl. Comput, 584-589 (2004).
    • (2004) Proc. 2004 ACM Symp. Appl. Comput , pp. 584-589
    • Ding, C.1    He, X.2
  • 38
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • J. Handl, J. Knowles, D. B. Kell, Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201-3212 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 39
    • 84972893020 scopus 로고
    • A dendrite method for cluster analysis
    • T. Calihski, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. 3, 1-27 (1974).
    • (1974) Commun. Stat. , vol.3 , pp. 1-27
    • Calihski, T.1    Harabasz, J.2
  • 40
    • 84941155240 scopus 로고
    • Well-separated clusters and optimal fuzzy partitions
    • J. C. Dunn, Well-separated clusters and optimal fuzzy partitions. J. Cybernetics 4, 95-104 (1974).
    • (1974) J. Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 42
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 43
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. B Met. 63, 411-423 (2001).
    • (2001) J. R. Stat. Soc. B Met. , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 44
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand, Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 46
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • A. Ben-Hur, A. Elisseeff, I. Guyon, A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6-17 (2002).
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 47
    • 0037667290 scopus 로고    scopus 로고
    • Clustering gene-expression data with repeated measurements
    • K. Y. Yeung, M. Medvedovic, R. E. Bumgarner, Clustering gene-expression data with repeated measurements. Genome Biol. 4, R34 (2003).
    • (2003) Genome Biol. , vol.4 , pp. R34
    • Yeung, K.Y.1    Medvedovic, M.2    Bumgarner, R.E.3
  • 48
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • L. I. Kuncheva, D. P. Vetrov, Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1798-1808 (2006).
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 49
    • 84927631394 scopus 로고    scopus 로고
    • Criteria for biological reproducibility: What does "n" mean?
    • K. Naegle, N. R. Gough, M. B. Yaffe, Criteria for biological reproducibility: What does "n" mean? Sci. Signal. 8, fs7 (2015).
    • (2015) Sci. Signal. , vol.8 , pp. fs7
    • Naegle, K.1    Gough, N.R.2    Yaffe, M.B.3
  • 50
    • 0002658549 scopus 로고    scopus 로고
    • Statistics for the molecular biologist: Group comparisons
    • E. F. Ryder, P. Robakiewicz, Statistics for the molecular biologist: Group comparisons. Curr. Protoc. Mol. Biol. 67, A.31.1-A.31.22 (2001).
    • (2001) Curr. Protoc. Mol. Biol. , vol.67 , pp. A311-A3122
    • Ryder, E.F.1    Robakiewicz, P.2
  • 51
    • 0035979259 scopus 로고    scopus 로고
    • Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
    • M. K. Kerr, G.A. Churchill, Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. U.S.A. 98, 8961-8965 (2001).
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 8961-8965
    • Kerr, M.K.1    Churchill, G.A.2
  • 52
    • 3042686005 scopus 로고    scopus 로고
    • Bayesian mixture model based clustering of replicated microarray data
    • M. Medvedovic, K. Y. Yeung, R. E. Bumgarner, Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20, 1222-1232 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 1222-1232
    • Medvedovic, M.1    Yeung, K.Y.2    Bumgarner, R.E.3
  • 53
    • 80053928843 scopus 로고    scopus 로고
    • Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
    • E. J. Cooke, R. S. Savage, P. D. W. Kirk, R. Darkins, D. L Wild, Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC Bioinformatics 12, 399 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 399
    • Cooke, E.J.1    Savage, R.S.2    Kirk, P.D.W.3    Darkins, R.4    Wild, D.L.5
  • 54
    • 84946735654 scopus 로고    scopus 로고
    • Gene ontology consortium: Going forward
    • Gene Ontology Consortium, Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43, D1049-D1056 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. D1049-D1056
  • 55
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 57, 289-300 (1995).
    • (1995) J. R. Stat. Soc. B Met. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 56
    • 0346102887 scopus 로고    scopus 로고
    • Estimation of false discovery rates in multiple testing: Application to gene microarray data
    • C.-A. Tsai, H.-m. Hsueh, J. J. Chen, Estimation of false discovery rates in multiple testing: Application to gene microarray data. Biometrics 59, 1071-1081 (2003).
    • (2003) Biometrics , vol.59 , pp. 1071-1081
    • Tsai, C.-A.1    Hsueh, H.-M.2    Chen, J.J.3
  • 57
    • 33747840464 scopus 로고    scopus 로고
    • Estimation and control of multiple testing error rates for microarray studies
    • S. B. Pounds, Estimation and control of multiple testing error rates for microarray studies. Brief. Bioinform. 7, 25-36 (2006).
    • (2006) Brief. Bioinform. , vol.7 , pp. 25-36
    • Pounds, S.B.1
  • 58
    • 0029966556 scopus 로고    scopus 로고
    • Adjusting for multiple testing when reporting research results: The bonferroni vs holm methods
    • M. Aickin, H. Gensler, Adjusting for multiple testing when reporting research results: The Bonferroni vs Holm methods. Am. J. Public Health 86, 726-728 (1996).
    • (1996) Am. J. Public Health , vol.86 , pp. 726-728
    • Aickin, M.1    Gensler, H.2
  • 60
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-A knowledge reuse framework for combining multiple partitions
    • A. Strehl, J. Ghosh, Cluster ensembles-A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617 (2002).
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 61
    • 80054920244 scopus 로고    scopus 로고
    • CLICOM: Cliques for combining multiple clusterings
    • S. Mimaroglu, M. Yagci, CLICOM: Cliques for combining multiple clusterings. Expert Syst. Appl. 39, 1889-1901 (2012).
    • (2012) Expert Syst. Appl. , vol.39 , pp. 1889-1901
    • Mimaroglu, S.1    Yagci, M.2
  • 62
    • 84899089919 scopus 로고    scopus 로고
    • Clustering indices
    • B. Desgraupes, Clustering indices. CRAN Packag., 1-10 (2013).
    • (2013) CRAN Packag , pp. 1-10
    • Desgraupes, B.1
  • 63
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91-118 (2003).
    • (2003) Mach. Learn. , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 65
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Rec. 27, 94-105 (1998).
    • (1998) Acm Sigmod Rec. , vol.27 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 67
    • 84920707649 scopus 로고    scopus 로고
    • The blind men and the elephant: On meeting the problem of multiple truths in data from clustering and pattern mining perspectives
    • A. Zimek, J. Vreeken, The blind men and the elephant: On meeting the problem of multiple truths in data from clustering and pattern mining perspectives. Mach. Learn. 98, 121-155 (2015).
    • (2015) Mach. Learn. , vol.98 , pp. 121-155
    • Zimek, A.1    Vreeken, J.2
  • 68
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • E. Levine, E. Domany, Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13, 2573-2593 (2001).
    • (2001) Neural Comput. , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 69
    • 77952482885 scopus 로고    scopus 로고
    • Multi-level bootstrap analysis of stable clusters in resting-state fMRI
    • P. Bellec, P. Rosa-Neto, O. C. Lyttelton, H. Benali, A. C. Evans, Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51, 1126-1139(2010).
    • (2010) Neuroimage , vol.51 , pp. 1126-1139
    • Bellec, P.1    Rosa-Neto, P.2    Lyttelton, O.C.3    Benali, H.4    Evans, A.C.5
  • 70
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • T. Lange, V. Roth, M. L. Braun, J. M. Buhmann, Stability-based validation of clustering solutions. Neural Comput. 16, 1299-1323 (2004).
    • (2004) Neural Comput. , vol.16 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 71
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A. K. Jain, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651-666 (2010).
    • (2010) Pattern Recogn. Lett. , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 73
    • 84901256826 scopus 로고    scopus 로고
    • On the selection of appropriate distances for gene expression data clustering
    • P. A. Jaskowiak, R. J. G. B. Campello, I. G. Costa, On the selection of appropriate distances for gene expression data clustering. BMC Bioinformatics 15 (Suppl. 2), S2 (2014).
    • (2014) BMC Bioinformatics , vol.15 , pp. S2
    • Jaskowiak, P.A.1    Campello, R.J.G.B.2    Costa, I.G.3
  • 76
    • 84884338728 scopus 로고    scopus 로고
    • Standardization and its effects on κ-means clustering algorithm
    • I. B. Mohamad, D. Usman, Standardization and its effects on κ-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6, 3299-3303 (2013).
    • (2013) Res. J. Appl. Sci. Eng. Technol. , vol.6 , pp. 3299-3303
    • Mohamad, I.B.1    Usman, D.2
  • 77
    • 84949479246 scopus 로고
    • On the surprising behavior of distance metrics in high dimensional space
    • 2001
    • C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the surprising behavior of distance metrics in high dimensional space Lect. Notes Comput. Sci. 1973, 420-434 (2001).
    • (1973) Lect. Notes Comput. Sci. , pp. 420-434
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.