-
2
-
-
78650121315
-
Clustering algorithms in biomedical research: A review
-
R. Xu, D. C. Wunsch II, Clustering algorithms in biomedical research: A review. IEEE Rev. Biomed. Eng. 3, 120-154 (2010).
-
(2010)
IEEE Rev. Biomed. Eng.
, vol.3
, pp. 120-154
-
-
Xu, R.1
Wunsch, D.C.2
-
3
-
-
65549104397
-
A roadmap of clustering algorithms: Finding a match for a biomedical application
-
B. Andreopoulos, A. An, X. Wang, M. Schroeder, A roadmap of clustering algorithms: Finding a match for a biomedical application. Brief. Bioinform. 10, 297-314 (2009).
-
(2009)
Brief. Bioinform.
, vol.10
, pp. 297-314
-
-
Andreopoulos, B.1
An, A.2
Wang, X.3
Schroeder, M.4
-
4
-
-
0035845511
-
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications
-
T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen, M. van de Rijn, S. S. Jeffrey, T. Thorsen, H. Quist, J. C. Matese, P. O. Brown, D. Botstein, P. E. Lønning, A. L Børresen-Dale, Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98, 10869-10874 (2001).
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 10869-10874
-
-
Sørlie, T.1
Perou, C.M.2
Tibshirani, R.3
Aas, T.4
Geisler, S.5
Johnsen, H.6
Hastie, T.7
Eisen, M.B.8
Van De Rijn, M.9
Jeffrey, S.S.10
Thorsen, T.11
Quist, H.12
Matese, J.C.13
Brown, P.O.14
Botstein, D.15
Lønning, P.E.16
Børresen-Dale, A.L.17
-
5
-
-
9144251970
-
Gene expression profiling identifies clinically relevant subtypes of prostate cancer
-
J. Lapointe, C. Li, J. P. Higgins, M. van de Rijn, E. Bair, K. Montgomery, M. Ferrari, L. Egevad, W. Rayford, U. Bergerheim, P. Ekman, A. M. DeMarzo, R. Tibshirani, D. Botstein, P. O. Brown, J. D. Brooks, J. R. Pollack, Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. U.S.A. 101, 811-816 (2004).
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 811-816
-
-
Lapointe, J.1
Li, C.2
Higgins, J.P.3
Van De Rijn, M.4
Bair, E.5
Montgomery, K.6
Ferrari, M.7
Egevad, L.8
Rayford, W.9
Bergerheim, U.10
Ekman, P.11
DeMarzo, A.M.12
Tibshirani, R.13
Botstein, D.14
Brown, P.O.15
Brooks, J.D.16
Pollack, J.R.17
-
6
-
-
20444460289
-
MicroRNA expression profiles classify human cancers
-
J. Lu, G. Getz, E. A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B. L. Ebert, R. H. Mak, A. A. Ferrando, J. R. Downing, T. Jacks, H. R. Horvitz, T. R. Golub, MicroRNA expression profiles classify human cancers. Nature 435, 834-838 (2005).
-
(2005)
Nature
, vol.435
, pp. 834-838
-
-
Lu, J.1
Getz, G.2
Miska, E.A.3
Alvarez-Saavedra, E.4
Lamb, J.5
Peck, D.6
Sweet-Cordero, A.7
Ebert, B.L.8
Mak, R.H.9
Ferrando, A.A.10
Downing, J.R.11
Jacks, T.12
Horvitz, H.R.13
Golub, T.R.14
-
7
-
-
73649123907
-
Cancer genome atlas research network, integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by Abnormalities in pdgfra, idh1, and Nf1
-
R. G. W. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi, M. D. Wilkerson, C. R. Miller, L. Ding, T. Golub, J. P. Mesirov, G. Alexe, M. Lawrence, M. O'Kelly, P. Tamayo, B. A. Weir, S. Gabriel, W. Winckler, S. Gupta, L. Jakkula, H. S. Feiler, J. G. Hodgson, C. D. James, J. N. Sarkaria, C. Brennan, A. Kahn, P. T. Spellman, R. K. Wilson, T. P. Speed, J. W. Gray, M. Meyerson, G. Getz, C. M. Perou, D. N. Hayes; Cancer Genome Atlas Research Network, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, and NF1. Cancer Cell 17, 98-110 (2010).
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.W.1
Hoadley, K.A.2
Purdom, E.3
Wang, V.4
Qi, Y.5
Wilkerson, M.D.6
Miller, C.R.7
Ding, L.8
Golub, T.9
Mesirov, J.P.10
Alexe, G.11
Lawrence, M.12
O'Kelly, M.13
Tamayo, P.14
Weir, B.A.15
Gabriel, S.16
Winckler, W.17
Gupta, S.18
Jakkula, L.19
Feiler, H.S.20
Hodgson, J.G.21
James, C.D.22
Sarkaria, J.N.23
Brennan, C.24
Kahn, A.25
Spellman, P.T.26
Wilson, R.K.27
Speed, T.P.28
Gray, J.W.29
Meyerson, M.30
Getz, G.31
Perou, C.M.32
Hayes, D.N.33
more..
-
8
-
-
84865803278
-
Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions
-
K. M. Naegle, F. M. White, D. A. Lauffenburger, M. B. Yaffe, Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions. Mol. Biosyst. 8, 2771-2782 (2012).
-
(2012)
Mol. Biosyst.
, vol.8
, pp. 2771-2782
-
-
Naegle, K.M.1
White, F.M.2
Lauffenburger, D.A.3
Yaffe, M.B.4
-
9
-
-
33750696663
-
Effects of HER2 overexpression on cell signaling networks governing proliferation and migration
-
A. Wolf-Yadlin, N. Kumar, Y. Zhang, S. Hautaniemi, M. Zaman, H.-D. Kim, V. Grantcharova, D. A. Lauffenburger, F. M. White, Effects of HER2 overexpression on cell signaling networks governing proliferation and migration. Mol. Syst. Biol. 2, 54 (2006).
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 54
-
-
Wolf-Yadlin, A.1
Kumar, N.2
Zhang, Y.3
Hautaniemi, S.4
Zaman, M.5
Kim, H.-D.6
Grantcharova, V.7
Lauffenburger, D.A.8
White, F.M.9
-
10
-
-
84861420588
-
Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
-
M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A. L. Souza, R. Kafri, M. W. Kirschner, C. B. Clish, V. K. Mootha, Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 336, 1040-1044 (2012).
-
(2012)
Science
, vol.336
, pp. 1040-1044
-
-
Jain, M.1
Nilsson, R.2
Sharma, S.3
Madhusudhan, N.4
Kitami, T.5
Souza, A.L.6
Kafri, R.7
Kirschner, M.W.8
Clish, C.B.9
Mootha, V.K.10
-
11
-
-
79953746083
-
Proteolytic activity matrix analysis (Prama) for simultaneous determination of multiple protease activities
-
M. A. Miller, L Barkal, K. Jeng, A. Herrlich, M. Moss, L G. Griffith, D. A. Lauffenburger, Proteolytic Activity Matrix Analysis (PrAMA) for simultaneous determination of multiple protease activities. Integr. Biol. 3, 422-438 (2011).
-
(2011)
Integr. Biol.
, vol.3
, pp. 422-438
-
-
Miller, M.A.1
Barkal, L.2
Jeng, K.3
Herrlich, A.4
Moss, M.5
Griffith, L.G.6
Lauffenburger, D.A.7
-
12
-
-
0038054341
-
PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
-
V. K. Mootha, C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstråle, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, L C. Groop, PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273 (2003).
-
(2003)
Nat. Genet.
, vol.34
, pp. 267-273
-
-
Mootha, V.K.1
Lindgren, C.M.2
Eriksson, K.-F.3
Subramanian, A.4
Sihag, S.5
Lehar, J.6
Puigserver, P.7
Carlsson, E.8
Ridderstråle, M.9
Laurila, E.10
Houstis, N.11
Daly, M.J.12
Patterson, N.13
Mesirov, J.P.14
Golub, T.R.15
Tamayo, P.16
Spiegelman, B.17
Lander, E.S.18
Hirschhorn, J.N.19
Altshuler, D.20
Groop, L.C.21
more..
-
13
-
-
34250722602
-
Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks
-
A. Wolf-Yadlin, S. Hautaniemi, D. A. Lauffenburger, F. M. White, Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. U.S.A. 104, 5860-5865 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 5860-5865
-
-
Wolf-Yadlin, A.1
Hautaniemi, S.2
Lauffenburger, D.A.3
White, F.M.4
-
15
-
-
84969896295
-
The challenges of clustering high dimensional data
-
(Springer, Berlin, 2004)
-
M. Steinbach, L. Ertöz, V. Kumar, The challenges of clustering high dimensional data, in New Directions in Statistical Physics (Springer, Berlin, 2004), pp. 273-309.
-
New Directions in Statistical Physics
, pp. 273-309
-
-
Steinbach, M.1
Ertöz, L.2
Kumar, V.3
-
16
-
-
84866458840
-
A survey on unsupervised outlier detection in high-dimensional numerical data
-
A. Zimek, E. Schubert, H.-P. Kriegel, A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. 5, 363-387 (2012).
-
(2012)
Stat. Anal. Data Min.
, vol.5
, pp. 363-387
-
-
Zimek, A.1
Schubert, E.2
Kriegel, H.-P.3
-
17
-
-
84947205653
-
When is "nearest neighbor" meaningful?
-
K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, When is "nearest neighbor" meaningful?, in Database Theory-ICDT'99 (Springer, Berlin, 1999), pp. 217-235.
-
Database Theory-ICDT'99
, pp. 217-235
-
-
Beyer, K.1
Goldstein, J.2
Ramakrishnan, R.3
Shaft, U.4
-
18
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. C. Aggarwal, J. L Wolf, P. S. Yu, C. Procopiuc, J. S. Park, Fast algorithms for projected clustering. ACM SIGMOD Rec. 28, 61-72 (1999).
-
(1999)
Acm Sigmod Rec.
, vol.28
, pp. 61-72
-
-
Aggarwal, C.C.1
Wolf, J.L.2
Yu, P.S.3
Procopiuc, C.4
Park, J.S.5
-
19
-
-
0033909182
-
On the geometry of similarity search: Dimensionality curse and concentration of measure
-
V. Pestov, On the geometry of similarity search: Dimensionality curse and concentration of measure. Inform. Process. Lett. 73, 47-51 (2000).
-
(2000)
Inform. Process. Lett.
, vol.73
, pp. 47-51
-
-
Pestov, V.1
-
21
-
-
0000835955
-
Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering
-
A. Hinneburg, D. A. Keim, Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering. Int. Conf. Very Large Databases, 506-517 (1999).
-
(1999)
Int. Conf. Very Large Databases
, pp. 506-517
-
-
Hinneburg, A.1
Keim, D.A.2
-
22
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Second Int. Conf. Knowl. Discov. Data Min., 226-231 (1996).
-
(1996)
Second Int. Conf. Knowl. Discov. Data Min.
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
23
-
-
70349730070
-
MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering
-
E.-Y. Kim, S.-Y. Kim, D. Ashlock, D. Nam, MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinformatics 10, 260 (2009).
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 260
-
-
Kim, E.-Y.1
Kim, S.-Y.2
Ashlock, D.3
Nam, D.4
-
24
-
-
84920282665
-
Resampling-based similarity measures for high-dimensional data
-
D. Amaratunga, J. Cabrera, Y.-S. Lee, Resampling-based similarity measures for high-dimensional data. J. Comput. Biol. 22, 54-62 (2015).
-
(2015)
J. Comput. Biol.
, vol.22
, pp. 54-62
-
-
Amaratunga, D.1
Cabrera, J.2
Lee, Y.-S.3
-
25
-
-
60649105760
-
Simultaneously removing noise and selecting relevant features for high dimensional noisy data
-
B. Byeon, K. Rasheed, Simultaneously removing noise and selecting relevant features for high dimensional noisy data. Proc. 7th Int. Conf. Mach. Learn. Appl. ICMLA 2008, 147-152 (2008).
-
(2008)
Proc. 7th Int. Conf. Mach. Learn. Appl. ICMLA 2008
, pp. 147-152
-
-
Byeon, B.1
Rasheed, K.2
-
26
-
-
84930210143
-
Discriminative embedded clustering: A framework for grouping high-dimensional data
-
C. Hou, F. Nie, D. Yi, D. Tao, Discriminative embedded clustering: A framework for grouping high-dimensional data. IEEE Trans. Neural Netw. Learn. Syst. 26, 1287-1299 (2014).
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 1287-1299
-
-
Hou, C.1
Nie, F.2
Yi, D.3
Tao, D.4
-
27
-
-
67149084291
-
Clustering high-dimensional data: A survey on Subspace clustering, pattern-based clustering, and correlation clustering
-
H.-P. Kriegel, P. Kröger, A. Zimek, Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans. Knowl. Discov. Data 3, 1-58 (2009).
-
(2009)
ACM Trans. Knowl. Discov. Data
, vol.3
, pp. 1-58
-
-
Kriegel, H.-P.1
Kröger, P.2
Zimek, A.3
-
28
-
-
85054068951
-
-
C. C. Aggarwal, Ed. (Chapman and Hall/CRC Press, Boca Raton, FL, 2014)
-
J. Tang, S. Alelyani, H. Liu, in Data Classification: Algorithms and Applications, C. C. Aggarwal, Ed. (Chapman and Hall/CRC Press, Boca Raton, FL, 2014), pp. 37-64.
-
Data Classification: Algorithms and Applications
, pp. 37-64
-
-
Tang, J.1
Alelyani, S.2
Liu, H.3
-
29
-
-
0034800371
-
Principal component analysis for clustering gene expression data
-
K. Y. Yeung, W. L. Ruzzo, Principal component analysis for clustering gene expression data. Bioinformatics 17, 763-774 (2001).
-
(2001)
Bioinformatics
, vol.17
, pp. 763-774
-
-
Yeung, K.Y.1
Ruzzo, W.L.2
-
30
-
-
17044376078
-
Subspace clustering for high dimensional data: A review
-
L Parsons, E. Haque, H. Liu, Subspace clustering for high dimensional data: A review. ACM SIGKDD Explor. Newsl. 6, 90-105 (2004).
-
(2004)
Acm Sigkdd Explor. Newsl.
, vol.6
, pp. 90-105
-
-
Parsons, E.L.1
Haque, H.L.2
-
31
-
-
33747019547
-
Centering, scaling, and transformations: Improving the biological information content of metabolomics data
-
R. A. van denBerg, H. C. J. Hoefsloot, J. A. Westerhuis, A. K. Smilde, M. J. van der Werf, Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).
-
(2006)
BMC Genomics
, vol.7
, pp. 142
-
-
Van Den Berg, R.A.1
Hoefsloot, H.C.J.2
Westerhuis, J.A.3
Smilde, A.K.4
Van Der Werf, M.J.5
-
32
-
-
79960956222
-
MCAM: Multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets
-
K. M. Naegle, R. E. Welsch, M. B. Yaffe, F. M. White, D. A. Lauffenburger, MCAM: Multiple clustering analysis methodology for deriving hypotheses and insights from high-throughput proteomic datasets. PLOS Comput. Biol. 7, e1002119 (2011).
-
(2011)
PLOS Comput. Biol.
, vol.7
-
-
Naegle, K.M.1
Welsch, R.E.2
Yaffe, M.B.3
White, F.M.4
Lauffenburger, D.A.5
-
33
-
-
0033027794
-
Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
-
P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. Lander, T. R. Golub, Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. U.S.A. 96, 2907-2912 (1999).
-
(1999)
Proc. Natl. Acad. Sci. U.S.A.
, vol.96
, pp. 2907-2912
-
-
Tamayo, P.1
Slonim, D.2
Mesirov, J.3
Zhu, Q.4
Kitareewan, S.5
Dmitrovsky, E.6
Lander, E.S.7
Golub, T.R.8
-
34
-
-
0003856524
-
-
(John Wiley & Sons Inc., New York, 1996)
-
S. Sharma, Applied Multivariate Techniques (John Wiley & Sons Inc., New York, 1996), Vol. 39, p. 512.
-
Applied Multivariate Techniques
, vol.39
, pp. 512
-
-
Sharma, S.1
-
36
-
-
0000008146
-
Comparing partitions
-
L. Hubert, P. Arabie, Comparing partitions. J. Classif. 2, 193-218 (1985).
-
(1985)
J. Classif.
, vol.2
, pp. 193-218
-
-
Hubert, L.1
Arabie, P.2
-
37
-
-
2442514312
-
K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization
-
C. Ding, X. He, K-nearest-neighbor consistency in data clustering: Incorporating local information into global optimization, Proc. 2004 ACM Symp. Appl. Comput, 584-589 (2004).
-
(2004)
Proc. 2004 ACM Symp. Appl. Comput
, pp. 584-589
-
-
Ding, C.1
He, X.2
-
38
-
-
25144456056
-
Computational cluster validation in post-genomic data analysis
-
J. Handl, J. Knowles, D. B. Kell, Computational cluster validation in post-genomic data analysis. Bioinformatics 21, 3201-3212 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 3201-3212
-
-
Handl, J.1
Knowles, J.2
Kell, D.B.3
-
39
-
-
84972893020
-
A dendrite method for cluster analysis
-
T. Calihski, J. Harabasz, A dendrite method for cluster analysis. Commun. Stat. 3, 1-27 (1974).
-
(1974)
Commun. Stat.
, vol.3
, pp. 1-27
-
-
Calihski, T.1
Harabasz, J.2
-
40
-
-
84941155240
-
Well-separated clusters and optimal fuzzy partitions
-
J. C. Dunn, Well-separated clusters and optimal fuzzy partitions. J. Cybernetics 4, 95-104 (1974).
-
(1974)
J. Cybernetics
, vol.4
, pp. 95-104
-
-
Dunn, J.C.1
-
42
-
-
0023453329
-
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
-
P. J. Rousseeuw, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
43
-
-
0035532141
-
Estimating the number of clusters in a data set via the gap statistic
-
R. Tibshirani, G. Walther, T. Hastie, Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. B Met. 63, 411-423 (2001).
-
(2001)
J. R. Stat. Soc. B Met.
, vol.63
, pp. 411-423
-
-
Tibshirani, R.1
Walther, G.2
Hastie, T.3
-
44
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
W. M. Rand, Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
-
(1971)
J. Am. Stat. Assoc.
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
45
-
-
84889028394
-
Accounting for noise when clustering biological data
-
R. Sloutsky, N. Jimenez, S. J. Swamidass, K. M. Naegle, Accounting for noise when clustering biological data. Brief. Bioinform. 14, 423-436 (2013).
-
(2013)
Brief. Bioinform.
, vol.14
, pp. 423-436
-
-
Sloutsky, R.1
Jimenez, N.2
Swamidass, S.J.3
Naegle, K.M.4
-
46
-
-
0036359730
-
A stability based method for discovering structure in clustered data
-
A. Ben-Hur, A. Elisseeff, I. Guyon, A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6-17 (2002).
-
(2002)
Pac. Symp. Biocomput.
, vol.7
, pp. 6-17
-
-
Ben-Hur, A.1
Elisseeff, A.2
Guyon, I.3
-
47
-
-
0037667290
-
Clustering gene-expression data with repeated measurements
-
K. Y. Yeung, M. Medvedovic, R. E. Bumgarner, Clustering gene-expression data with repeated measurements. Genome Biol. 4, R34 (2003).
-
(2003)
Genome Biol.
, vol.4
, pp. R34
-
-
Yeung, K.Y.1
Medvedovic, M.2
Bumgarner, R.E.3
-
48
-
-
33947159574
-
Evaluation of stability of k-means cluster ensembles with respect to random initialization
-
L. I. Kuncheva, D. P. Vetrov, Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1798-1808 (2006).
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, pp. 1798-1808
-
-
Kuncheva, L.I.1
Vetrov, D.P.2
-
49
-
-
84927631394
-
Criteria for biological reproducibility: What does "n" mean?
-
K. Naegle, N. R. Gough, M. B. Yaffe, Criteria for biological reproducibility: What does "n" mean? Sci. Signal. 8, fs7 (2015).
-
(2015)
Sci. Signal.
, vol.8
, pp. fs7
-
-
Naegle, K.1
Gough, N.R.2
Yaffe, M.B.3
-
50
-
-
0002658549
-
Statistics for the molecular biologist: Group comparisons
-
E. F. Ryder, P. Robakiewicz, Statistics for the molecular biologist: Group comparisons. Curr. Protoc. Mol. Biol. 67, A.31.1-A.31.22 (2001).
-
(2001)
Curr. Protoc. Mol. Biol.
, vol.67
, pp. A311-A3122
-
-
Ryder, E.F.1
Robakiewicz, P.2
-
51
-
-
0035979259
-
Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments
-
M. K. Kerr, G.A. Churchill, Bootstrapping cluster analysis: Assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. U.S.A. 98, 8961-8965 (2001).
-
(2001)
Proc. Natl. Acad. Sci. U.S.A.
, vol.98
, pp. 8961-8965
-
-
Kerr, M.K.1
Churchill, G.A.2
-
52
-
-
3042686005
-
Bayesian mixture model based clustering of replicated microarray data
-
M. Medvedovic, K. Y. Yeung, R. E. Bumgarner, Bayesian mixture model based clustering of replicated microarray data. Bioinformatics 20, 1222-1232 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 1222-1232
-
-
Medvedovic, M.1
Yeung, K.Y.2
Bumgarner, R.E.3
-
53
-
-
80053928843
-
Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements
-
E. J. Cooke, R. S. Savage, P. D. W. Kirk, R. Darkins, D. L Wild, Bayesian hierarchical clustering for microarray time series data with replicates and outlier measurements. BMC Bioinformatics 12, 399 (2011).
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 399
-
-
Cooke, E.J.1
Savage, R.S.2
Kirk, P.D.W.3
Darkins, R.4
Wild, D.L.5
-
54
-
-
84946735654
-
Gene ontology consortium: Going forward
-
Gene Ontology Consortium, Gene Ontology Consortium: Going forward. Nucleic Acids Res. 43, D1049-D1056 (2015).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D1049-D1056
-
-
-
55
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B Met. 57, 289-300 (1995).
-
(1995)
J. R. Stat. Soc. B Met.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
56
-
-
0346102887
-
Estimation of false discovery rates in multiple testing: Application to gene microarray data
-
C.-A. Tsai, H.-m. Hsueh, J. J. Chen, Estimation of false discovery rates in multiple testing: Application to gene microarray data. Biometrics 59, 1071-1081 (2003).
-
(2003)
Biometrics
, vol.59
, pp. 1071-1081
-
-
Tsai, C.-A.1
Hsueh, H.-M.2
Chen, J.J.3
-
57
-
-
33747840464
-
Estimation and control of multiple testing error rates for microarray studies
-
S. B. Pounds, Estimation and control of multiple testing error rates for microarray studies. Brief. Bioinform. 7, 25-36 (2006).
-
(2006)
Brief. Bioinform.
, vol.7
, pp. 25-36
-
-
Pounds, S.B.1
-
58
-
-
0029966556
-
Adjusting for multiple testing when reporting research results: The bonferroni vs holm methods
-
M. Aickin, H. Gensler, Adjusting for multiple testing when reporting research results: The Bonferroni vs Holm methods. Am. J. Public Health 86, 726-728 (1996).
-
(1996)
Am. J. Public Health
, vol.86
, pp. 726-728
-
-
Aickin, M.1
Gensler, H.2
-
60
-
-
0041965980
-
Cluster ensembles-A knowledge reuse framework for combining multiple partitions
-
A. Strehl, J. Ghosh, Cluster ensembles-A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617 (2002).
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
61
-
-
80054920244
-
CLICOM: Cliques for combining multiple clusterings
-
S. Mimaroglu, M. Yagci, CLICOM: Cliques for combining multiple clusterings. Expert Syst. Appl. 39, 1889-1901 (2012).
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 1889-1901
-
-
Mimaroglu, S.1
Yagci, M.2
-
62
-
-
84899089919
-
Clustering indices
-
B. Desgraupes, Clustering indices. CRAN Packag., 1-10 (2013).
-
(2013)
CRAN Packag
, pp. 1-10
-
-
Desgraupes, B.1
-
63
-
-
0038724494
-
Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data
-
S. Monti, P. Tamayo, J. Mesirov, T. Golub, Consensus clustering: A resampling based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91-118 (2003).
-
(2003)
Mach. Learn.
, vol.52
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
-
64
-
-
0036207548
-
Inference from clustering with application to gene-expression microarrays
-
E. R. Dougherty, J. Barrera, M. Brun, S. Kim, R. M. Cesar, Y. Chen, M. Bittner, J. M. Trent, Inference from clustering with application to gene-expression microarrays. J. Comput. Biol. 9, 105-126 (2002).
-
(2002)
J. Comput. Biol.
, vol.9
, pp. 105-126
-
-
Dougherty, E.R.1
Barrera, J.2
Brun, M.3
Kim, S.4
Cesar, R.M.5
Chen, Y.6
Bittner, M.7
Trent, J.M.8
-
65
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Rec. 27, 94-105 (1998).
-
(1998)
Acm Sigmod Rec.
, vol.27
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
66
-
-
0242387333
-
-
(Technical Report CPDC-TR-9906-010, Center for Parallel and Distributed Computing, Evanston, IL, 1999)
-
S. Goil, H. Nagesh, A. Choudhary, "MAFIA: Efficient and scalable subspace clustering for very large data sets" (Technical Report CPDC-TR-9906-010, Center for Parallel and Distributed Computing, Evanston, IL, 1999).
-
MAFIA: Efficient and Scalable Subspace Clustering for Very Large Data Sets
-
-
Goil, S.1
Nagesh, H.2
Choudhary, A.3
-
67
-
-
84920707649
-
The blind men and the elephant: On meeting the problem of multiple truths in data from clustering and pattern mining perspectives
-
A. Zimek, J. Vreeken, The blind men and the elephant: On meeting the problem of multiple truths in data from clustering and pattern mining perspectives. Mach. Learn. 98, 121-155 (2015).
-
(2015)
Mach. Learn.
, vol.98
, pp. 121-155
-
-
Zimek, A.1
Vreeken, J.2
-
68
-
-
0035514007
-
Resampling method for unsupervised estimation of cluster validity
-
E. Levine, E. Domany, Resampling method for unsupervised estimation of cluster validity. Neural Comput. 13, 2573-2593 (2001).
-
(2001)
Neural Comput.
, vol.13
, pp. 2573-2593
-
-
Levine, E.1
Domany, E.2
-
69
-
-
77952482885
-
Multi-level bootstrap analysis of stable clusters in resting-state fMRI
-
P. Bellec, P. Rosa-Neto, O. C. Lyttelton, H. Benali, A. C. Evans, Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage 51, 1126-1139(2010).
-
(2010)
Neuroimage
, vol.51
, pp. 1126-1139
-
-
Bellec, P.1
Rosa-Neto, P.2
Lyttelton, O.C.3
Benali, H.4
Evans, A.C.5
-
70
-
-
2442611856
-
Stability-based validation of clustering solutions
-
T. Lange, V. Roth, M. L. Braun, J. M. Buhmann, Stability-based validation of clustering solutions. Neural Comput. 16, 1299-1323 (2004).
-
(2004)
Neural Comput.
, vol.16
, pp. 1299-1323
-
-
Lange, T.1
Roth, V.2
Braun, M.L.3
Buhmann, J.M.4
-
71
-
-
77950369345
-
Data clustering: 50 years beyond K-means
-
A. K. Jain, Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651-666 (2010).
-
(2010)
Pattern Recogn. Lett.
, vol.31
, pp. 651-666
-
-
Jain, A.K.1
-
72
-
-
0442289065
-
-
(Technical Report, Accrue Software Inc., San Jose, CA, 2002)
-
P. Berkhin, "Survey of clustering data mining techniques" (Technical Report, Accrue Software Inc., San Jose, CA, 2002).
-
Survey of Clustering Data Mining Techniques
-
-
Berkhin, P.1
-
73
-
-
84901256826
-
On the selection of appropriate distances for gene expression data clustering
-
P. A. Jaskowiak, R. J. G. B. Campello, I. G. Costa, On the selection of appropriate distances for gene expression data clustering. BMC Bioinformatics 15 (Suppl. 2), S2 (2014).
-
(2014)
BMC Bioinformatics
, vol.15
, pp. S2
-
-
Jaskowiak, P.A.1
Campello, R.J.G.B.2
Costa, I.G.3
-
75
-
-
79951748781
-
Understanding of internal clustering validation measures
-
Y. Liu, Z. Li, H. Xiong, X. Gao, J. Wu, Understanding of internal clustering validation measures, 2010 IEEE Int. Conf. Data Min., 911-916 (2010).
-
(2010)
2010 IEEE Int. Conf. Data Min.
, pp. 911-916
-
-
Liu, Y.1
Li, Z.2
Xiong, H.3
Gao, X.4
Wu, J.5
-
76
-
-
84884338728
-
Standardization and its effects on κ-means clustering algorithm
-
I. B. Mohamad, D. Usman, Standardization and its effects on κ-means clustering algorithm. Res. J. Appl. Sci. Eng. Technol. 6, 3299-3303 (2013).
-
(2013)
Res. J. Appl. Sci. Eng. Technol.
, vol.6
, pp. 3299-3303
-
-
Mohamad, I.B.1
Usman, D.2
-
77
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional space
-
2001
-
C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the surprising behavior of distance metrics in high dimensional space Lect. Notes Comput. Sci. 1973, 420-434 (2001).
-
(1973)
Lect. Notes Comput. Sci.
, pp. 420-434
-
-
Aggarwal, C.C.1
Hinneburg, A.2
Keim, D.A.3
|