메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Design and computational analysis of single-cell RNA-sequencing experiments

Author keywords

[No Author keywords available]

Indexed keywords

RNA SEQUENCE; ANIMAL; BIOLOGY; GENETIC DATABASE; HIGH THROUGHPUT SEQUENCING; HUMAN; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS;

EID: 84962658087     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-0927-y     Document Type: Review
Times cited : (366)

References (93)
  • 1
    • 77955504378 scopus 로고    scopus 로고
    • Statistical design and analysis of RNA sequencing data
    • Auer P, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;185:405-16.
    • (2010) Genetics , vol.185 , pp. 405-416
    • Auer, P.1    Doerge, R.W.2
  • 2
    • 84866158885 scopus 로고    scopus 로고
    • Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing
    • Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing. BMC Genomics. 2012;13:484.
    • (2012) BMC Genomics , vol.13 , pp. 484
    • Robles, J.A.1    Qureshi, S.E.2    Stephen, S.J.3    Wilson, S.R.4    Burden, C.J.5    Taylor, J.M.6
  • 3
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131-9.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1131-1139
    • Yan, L.1    Yang, M.2    Guo, H.3    Yang, L.4    Wu, J.5    Li, R.6
  • 7
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163:799-810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    Oudenaarden, A.2
  • 8
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 9
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
    • (2014) Nat Methods , vol.11 , pp. 637-640
    • Grün, D.1    Kester, L.2    Oudenaarden, A.3
  • 10
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163-6.
    • (2014) Nat Methods , vol.11 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    Manno, G.4    Zajac, P.5    Kasper, M.6
  • 11
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
    • Leng N, Chu LF, Barry C, Li Y, Choi J, Li X, et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods. 2015;12:947-50.
    • (2015) Nat Methods , vol.12 , pp. 947-950
    • Leng, N.1    Chu, L.F.2    Barry, C.3    Li, Y.4    Choi, J.5    Li, X.6
  • 12
    • 84962711132 scopus 로고    scopus 로고
    • OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data
    • Leng N, Choi J, Chu LF, Thomson JA, Kendziorski C, Stewart R. OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data. Bioinformatics. 2016. doi: 10.1093/bioinformatics/btw004.
    • (2016) Bioinformatics
    • Leng, N.1    Choi, J.2    Chu, L.F.3    Thomson, J.A.4    Kendziorski, C.5    Stewart, R.6
  • 14
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053-8.
    • (2014) Nat Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3    Wang, X.4    Leyrat, A.A.5    Lui, J.H.6
  • 15
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363-9.
    • (2014) Nature , vol.510 , pp. 363-369
    • Shalek, A.K.1    Satija, R.2    Shuga, J.3    Trombetta, J.J.4    Gennert, D.5    Lu, D.6
  • 17
    • 84944341559 scopus 로고    scopus 로고
    • Single-cell RNA- Seq resolves cellular complexity in sensory organs from the neonatal inner ear
    • Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW. Single-cell RNA- Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557.
    • (2015) Nat Commun , vol.6 , pp. 8557
    • Burns, J.C.1    Kelly, M.C.2    Hoa, M.3    Morell, R.J.4    Kelley, M.W.5
  • 18
    • 84941929935 scopus 로고    scopus 로고
    • Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells
    • Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA, et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16:178.
    • (2015) Genome Biol , vol.16 , pp. 178
    • Tsang, J.C.1    Yu, Y.2    Burke, S.3    Buettner, F.4    Wang, C.5    Kolodziejczyk, A.A.6
  • 20
    • 84883492771 scopus 로고    scopus 로고
    • Kraken: a set of tools for quality control and analysis of high-throughput sequence data
    • Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63:41-9.
    • (2013) Methods , vol.63 , pp. 41-49
    • Davis, M.P.1    Dongen, S.2    Abreu-Goodger, C.3    Bartonicek, N.4    Enright, A.J.5
  • 22
    • 0031978181 scopus 로고    scopus 로고
    • Base-calling of automated sequencer traces using phred. II. Error probabilities
    • Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:186-94.
    • (1998) Genome Res , vol.8 , pp. 186-194
    • Ewing, B.1    Green, P.2
  • 25
    • 84909587930 scopus 로고    scopus 로고
    • Detecting and correcting systematic variation in large-scale RNA sequencing data
    • Li S, Łabaj PP, Zumbo P, Sykacek P, Shi W, Shi L, et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat Biotechnol. 2014;32:888-95.
    • (2014) Nat Biotechnol , vol.32 , pp. 888-895
    • Li, S.1    Łabaj, P.P.2    Zumbo, P.3    Sykacek, P.4    Shi, W.5    Shi, L.6
  • 26
    • 84937110093 scopus 로고    scopus 로고
    • QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments
    • Hartley SW, Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015;16:224.
    • (2015) BMC Bioinformatics , vol.16 , pp. 224
    • Hartley, S.W.1    Mullikin, J.C.2
  • 27
    • 84959932296 scopus 로고    scopus 로고
    • Qualimap 2: advanced multi- sample quality control for high-throughput sequencing data
    • Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi- sample quality control for high-throughput sequencing data. Bioinformatics. 2015;32:292-4.
    • (2015) Bioinformatics , vol.32 , pp. 292-294
    • Okonechnikov, K.1    Conesa, A.2    García-Alcalde, F.3
  • 28
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a Python framework to work with high- throughput sequencing data
    • Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high- throughput sequencing data. Bioinformatics. 2014;31:166-9.
    • (2014) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 29
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
    • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 30
    • 84925245615 scopus 로고    scopus 로고
    • WemIQ: an accurate and robust isoform quantification method for RNA-seq data
    • Zhang J, Kuo CCJ, Chen L. WemIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics. 2015;31:878-85.
    • (2015) Bioinformatics , vol.31 , pp. 878-885
    • Zhang, J.1    Kuo, C.C.J.2    Chen, L.3
  • 31
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
    • Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666-73.
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 34
    • 84876085773 scopus 로고    scopus 로고
    • Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity
    • Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol. 2013;14:R31.
    • (2013) Genome Biol , vol.14 , pp. R31
    • Sasagawa, Y.1    Nikaido, I.2    Hayashi, T.3    Danno, H.4    Uno, K.D.5    Imai, T.6    Ueda, H.R.7
  • 35
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371-5.
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1    Brownfield, D.G.2    Wu, A.R.3    Neff, N.F.4    Mantalas, G.L.5    Espinoza, F.H.6
  • 36
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 37
    • 84892179132 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
    • Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343:193-6.
    • (2014) Science , vol.343 , pp. 193-196
    • Deng, Q.1    Ramsköld, D.2    Reinius, B.3    Sandberg, R.4
  • 38
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:1-9.
    • (2010) Genome Biol , vol.11 , pp. 1-9
    • Robinson, M.1    Oshlack, A.2
  • 39
    • 78650539308 scopus 로고    scopus 로고
    • From RNA-seq reads to differential expression results
    • Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol. 2010;11:220.
    • (2010) Genome Biol , vol.11 , pp. 220
    • Oshlack, A.1    Robinson, M.D.2    Young, M.D.3
  • 40
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 41
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671-83.
    • (2013) Brief Bioinform , vol.14 , pp. 671-683
    • Dillies, M.A.1    Rau, A.2    Aubert, J.3    Hennequet-Antier, C.4    Jeanmougin, M.5    Servant, N.6
  • 42
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 43
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 45
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896-902.
    • (2014) Nat Biotechnol , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 46
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13:204-16.
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 47
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155-60.
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 49
    • 84954396263 scopus 로고    scopus 로고
    • Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
    • Kim JK, Marioni JC. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol. 2013;14:R7.
    • (2013) Genome Biol , vol.14 , pp. R7
    • Kim, J.K.1    Marioni, J.C.2
  • 50
    • 84939170642 scopus 로고    scopus 로고
    • Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation
    • Dueck H, Khaladkar M, Kim TK, Spaethling JM, Francis C, Suresh S, et al. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol. 2015;16:122.
    • (2015) Genome Biol , vol.16 , pp. 122
    • Dueck, H.1    Khaladkar, M.2    Kim, T.K.3    Spaethling, J.M.4    Francis, C.5    Suresh, S.6
  • 51
    • 84901188210 scopus 로고    scopus 로고
    • Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
    • Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7:1130-42.
    • (2014) Cell Rep , vol.7 , pp. 1130-1142
    • Mahata, B.1    Zhang, X.2    Kolodziejczyk, A.A.3    Proserpio, V.4    Haim-Vilmovsky, L.5    Taylor, A.E.6
  • 53
    • 84883134780 scopus 로고    scopus 로고
    • Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
    • Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593-7.
    • (2013) Nature , vol.500 , pp. 593-597
    • Xue, Z.1    Huang, K.2    Cai, C.3    Cai, L.4    Jiang, C.Y.5    Feng, Y.6
  • 54
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian Analysis of Single-Cell Sequencing data
    • Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian Analysis of Single-Cell Sequencing data. PLoS Comput Biol. 2015;11:e1004333.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 56
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama S, Töhönen V, Linnarsson S, Kere J. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics. 2013;29:2943-5.
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Töhönen, V.2    Linnarsson, S.3    Kere, J.4
  • 57
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-seq experiments
    • Ding B, Zheng L, Zhu Y, Li N, Jia H, Ai R, et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics. 2015;31:2225-7.
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1    Zheng, L.2    Zhu, Y.3    Li, N.4    Jia, H.5    Ai, R.6
  • 59
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-5.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1    Lyubimova, A.2    Kester, L.3    Wiebrands, K.4    Basak, O.5    Sasaki, N.6
  • 61
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 62
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 63
    • 84954122228 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim JK, Kolodziejczyk AA, Illicic T, Teichmann SA, Marioni JC. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2016;7:10415.
    • (2016) Nat Commun , vol.7 , pp. 10415
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Illicic, T.3    Teichmann, S.A.4    Marioni, J.C.5
  • 65
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236-40.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1    Satija, R.2    Adiconis, X.3    Gertner, R.S.4    Gaublomme, J.T.5    Raychowdhury, R.6
  • 66
    • 84868709258 scopus 로고    scopus 로고
    • mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer
    • Cann GM, Gulzar ZG, Cooper S, Li R, Luo S, Tat M, et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One. 2012;7:e49144.
    • (2012) PLoS One , vol.7 , pp. e49144
    • Cann, G.M.1    Gulzar, Z.G.2    Cooper, S.3    Li, R.4    Luo, S.5    Tat, M.6
  • 67
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777-82.
    • (2012) Nat Biotechnol , vol.30 , pp. 777-782
    • Ramsköld, D.1    Luo, S.2    Wang, Y.C.3    Li, R.4    Deng, Q.5    Faridani, O.R.6
  • 68
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan J, Salathia N, Liu R, Kaeser GE, Yung YC, Herman JL, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 2016;13:241-4.
    • (2016) Nat Methods , vol.13 , pp. 241-244
    • Fan, J.1    Salathia, N.2    Liu, R.3    Kaeser, G.E.4    Yung, Y.C.5    Herman, J.L.6
  • 69
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.
    • (2008) J Mach Learn Res , vol.9 , pp. 2579-2605
    • Maaten, L.1    Hinton, G.2
  • 70
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 71
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015;31:1974-80.
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 72
    • 84949293695 scopus 로고    scopus 로고
    • SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
    • Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol. 2015;11:e1004575.
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004575
    • Guo, M.1    Wang, H.2    Potter, S.S.3    Whitsett, J.A.4    Xu, Y.5
  • 75
    • 84914706587 scopus 로고    scopus 로고
    • Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing
    • Lee MC, Lopez-Diaz FJ, Khan SY, Tariq MA, Dayn Y, Vaske CJ, et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111:E4726-35.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E4726-E4735
    • Lee, M.C.1    Lopez-Diaz, F.J.2    Khan, S.Y.3    Tariq, M.A.4    Dayn, Y.5    Vaske, C.J.6
  • 76
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 77
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
    • (2014) Nat Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 79
    • 84942940566 scopus 로고    scopus 로고
    • Defining cell types and states with single-cell genomics
    • Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015;25:1491-8.
    • (2015) Genome Res , vol.25 , pp. 1491-1498
    • Trapnell, C.1
  • 80
    • 84941010341 scopus 로고    scopus 로고
    • Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis
    • Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17:360-72.
    • (2015) Cell Stem Cell , vol.17 , pp. 360-372
    • Shin, J.1    Berg, D.A.2    Zhu, Y.3    Shin, J.Y.4    Song, J.5    Bonaguidi, M.A.6
  • 81
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics. 2015;31:2989-98.
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1    Buettner, F.2    Theis, F.J.3
  • 83
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: sn R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
    • Juliá M, Telenti A, Rausell A. Sincell: sn R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31:3380-2.
    • (2015) Bioinformatics , vol.31 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 84
    • 23944458138 scopus 로고    scopus 로고
    • A general framework for weighted gene co-expression network analysis
    • Article17
    • Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
    • (2005) Stat Appl Genet Mol Biol , vol.4
    • Zhang, B.1    Horvath, S.2
  • 85
    • 84931084251 scopus 로고    scopus 로고
    • Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
    • Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics. 2015;31:i89-96.
    • (2015) Bioinformatics , vol.31 , pp. i89-96
    • Ocone, A.1    Haghverdi, L.2    Mueller, N.S.3    Theis, F.J.4
  • 86
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol. 2015;33:269-76.
    • (2015) Nat Biotechnol , vol.33 , pp. 269-276
    • Moignard, V.1    Woodhouse, S.2    Haghverdi, L.3    Lilly, A.J.4    Tanaka, Y.5    Wilkinson, A.C.6
  • 87
    • 84962684884 scopus 로고    scopus 로고
    • Robust detection of alternative splicing in a population of single cells
    • Welch JD, Hu Y, Prins JF. Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res. 2016. doi: 10.1093/nar/gkv1525.
    • (2016) Nucleic Acids Res
    • Welch, J.D.1    Hu, Y.2    Prins, J.F.3
  • 88
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 91
  • 92
    • 22844453564 scopus 로고    scopus 로고
    • MCLUST: software for model-based cluster and discriminant analysis
    • Fraley C, Raftery A. MCLUST: software for model-based cluster and discriminant analysis. J Classif. 1999;16:297-306.
    • (1999) J Classif , vol.16 , pp. 297-306
    • Fraley, C.1    Raftery, A.2
  • 93
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall SC, Davis KL, Amir e-AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157:714-25.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1    Davis, K.L.2    Amir, E.-A.D.3    Tadmor, M.D.4    Simonds, E.F.5    Chen, T.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.