-
1
-
-
77955504378
-
Statistical design and analysis of RNA sequencing data
-
Auer P, Doerge RW. Statistical design and analysis of RNA sequencing data. Genetics. 2010;185:405-16.
-
(2010)
Genetics
, vol.185
, pp. 405-416
-
-
Auer, P.1
Doerge, R.W.2
-
2
-
-
84866158885
-
Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing
-
Robles JA, Qureshi SE, Stephen SJ, Wilson SR, Burden CJ, Taylor JM. Efficient experimental design and analysis strategies for the detection of differential expression using RNA-sequencing. BMC Genomics. 2012;13:484.
-
(2012)
BMC Genomics
, vol.13
, pp. 484
-
-
Robles, J.A.1
Qureshi, S.E.2
Stephen, S.J.3
Wilson, S.R.4
Burden, C.J.5
Taylor, J.M.6
-
3
-
-
84883743509
-
Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
-
Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013;20:1131-9.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1131-1139
-
-
Yan, L.1
Yang, M.2
Guo, H.3
Yang, L.4
Wu, J.5
Li, R.6
-
6
-
-
84929687805
-
The technology and biology of single-cell RNA sequencing
-
Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58:610-20.
-
(2015)
Mol Cell
, vol.58
, pp. 610-620
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Svensson, V.3
Marioni, J.C.4
Teichmann, S.A.5
-
7
-
-
84946226911
-
Design and analysis of single-cell sequencing experiments
-
Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. 2015;163:799-810.
-
(2015)
Cell
, vol.163
, pp. 799-810
-
-
Grün, D.1
Oudenaarden, A.2
-
8
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015;16:133-45.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
9
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014;11:637-40.
-
(2014)
Nat Methods
, vol.11
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
Oudenaarden, A.3
-
10
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014;11:163-6.
-
(2014)
Nat Methods
, vol.11
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
Manno, G.4
Zajac, P.5
Kasper, M.6
-
11
-
-
84959122613
-
Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
-
Leng N, Chu LF, Barry C, Li Y, Choi J, Li X, et al. Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods. 2015;12:947-50.
-
(2015)
Nat Methods
, vol.12
, pp. 947-950
-
-
Leng, N.1
Chu, L.F.2
Barry, C.3
Li, Y.4
Choi, J.5
Li, X.6
-
12
-
-
84962711132
-
OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data
-
Leng N, Choi J, Chu LF, Thomson JA, Kendziorski C, Stewart R. OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data. Bioinformatics. 2016. doi: 10.1093/bioinformatics/btw004.
-
(2016)
Bioinformatics
-
-
Leng, N.1
Choi, J.2
Chu, L.F.3
Thomson, J.A.4
Kendziorski, C.5
Stewart, R.6
-
13
-
-
84893910301
-
Quantitative assessment of single-cell RNA-sequencing methods
-
Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014;11:41-6.
-
(2014)
Nat Methods
, vol.11
, pp. 41-46
-
-
Wu, A.R.1
Neff, N.F.2
Kalisky, T.3
Dalerba, P.4
Treutlein, B.5
Rothenberg, M.E.6
-
14
-
-
84922321862
-
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014;32:1053-8.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
Wang, X.4
Leyrat, A.A.5
Lui, J.H.6
-
15
-
-
84903185013
-
Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
-
Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510:363-9.
-
(2014)
Nature
, vol.510
, pp. 363-369
-
-
Shalek, A.K.1
Satija, R.2
Shuga, J.3
Trombetta, J.J.4
Gennert, D.5
Lu, D.6
-
16
-
-
84958058589
-
Classification of low quality cells from single-cell RNA-seq data
-
Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC, Teichmann SA. Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016;17:29.
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
Kim, J.K.2
Kolodziejczyk, A.A.3
Bagger, F.O.4
McCarthy, D.J.5
Marioni, J.C.6
Teichmann, S.A.7
-
17
-
-
84944341559
-
Single-cell RNA- Seq resolves cellular complexity in sensory organs from the neonatal inner ear
-
Burns JC, Kelly MC, Hoa M, Morell RJ, Kelley MW. Single-cell RNA- Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557.
-
(2015)
Nat Commun
, vol.6
, pp. 8557
-
-
Burns, J.C.1
Kelly, M.C.2
Hoa, M.3
Morell, R.J.4
Kelley, M.W.5
-
18
-
-
84941929935
-
Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells
-
Tsang JC, Yu Y, Burke S, Buettner F, Wang C, Kolodziejczyk AA, et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16:178.
-
(2015)
Genome Biol
, vol.16
, pp. 178
-
-
Tsang, J.C.1
Yu, Y.2
Burke, S.3
Buettner, F.4
Wang, C.5
Kolodziejczyk, A.A.6
-
20
-
-
84883492771
-
Kraken: a set of tools for quality control and analysis of high-throughput sequence data
-
Davis MP, van Dongen S, Abreu-Goodger C, Bartonicek N, Enright AJ. Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods. 2013;63:41-9.
-
(2013)
Methods
, vol.63
, pp. 41-49
-
-
Davis, M.P.1
Dongen, S.2
Abreu-Goodger, C.3
Bartonicek, N.4
Enright, A.J.5
-
21
-
-
84861743958
-
RNA-SeQC: RNA-seq metrics for quality control and process optimization
-
DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012;28:1530-32.
-
(2012)
Bioinformatics
, vol.28
, pp. 1530-1532
-
-
DeLuca, D.S.1
Levin, J.Z.2
Sivachenko, A.3
Fennell, T.4
Nazaire, M.D.5
Williams, C.6
-
22
-
-
0031978181
-
Base-calling of automated sequencer traces using phred. II. Error probabilities
-
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:186-94.
-
(1998)
Genome Res
, vol.8
, pp. 186-194
-
-
Ewing, B.1
Green, P.2
-
23
-
-
84929166604
-
High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin
-
Achim K, Pettit JB, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, Marioni JC. High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol. 2015;33:503-9.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 503-509
-
-
Achim, K.1
Pettit, J.B.2
Saraiva, L.R.3
Gavriouchkina, D.4
Larsson, T.5
Arendt, D.6
Marioni, J.C.7
-
24
-
-
77956340995
-
Comprehensive comparative analysis of strand-specific RNA sequencing methods
-
Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, et al. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods. 2010;7:709-15.
-
(2010)
Nat Methods
, vol.7
, pp. 709-715
-
-
Levin, J.Z.1
Yassour, M.2
Adiconis, X.3
Nusbaum, C.4
Thompson, D.A.5
Friedman, N.6
-
25
-
-
84909587930
-
Detecting and correcting systematic variation in large-scale RNA sequencing data
-
Li S, Łabaj PP, Zumbo P, Sykacek P, Shi W, Shi L, et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat Biotechnol. 2014;32:888-95.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 888-895
-
-
Li, S.1
Łabaj, P.P.2
Zumbo, P.3
Sykacek, P.4
Shi, W.5
Shi, L.6
-
26
-
-
84937110093
-
QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments
-
Hartley SW, Mullikin JC. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics. 2015;16:224.
-
(2015)
BMC Bioinformatics
, vol.16
, pp. 224
-
-
Hartley, S.W.1
Mullikin, J.C.2
-
27
-
-
84959932296
-
Qualimap 2: advanced multi- sample quality control for high-throughput sequencing data
-
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi- sample quality control for high-throughput sequencing data. Bioinformatics. 2015;32:292-4.
-
(2015)
Bioinformatics
, vol.32
, pp. 292-294
-
-
Okonechnikov, K.1
Conesa, A.2
García-Alcalde, F.3
-
28
-
-
84928987900
-
HTSeq-a Python framework to work with high- throughput sequencing data
-
Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high- throughput sequencing data. Bioinformatics. 2014;31:166-9.
-
(2014)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
29
-
-
79961123152
-
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
-
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 323
-
-
Li, B.1
Dewey, C.N.2
-
30
-
-
84925245615
-
WemIQ: an accurate and robust isoform quantification method for RNA-seq data
-
Zhang J, Kuo CCJ, Chen L. WemIQ: an accurate and robust isoform quantification method for RNA-seq data. Bioinformatics. 2015;31:878-85.
-
(2015)
Bioinformatics
, vol.31
, pp. 878-885
-
-
Zhang, J.1
Kuo, C.C.J.2
Chen, L.3
-
31
-
-
84866953427
-
CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification
-
Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666-73.
-
(2012)
Cell Rep
, vol.2
, pp. 666-673
-
-
Hashimshony, T.1
Wagner, F.2
Sher, N.3
Yanai, I.4
-
32
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014;344:1396-401.
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
Tirosh, I.2
Trombetta, J.J.3
Shalek, A.K.4
Gillespie, S.M.5
Wakimoto, H.6
-
33
-
-
84931274624
-
A survey of human brain transcriptome diversity at the single cell level
-
Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A. 2015;112:7285-90.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 7285-7290
-
-
Darmanis, S.1
Sloan, S.A.2
Zhang, Y.3
Enge, M.4
Caneda, C.5
Shuer, L.M.6
-
34
-
-
84876085773
-
Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity
-
Sasagawa Y, Nikaido I, Hayashi T, Danno H, Uno KD, Imai T, Ueda HR. Quartz-Seq: a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity. Genome Biol. 2013;14:R31.
-
(2013)
Genome Biol
, vol.14
, pp. R31
-
-
Sasagawa, Y.1
Nikaido, I.2
Hayashi, T.3
Danno, H.4
Uno, K.D.5
Imai, T.6
Ueda, H.R.7
-
35
-
-
84900529199
-
Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
-
Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371-5.
-
(2014)
Nature
, vol.509
, pp. 371-375
-
-
Treutlein, B.1
Brownfield, D.G.2
Wu, A.R.3
Neff, N.F.4
Mantalas, G.L.5
Espinoza, F.H.6
-
36
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
37
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343:193-6.
-
(2014)
Science
, vol.343
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
38
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson M, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:1-9.
-
(2010)
Genome Biol
, vol.11
, pp. 1-9
-
-
Robinson, M.1
Oshlack, A.2
-
39
-
-
78650539308
-
From RNA-seq reads to differential expression results
-
Oshlack A, Robinson MD, Young MD. From RNA-seq reads to differential expression results. Genome Biol. 2010;11:220.
-
(2010)
Genome Biol
, vol.11
, pp. 220
-
-
Oshlack, A.1
Robinson, M.D.2
Young, M.D.3
-
40
-
-
77949481052
-
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
-
Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 94
-
-
Bullard, J.H.1
Purdom, E.2
Hansen, K.D.3
Dudoit, S.4
-
41
-
-
84887791432
-
A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
-
Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform. 2013;14:671-83.
-
(2013)
Brief Bioinform
, vol.14
, pp. 671-683
-
-
Dillies, M.A.1
Rau, A.2
Aubert, J.3
Hennequet-Antier, C.4
Jeanmougin, M.5
Servant, N.6
-
42
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
43
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
-
(2010)
Genome Biol
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
45
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso D, Ngai J, Speed TP, Dudoit S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014;32:896-902.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
46
-
-
84858068675
-
Removing technical variability in RNA-seq data using conditional quantile normalization
-
Hansen KD, Irizarry RA, Wu Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics. 2012;13:204-16.
-
(2012)
Biostatistics
, vol.13
, pp. 204-216
-
-
Hansen, K.D.1
Irizarry, R.A.2
Wu, Z.3
-
47
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015;33:155-60.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
Proserpio, V.4
Scialdone, A.5
Theis, F.J.6
-
48
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013;10:1093-95.
-
(2013)
Nat Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Kołodziejczyk, A.A.4
Zhang, X.5
Proserpio, V.6
-
49
-
-
84954396263
-
Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
-
Kim JK, Marioni JC. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol. 2013;14:R7.
-
(2013)
Genome Biol
, vol.14
, pp. R7
-
-
Kim, J.K.1
Marioni, J.C.2
-
50
-
-
84939170642
-
Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation
-
Dueck H, Khaladkar M, Kim TK, Spaethling JM, Francis C, Suresh S, et al. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation. Genome Biol. 2015;16:122.
-
(2015)
Genome Biol
, vol.16
, pp. 122
-
-
Dueck, H.1
Khaladkar, M.2
Kim, T.K.3
Spaethling, J.M.4
Francis, C.5
Suresh, S.6
-
51
-
-
84901188210
-
Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
-
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, et al. Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014;7:1130-42.
-
(2014)
Cell Rep
, vol.7
, pp. 1130-1142
-
-
Mahata, B.1
Zhang, X.2
Kolodziejczyk, A.A.3
Proserpio, V.4
Haim-Vilmovsky, L.5
Taylor, A.E.6
-
52
-
-
84926429952
-
Single cell transcriptome amplification with MALBAC
-
Chapman AR, He Z, Lu S, Yong J, Tan L, Tang F, Xie XS. Single cell transcriptome amplification with MALBAC. PLoS One. 2015;10:e0120889.
-
(2015)
PLoS One
, vol.10
, pp. e0120889
-
-
Chapman, A.R.1
He, Z.2
Lu, S.3
Yong, J.4
Tan, L.5
Tang, F.6
Xie, X.S.7
-
53
-
-
84883134780
-
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
-
Xue Z, Huang K, Cai C, Cai L, Jiang CY, Feng Y, et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593-7.
-
(2013)
Nature
, vol.500
, pp. 593-597
-
-
Xue, Z.1
Huang, K.2
Cai, C.3
Cai, L.4
Jiang, C.Y.5
Feng, Y.6
-
55
-
-
84868010349
-
Revisiting global gene expression analysis
-
Lovén J, Orlando DA, Sigova AA, Lin CY, Rahl PB, Burge CB, et al. Revisiting global gene expression analysis. Cell. 2012;151:476-82.
-
(2012)
Cell
, vol.151
, pp. 476-482
-
-
Lovén, J.1
Orlando, D.A.2
Sigova, A.A.3
Lin, C.Y.4
Rahl, P.B.5
Burge, C.B.6
-
56
-
-
84890060756
-
SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
-
Katayama S, Töhönen V, Linnarsson S, Kere J. SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics. 2013;29:2943-5.
-
(2013)
Bioinformatics
, vol.29
, pp. 2943-2945
-
-
Katayama, S.1
Töhönen, V.2
Linnarsson, S.3
Kere, J.4
-
57
-
-
84936803955
-
Normalization and noise reduction for single cell RNA-seq experiments
-
Ding B, Zheng L, Zhu Y, Li N, Jia H, Ai R, et al. Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics. 2015;31:2225-7.
-
(2015)
Bioinformatics
, vol.31
, pp. 2225-2227
-
-
Ding, B.1
Zheng, L.2
Zhu, Y.3
Li, N.4
Jia, H.5
Ai, R.6
-
58
-
-
84856484968
-
Counting absolute numbers of molecules using unique molecular identifiers
-
Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012;9:72-4.
-
(2012)
Nat Methods
, vol.9
, pp. 72-74
-
-
Kivioja, T.1
Vähärautio, A.2
Karlsson, K.3
Bonke, M.4
Enge, M.5
Linnarsson, S.6
Taipale, J.7
-
59
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525:251-5.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grün, D.1
Lyubimova, A.2
Kester, L.3
Wiebrands, K.4
Basak, O.5
Sasaki, N.6
-
60
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
Lönnerberg, P.4
Manno, G.5
Juréus, A.6
-
61
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202-14.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
Nemesh, J.4
Shekhar, K.5
Goldman, M.6
-
62
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
-
63
-
-
84954122228
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim JK, Kolodziejczyk AA, Illicic T, Teichmann SA, Marioni JC. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2016;7:10415.
-
(2016)
Nat Commun
, vol.7
, pp. 10415
-
-
Kim, J.K.1
Kolodziejczyk, A.A.2
Illicic, T.3
Teichmann, S.A.4
Marioni, J.C.5
-
64
-
-
84902840108
-
Technical variations in low-input RNA-seq methodologies
-
Bhargava V, Head SR, Ordoukhanian P, Mercola M, Subramaniam S. Technical variations in low-input RNA-seq methodologies. Sci Rep. 2014;4:3678.
-
(2014)
Sci Rep
, vol.4
, pp. 3678
-
-
Bhargava, V.1
Head, S.R.2
Ordoukhanian, P.3
Mercola, M.4
Subramaniam, S.5
-
65
-
-
84878997106
-
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
-
Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498:236-40.
-
(2013)
Nature
, vol.498
, pp. 236-240
-
-
Shalek, A.K.1
Satija, R.2
Adiconis, X.3
Gertner, R.S.4
Gaublomme, J.T.5
Raychowdhury, R.6
-
66
-
-
84868709258
-
mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer
-
Cann GM, Gulzar ZG, Cooper S, Li R, Luo S, Tat M, et al. mRNA-Seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer. PLoS One. 2012;7:e49144.
-
(2012)
PLoS One
, vol.7
, pp. e49144
-
-
Cann, G.M.1
Gulzar, Z.G.2
Cooper, S.3
Li, R.4
Luo, S.5
Tat, M.6
-
67
-
-
84864880991
-
Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
-
Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2012;30:777-82.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 777-782
-
-
Ramsköld, D.1
Luo, S.2
Wang, Y.C.3
Li, R.4
Deng, Q.5
Faridani, O.R.6
-
68
-
-
84959189722
-
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
-
Fan J, Salathia N, Liu R, Kaeser GE, Yung YC, Herman JL, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 2016;13:241-4.
-
(2016)
Nat Methods
, vol.13
, pp. 241-244
-
-
Fan, J.1
Salathia, N.2
Liu, R.3
Kaeser, G.E.4
Yung, Y.C.5
Herman, J.L.6
-
69
-
-
57249084011
-
Visualizing data using t-SNE
-
Van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 2579-2605
-
-
Maaten, L.1
Hinton, G.2
-
70
-
-
84955706109
-
ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
71
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu C, Su Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics. 2015;31:1974-80.
-
(2015)
Bioinformatics
, vol.31
, pp. 1974-1980
-
-
Xu, C.1
Su, Z.2
-
72
-
-
84949293695
-
SINCERA: a pipeline for single-cell RNA-Seq profiling analysis
-
Guo M, Wang H, Potter SS, Whitsett JA, Xu Y. SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput Biol. 2015;11:e1004575.
-
(2015)
PLoS Comput Biol
, vol.11
, pp. e1004575
-
-
Guo, M.1
Wang, H.2
Potter, S.S.3
Whitsett, J.A.4
Xu, Y.5
-
73
-
-
84924365758
-
Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
-
Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L, Yuan GC. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci U S A. 2014;111:E5643-50.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E5643-E5650
-
-
Marco, E.1
Karp, R.L.2
Guo, G.3
Robson, P.4
Hart, A.H.5
Trippa, L.6
Yuan, G.C.7
-
74
-
-
84904624915
-
Single cell dissection of early kidney development: multilineage priming
-
Brunskill EW, Park JS, Chung E, Chen F, Magella B, Potter SS. Single cell dissection of early kidney development: multilineage priming. Development. 2014;141:3093-101.
-
(2014)
Development
, vol.141
, pp. 3093-3101
-
-
Brunskill, E.W.1
Park, J.S.2
Chung, E.3
Chen, F.4
Magella, B.5
Potter, S.S.6
-
75
-
-
84914706587
-
Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing
-
Lee MC, Lopez-Diaz FJ, Khan SY, Tariq MA, Dayn Y, Vaske CJ, et al. Single-cell analyses of transcriptional heterogeneity during drug tolerance transition in cancer cells by RNA sequencing. Proc Natl Acad Sci U S A. 2014;111:E4726-35.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. E4726-E4735
-
-
Lee, M.C.1
Lopez-Diaz, F.J.2
Khan, S.Y.3
Tariq, M.A.4
Dayn, Y.5
Vaske, C.J.6
-
76
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
-
77
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014;11:740-2.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
78
-
-
84962699056
-
-
bioRxiv
-
Korthauer K, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, Kendziorski C. scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments. bioRxiv. 2015. doi: http://dx.doi.org/10.1101/035501
-
(2015)
scDD: a statistical approach for identifying differential distributions in single-cell RNA-seq experiments.
-
-
Korthauer, K.1
Chu, L-F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
Kendziorski, C.7
-
79
-
-
84942940566
-
Defining cell types and states with single-cell genomics
-
Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015;25:1491-8.
-
(2015)
Genome Res
, vol.25
, pp. 1491-1498
-
-
Trapnell, C.1
-
80
-
-
84941010341
-
Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis
-
Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17:360-72.
-
(2015)
Cell Stem Cell
, vol.17
, pp. 360-372
-
-
Shin, J.1
Berg, D.A.2
Zhu, Y.3
Shin, J.Y.4
Song, J.5
Bonaguidi, M.A.6
-
81
-
-
84941753288
-
Diffusion maps for high-dimensional single-cell analysis of differentiation data
-
Haghverdi L, Buettner F, Theis FJ. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics. 2015;31:2989-98.
-
(2015)
Bioinformatics
, vol.31
, pp. 2989-2998
-
-
Haghverdi, L.1
Buettner, F.2
Theis, F.J.3
-
82
-
-
84966667709
-
destiny: diffusion maps for large-scale single-cell data in R
-
Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C, Buettner F. destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2015. doi: 10.1093/bioinformatics/btv715.
-
(2015)
Bioinformatics
-
-
Angerer, P.1
Haghverdi, L.2
Büttner, M.3
Theis, F.J.4
Marr, C.5
Buettner, F.6
-
83
-
-
84947805126
-
Sincell: sn R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
-
Juliá M, Telenti A, Rausell A. Sincell: sn R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31:3380-2.
-
(2015)
Bioinformatics
, vol.31
, pp. 3380-3382
-
-
Juliá, M.1
Telenti, A.2
Rausell, A.3
-
84
-
-
23944458138
-
A general framework for weighted gene co-expression network analysis
-
Article17
-
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4:Article17.
-
(2005)
Stat Appl Genet Mol Biol
, vol.4
-
-
Zhang, B.1
Horvath, S.2
-
85
-
-
84931084251
-
Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data
-
Ocone A, Haghverdi L, Mueller NS, Theis FJ. Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics. 2015;31:i89-96.
-
(2015)
Bioinformatics
, vol.31
, pp. i89-96
-
-
Ocone, A.1
Haghverdi, L.2
Mueller, N.S.3
Theis, F.J.4
-
86
-
-
84924353105
-
Decoding the regulatory network of early blood development from single-cell gene expression measurements
-
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, et al. Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol. 2015;33:269-76.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 269-276
-
-
Moignard, V.1
Woodhouse, S.2
Haghverdi, L.3
Lilly, A.J.4
Tanaka, Y.5
Wilkinson, A.C.6
-
87
-
-
84962684884
-
Robust detection of alternative splicing in a population of single cells
-
Welch JD, Hu Y, Prins JF. Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res. 2016. doi: 10.1093/nar/gkv1525.
-
(2016)
Nucleic Acids Res
-
-
Welch, J.D.1
Hu, Y.2
Prins, J.F.3
-
88
-
-
84893905629
-
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
-
Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776-9.
-
(2014)
Science
, vol.343
, pp. 776-779
-
-
Jaitin, D.A.1
Kenigsberg, E.2
Keren-Shaul, H.3
Elefant, N.4
Paul, F.5
Zaretsky, I.6
-
89
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495-502.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
90
-
-
84954562766
-
A microfluidic platform enabling single cell RNA-seq of multigenerational lineages
-
Kimmerling RJ, Lee Szeto G, Li JW, Genshaft AS, Kazer SW, Payer KR, et al. A microfluidic platform enabling single cell RNA-seq of multigenerational lineages. Nat Commun. 2016;7:10220.
-
(2016)
Nat Commun
, vol.7
, pp. 10220
-
-
Kimmerling, R.J.1
Lee Szeto, G.2
Li, J.W.3
Genshaft, A.S.4
Kazer, S.W.5
Payer, K.R.6
-
91
-
-
84959255113
-
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
-
Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods. 2016;13:229-32.
-
(2016)
Nat Methods
, vol.13
, pp. 229-232
-
-
Angermueller, C.1
Clark, S.J.2
Lee, H.J.3
Macaulay, I.C.4
Teng, M.J.5
Hu, T.X.6
-
92
-
-
22844453564
-
MCLUST: software for model-based cluster and discriminant analysis
-
Fraley C, Raftery A. MCLUST: software for model-based cluster and discriminant analysis. J Classif. 1999;16:297-306.
-
(1999)
J Classif
, vol.16
, pp. 297-306
-
-
Fraley, C.1
Raftery, A.2
-
93
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall SC, Davis KL, Amir e-AD, Tadmor MD, Simonds EF, Chen TJ, et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell. 2014;157:714-25.
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
Davis, K.L.2
Amir, E.-A.D.3
Tadmor, M.D.4
Simonds, E.F.5
Chen, T.J.6
|