메뉴 건너뛰기




Volumn 5, Issue , 2016, Pages

A step-by-step workflow for low-level analysis of single-cell RNA-seq data .

Author keywords

[No Author keywords available]

Indexed keywords

ANIMAL CELL; ARTICLE; CELL CYCLE PHASE; COMPUTATIONAL FLUID DYNAMICS; CONTROLLED STUDY; EMBRYONIC STEM CELL; GENE CLUSTER; GENE EXPRESSION; HELPER CELL; HEMATOPOIETIC STEM CELL; HUMAN; HUMAN CELL; METHODOLOGY; MOUSE; NONHUMAN; RNA ANALYSIS; RNA SEQUENCE; SEQUENCE ANALYSIS; SOFTWARE; WORKFLOW;

EID: 85010931059     PISSN: None     EISSN: 20461402     Source Type: Journal    
DOI: 10.12688/F1000RESEARCH.9501.1     Document Type: Article
Times cited : (498)

References (48)
  • 1
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10): R106
    • (2010) Genome Biol , vol.11 , Issue.10 , pp. R106
    • Anders, S.1    Huber, W.2
  • 2
    • 84966667709 scopus 로고    scopus 로고
    • destiny: diffusion maps for large-scale single-cell data in R
    • Angerer P, Haghverdi L, Büttner M, et al.: destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016; 32(8): 1241-1243
    • (2016) Bioinformatics , vol.32 , Issue.8 , pp. 1241-1243
    • Angerer, P.1    Haghverdi, L.2    Büttner, M.3
  • 3
    • 84880803198 scopus 로고    scopus 로고
    • Control of cell cycle transcription during G1 and S phases
    • Bertoli C, Skotheim JM, de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013; 14(8): 518-528
    • (2013) Nat Rev Mol Cell Biol , vol.14 , Issue.8 , pp. 518-528
    • Bertoli, C.1    Skotheim, J.M.2    de Bruin, R.A.3
  • 4
    • 77953095629 scopus 로고    scopus 로고
    • Independent filtering increases detection power for high-throughput experiments
    • Bourgon R, Gentleman R, Huber W: Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010; 107(21): 9546-9551
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.21 , pp. 9546-9551
    • Bourgon, R.1    Gentleman, R.2    Huber, W.3
  • 5
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray NL, Pimentel H, Melsted P, et al.: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5): 525-527
    • (2016) Nat Biotechnol , vol.34 , Issue.5 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3
  • 6
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke P, Anders S, Kim JK, et al.: Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013; 10(11): 1093-1095
    • (2013) Nat Methods , vol.10 , Issue.11 , pp. 1093-1095
    • Brennecke, P.1    Anders, S.2    Kim, J.K.3
  • 7
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2): 155-160
    • (2015) Nat Biotechnol , vol.33 , Issue.2 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3
  • 8
    • 85011000155 scopus 로고    scopus 로고
    • From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]
    • Chen Y, Lun AT, Smyth GK: From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]. F1000Res. 2016; 5: 1438
    • (2016) F1000Res , vol.5 , pp. 1438
    • Chen, Y.1    Lun, A.T.2    Smyth, G.K.3
  • 9
    • 42349088542 scopus 로고    scopus 로고
    • Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor
    • Conboy CM, Spyrou C, Thorne NP, et al.: Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS One. 2007; 2(10): e1061
    • (2007) PLoS One , vol.2 , Issue.10
    • Conboy, C.M.1    Spyrou, C.2    Thorne, N.P.3
  • 10
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan J, Salathia N, Liu R, et al.: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 2016; 13(3): 241-244
    • (2016) Nat Methods , vol.13 , Issue.3 , pp. 241-244
    • Fan, J.1    Salathia, N.2    Liu, R.3
  • 11
    • 84961169621 scopus 로고    scopus 로고
    • On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
    • Hicks SC, Teng M, Irizarry RA: On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. 2015
    • (2015) bioRxiv
    • Hicks, S.C.1    Teng, M.2    Irizarry, R.A.3
  • 12
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating highthroughput genomic analysis with Bioconductor
    • Huber W, Carey VJ, Gentleman R, et al.: Orchestrating highthroughput genomic analysis with Bioconductor. Nat Methods. 2015; 12(2): 115-121
    • (2015) Nat Methods , vol.12 , Issue.2 , pp. 115-121
    • Huber, W.1    Carey, V.J.2    Gentleman, R.3
  • 13
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNA-seq data
    • Ilicic T, Kim JK, Kolodziejczyk AA, et al.: Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016; 17: 29
    • (2016) Genome Biol , vol.17 , pp. 29
    • Ilicic, T.1    Kim, J.K.2    Kolodziejczyk, A.A.3
  • 14
    • 79959403670 scopus 로고    scopus 로고
    • Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
    • Islam S, Kjällquist U, Moliner A, et al.: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011; 21(7): 1160-1167
    • (2011) Genome Res , vol.21 , Issue.7 , pp. 1160-1167
    • Islam, S.1    Kjällquist, U.2    Moliner, A.3
  • 15
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2): 163-166
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3
  • 16
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
    • Ji Z, Ji H: TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13): e117
    • (2016) Nucleic Acids Res , vol.44 , Issue.13
    • Ji, Z.1    Ji, H.2
  • 17
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq
    • Juliá M, Telenti A, Rausell A: Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq. Bioinformatics. 2015; 31(20): 3380-3382
    • (2015) Bioinformatics , vol.31 , Issue.20 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 18
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim JK, Kolodziejczyk AA, Ilicic T, et al.: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2015; 6: 8687
    • (2015) Nat Commun , vol.6 , pp. 8687
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Ilicic, T.3
  • 19
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for singlecell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, et al.: Droplet barcoding for singlecell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5): 1187-1201
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3
  • 20
    • 84947748539 scopus 로고    scopus 로고
    • Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation
    • Kolodziejczyk AA, Kim JK, Tsang JC, et al.: Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell. 2015; 17(4): 471-485
    • (2015) Cell Stem Cell , vol.17 , Issue.4 , pp. 471-485
    • Kolodziejczyk, A.A.1    Kim, J.K.2    Tsang, J.C.3
  • 21
    • 40049099114 scopus 로고    scopus 로고
    • Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
    • Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008; 24(5): 719-720
    • (2008) Bioinformatics , vol.24 , Issue.5 , pp. 719-720
    • Langfelder, P.1    Zhang, B.2    Horvath, S.3
  • 22
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, et al.: voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2): R29
    • (2014) Genome Biol , vol.15 , Issue.2 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3
  • 23
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
    • Leng N, Chu LF, Barry C, et al.: Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods. 2015; 12(10): 947-950
    • (2015) Nat Methods , vol.12 , Issue.10 , pp. 947-950
    • Leng, N.1    Chu, L.F.2    Barry, C.3
  • 24
    • 84878580738 scopus 로고    scopus 로고
    • The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
    • Liao Y, Smyth GK, Shi W: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013; 41(10): e108
    • (2013) Nucleic Acids Res , vol.41 , Issue.10
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 25
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-930
    • (2014) Bioinformatics , vol.30 , Issue.7 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 26
    • 85091232873 scopus 로고    scopus 로고
    • RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]
    • Love MI, Anders S, Kim V, et al.: RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]. F1000Res. 2015; 4: 1070
    • (2015) F1000Res , vol.4 , pp. 1070
    • Love, M.I.1    Anders, S.2    Kim, V.3
  • 27
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 28
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun AT, Bach K, Marioni JC: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17: 75
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 29
    • 84929684999 scopus 로고    scopus 로고
    • Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
    • Macosko EZ, Basu A, Satija R, et al.: Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5): 1202-1214
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3
  • 30
    • 84901188210 scopus 로고    scopus 로고
    • Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
    • Mahata B, Zhang X, Kolodziejczyk AA, et al.: Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014; 7(4): 1130-1142
    • (2014) Cell Rep , vol.7 , Issue.4 , pp. 1130-1142
    • Mahata, B.1    Zhang, X.2    Kolodziejczyk, A.A.3
  • 31
    • 84895562012 scopus 로고    scopus 로고
    • From single-cell to cellpool transcriptomes: stochasticity in gene expression and RNA splicing
    • Marinov GK, Williams BA, McCue K, et al.: From single-cell to cellpool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3): 496-510
    • (2014) Genome Res , vol.24 , Issue.3 , pp. 496-510
    • Marinov, G.K.1    Williams, B.A.2    McCue, K.3
  • 32
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10): 4288-4297
    • (2012) Nucleic Acids Res , vol.40 , Issue.10 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 33
    • 84976335724 scopus 로고    scopus 로고
    • Accurate, fast, and model-aware transcript expression quantification with Salmon
    • Patro R, Duggal G, Kingsford C: Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv. 2015
    • (2015) bioRxiv
    • Patro, R.1    Duggal, G.2    Kingsford, C.3
  • 34
    • 78149276744 scopus 로고    scopus 로고
    • Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
    • Phipson B, Smyth GK: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol. 2010; 9: Article39
    • (2010) Stat Appl Genet Mol Biol , vol.9
    • Phipson, B.1    Smyth, G.K.2
  • 35
    • 84891677425 scopus 로고    scopus 로고
    • Full-length RNA-seq from single cells using Smart-seq2
    • Picelli S, Faridani OR, Björklund AK, et al.: Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9(1): 171-181
    • (2014) Nat Protoc , vol.9 , Issue.1 , pp. 171-181
    • Picelli, S.1    Faridani, O.R.2    Björklund, A.K.3
  • 36
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage singlecell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen AA, Nowakowski TJ, Shuga J, et al.: Low-coverage singlecell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014; 32(10): 1053-1058
    • (2014) Nat Biotechnol , vol.32 , Issue.10 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3
  • 37
    • 84926507971 scopus 로고    scopus 로고
    • limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie ME, Phipson B, Wu D, et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47
    • (2015) Nucleic Acids Res , vol.43 , Issue.7
    • Ritchie, M.E.1    Phipson, B.2    Wu, D.3
  • 38
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-140
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 39
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3): R25
    • (2010) Genome Biol , vol.11 , Issue.3 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 40
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage from single-cell transcriptome data
    • Scialdone A, Natarajan KN, Saraiva LR, et al.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015; 85: 54-61
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1    Natarajan, K.N.2    Saraiva, L.R.3
  • 41
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC: Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3): 133-145
    • (2015) Nat Rev Genet , vol.16 , Issue.3 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 42
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, et al.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4): 381-386
    • (2014) Nat Biotechnol , vol.32 , Issue.4 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3
  • 43
    • 85010276990 scopus 로고    scopus 로고
    • Batch effects and the effective design of single-cell gene expression studies
    • Tung PY, Blischak JD, Hsiao C, et al.: Batch effects and the effective design of single-cell gene expression studies. bioRxiv. 2016
    • (2016) bioRxiv
    • Tung, P.Y.1    Blischak, J.D.2    Hsiao, C.3
  • 44
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos CA, Marioni JC, Richardson S: BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol. 2015; 11(6): e1004333
    • (2015) PLoS Comput Biol , vol.11 , Issue.6
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 46
    • 84940446838 scopus 로고    scopus 로고
    • Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
    • Wilson NK, Kent DG, Buettner F, et al.: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015; 16(6): 712-724
    • (2015) Cell Stem Cell , vol.16 , Issue.6 , pp. 712-724
    • Wilson, N.K.1    Kent, D.G.2    Buettner, F.3
  • 47
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al.: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226): 1138-1142
    • (2015) Science , vol.347 , Issue.6226 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3
  • 48
    • 31144460961 scopus 로고    scopus 로고
    • GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors
    • Zhu J, Yamane H, Cote-Sierra J, et al.: GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006; 16(1): 3-10
    • (2006) Cell Res , vol.16 , Issue.1 , pp. 3-10
    • Zhu, J.1    Yamane, H.2    Cote-Sierra, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.