-
1
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol. 2010; 11(10): R106
-
(2010)
Genome Biol
, vol.11
, Issue.10
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
2
-
-
84966667709
-
destiny: diffusion maps for large-scale single-cell data in R
-
Angerer P, Haghverdi L, Büttner M, et al.: destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics. 2016; 32(8): 1241-1243
-
(2016)
Bioinformatics
, vol.32
, Issue.8
, pp. 1241-1243
-
-
Angerer, P.1
Haghverdi, L.2
Büttner, M.3
-
3
-
-
84880803198
-
Control of cell cycle transcription during G1 and S phases
-
Bertoli C, Skotheim JM, de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013; 14(8): 518-528
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, Issue.8
, pp. 518-528
-
-
Bertoli, C.1
Skotheim, J.M.2
de Bruin, R.A.3
-
4
-
-
77953095629
-
Independent filtering increases detection power for high-throughput experiments
-
Bourgon R, Gentleman R, Huber W: Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010; 107(21): 9546-9551
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.21
, pp. 9546-9551
-
-
Bourgon, R.1
Gentleman, R.2
Huber, W.3
-
5
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
Bray NL, Pimentel H, Melsted P, et al.: Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016; 34(5): 525-527
-
(2016)
Nat Biotechnol
, vol.34
, Issue.5
, pp. 525-527
-
-
Bray, N.L.1
Pimentel, H.2
Melsted, P.3
-
6
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, et al.: Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013; 10(11): 1093-1095
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
-
7
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, et al.: Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33(2): 155-160
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
-
8
-
-
85011000155
-
From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]
-
Chen Y, Lun AT, Smyth GK: From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline [version 2; referees: 5 approved]. F1000Res. 2016; 5: 1438
-
(2016)
F1000Res
, vol.5
, pp. 1438
-
-
Chen, Y.1
Lun, A.T.2
Smyth, G.K.3
-
9
-
-
42349088542
-
Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor
-
Conboy CM, Spyrou C, Thorne NP, et al.: Cell cycle genes are the evolutionarily conserved targets of the E2F4 transcription factor. PLoS One. 2007; 2(10): e1061
-
(2007)
PLoS One
, vol.2
, Issue.10
-
-
Conboy, C.M.1
Spyrou, C.2
Thorne, N.P.3
-
10
-
-
84959189722
-
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
-
Fan J, Salathia N, Liu R, et al.: Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat Methods. 2016; 13(3): 241-244
-
(2016)
Nat Methods
, vol.13
, Issue.3
, pp. 241-244
-
-
Fan, J.1
Salathia, N.2
Liu, R.3
-
11
-
-
84961169621
-
On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data
-
Hicks SC, Teng M, Irizarry RA: On the widespread and critical impact of systematic bias and batch effects in single-cell RNA-Seq data. bioRxiv. 2015
-
(2015)
bioRxiv
-
-
Hicks, S.C.1
Teng, M.2
Irizarry, R.A.3
-
12
-
-
84961289551
-
Orchestrating highthroughput genomic analysis with Bioconductor
-
Huber W, Carey VJ, Gentleman R, et al.: Orchestrating highthroughput genomic analysis with Bioconductor. Nat Methods. 2015; 12(2): 115-121
-
(2015)
Nat Methods
, vol.12
, Issue.2
, pp. 115-121
-
-
Huber, W.1
Carey, V.J.2
Gentleman, R.3
-
13
-
-
84958058589
-
Classification of low quality cells from single-cell RNA-seq data
-
Ilicic T, Kim JK, Kolodziejczyk AA, et al.: Classification of low quality cells from single-cell RNA-seq data. Genome Biol. 2016; 17: 29
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
Kim, J.K.2
Kolodziejczyk, A.A.3
-
14
-
-
79959403670
-
Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq
-
Islam S, Kjällquist U, Moliner A, et al.: Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011; 21(7): 1160-1167
-
(2011)
Genome Res
, vol.21
, Issue.7
, pp. 1160-1167
-
-
Islam, S.1
Kjällquist, U.2
Moliner, A.3
-
15
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, et al.: Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2): 163-166
-
(2014)
Nat Methods
, vol.11
, Issue.2
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
-
16
-
-
84982806105
-
TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
-
Ji Z, Ji H: TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis. Nucleic Acids Res. 2016; 44(13): e117
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.13
-
-
Ji, Z.1
Ji, H.2
-
17
-
-
84947805126
-
Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq
-
Juliá M, Telenti A, Rausell A: Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq. Bioinformatics. 2015; 31(20): 3380-3382
-
(2015)
Bioinformatics
, vol.31
, Issue.20
, pp. 3380-3382
-
-
Juliá, M.1
Telenti, A.2
Rausell, A.3
-
18
-
-
84944901262
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim JK, Kolodziejczyk AA, Ilicic T, et al.: Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun. 2015; 6: 8687
-
(2015)
Nat Commun
, vol.6
, pp. 8687
-
-
Kim, J.K.1
Kolodziejczyk, A.A.2
Ilicic, T.3
-
19
-
-
84929684998
-
Droplet barcoding for singlecell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, et al.: Droplet barcoding for singlecell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5): 1187-1201
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
-
20
-
-
84947748539
-
Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation
-
Kolodziejczyk AA, Kim JK, Tsang JC, et al.: Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation. Cell Stem Cell. 2015; 17(4): 471-485
-
(2015)
Cell Stem Cell
, vol.17
, Issue.4
, pp. 471-485
-
-
Kolodziejczyk, A.A.1
Kim, J.K.2
Tsang, J.C.3
-
21
-
-
40049099114
-
Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R
-
Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008; 24(5): 719-720
-
(2008)
Bioinformatics
, vol.24
, Issue.5
, pp. 719-720
-
-
Langfelder, P.1
Zhang, B.2
Horvath, S.3
-
22
-
-
84896735766
-
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, et al.: voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014; 15(2): R29
-
(2014)
Genome Biol
, vol.15
, Issue.2
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
-
23
-
-
84959122613
-
Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
-
Leng N, Chu LF, Barry C, et al.: Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat Methods. 2015; 12(10): 947-950
-
(2015)
Nat Methods
, vol.12
, Issue.10
, pp. 947-950
-
-
Leng, N.1
Chu, L.F.2
Barry, C.3
-
24
-
-
84878580738
-
The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote
-
Liao Y, Smyth GK, Shi W: The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013; 41(10): e108
-
(2013)
Nucleic Acids Res
, vol.41
, Issue.10
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
25
-
-
84897397058
-
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014; 30(7): 923-930
-
(2014)
Bioinformatics
, vol.30
, Issue.7
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
26
-
-
85091232873
-
RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]
-
Love MI, Anders S, Kim V, et al.: RNA-Seq workflow: gene-level exploratory analysis and differential expression [version 1; referees: 2 approved]. F1000Res. 2015; 4: 1070
-
(2015)
F1000Res
, vol.4
, pp. 1070
-
-
Love, M.I.1
Anders, S.2
Kim, V.3
-
27
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12): 550
-
(2014)
Genome Biol
, vol.15
, Issue.12
, pp. 550
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
28
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun AT, Bach K, Marioni JC: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016; 17: 75
-
(2016)
Genome Biol
, vol.17
, pp. 75
-
-
Lun, A.T.1
Bach, K.2
Marioni, J.C.3
-
29
-
-
84929684999
-
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets
-
Macosko EZ, Basu A, Satija R, et al.: Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015; 161(5): 1202-1214
-
(2015)
Cell
, vol.161
, Issue.5
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
-
30
-
-
84901188210
-
Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
-
Mahata B, Zhang X, Kolodziejczyk AA, et al.: Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep. 2014; 7(4): 1130-1142
-
(2014)
Cell Rep
, vol.7
, Issue.4
, pp. 1130-1142
-
-
Mahata, B.1
Zhang, X.2
Kolodziejczyk, A.A.3
-
31
-
-
84895562012
-
From single-cell to cellpool transcriptomes: stochasticity in gene expression and RNA splicing
-
Marinov GK, Williams BA, McCue K, et al.: From single-cell to cellpool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014; 24(3): 496-510
-
(2014)
Genome Res
, vol.24
, Issue.3
, pp. 496-510
-
-
Marinov, G.K.1
Williams, B.A.2
McCue, K.3
-
32
-
-
84858041341
-
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
-
McCarthy DJ, Chen Y, Smyth GK: Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10): 4288-4297
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.10
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
33
-
-
84976335724
-
Accurate, fast, and model-aware transcript expression quantification with Salmon
-
Patro R, Duggal G, Kingsford C: Accurate, fast, and model-aware transcript expression quantification with Salmon. bioRxiv. 2015
-
(2015)
bioRxiv
-
-
Patro, R.1
Duggal, G.2
Kingsford, C.3
-
34
-
-
78149276744
-
Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn
-
Phipson B, Smyth GK: Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol. 2010; 9: Article39
-
(2010)
Stat Appl Genet Mol Biol
, vol.9
-
-
Phipson, B.1
Smyth, G.K.2
-
35
-
-
84891677425
-
Full-length RNA-seq from single cells using Smart-seq2
-
Picelli S, Faridani OR, Björklund AK, et al.: Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014; 9(1): 171-181
-
(2014)
Nat Protoc
, vol.9
, Issue.1
, pp. 171-181
-
-
Picelli, S.1
Faridani, O.R.2
Björklund, A.K.3
-
36
-
-
84922321862
-
Low-coverage singlecell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
-
Pollen AA, Nowakowski TJ, Shuga J, et al.: Low-coverage singlecell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol. 2014; 32(10): 1053-1058
-
(2014)
Nat Biotechnol
, vol.32
, Issue.10
, pp. 1053-1058
-
-
Pollen, A.A.1
Nowakowski, T.J.2
Shuga, J.3
-
37
-
-
84926507971
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie ME, Phipson B, Wu D, et al.: limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43(7): e47
-
(2015)
Nucleic Acids Res
, vol.43
, Issue.7
-
-
Ritchie, M.E.1
Phipson, B.2
Wu, D.3
-
38
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1): 139-140
-
(2010)
Bioinformatics
, vol.26
, Issue.1
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
39
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3): R25
-
(2010)
Genome Biol
, vol.11
, Issue.3
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
40
-
-
84939772971
-
Computational assignment of cell-cycle stage from single-cell transcriptome data
-
Scialdone A, Natarajan KN, Saraiva LR, et al.: Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. 2015; 85: 54-61
-
(2015)
Methods
, vol.85
, pp. 54-61
-
-
Scialdone, A.1
Natarajan, K.N.2
Saraiva, L.R.3
-
41
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA, Marioni JC: Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. 2015; 16(3): 133-145
-
(2015)
Nat Rev Genet
, vol.16
, Issue.3
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
42
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, et al.: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014; 32(4): 381-386
-
(2014)
Nat Biotechnol
, vol.32
, Issue.4
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
-
43
-
-
85010276990
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung PY, Blischak JD, Hsiao C, et al.: Batch effects and the effective design of single-cell gene expression studies. bioRxiv. 2016
-
(2016)
bioRxiv
-
-
Tung, P.Y.1
Blischak, J.D.2
Hsiao, C.3
-
46
-
-
84940446838
-
Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations
-
Wilson NK, Kent DG, Buettner F, et al.: Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. 2015; 16(6): 712-724
-
(2015)
Cell Stem Cell
, vol.16
, Issue.6
, pp. 712-724
-
-
Wilson, N.K.1
Kent, D.G.2
Buettner, F.3
-
47
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A, Muñoz-Manchado AB, Codeluppi S, et al.: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015; 347(6226): 1138-1142
-
(2015)
Science
, vol.347
, Issue.6226
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
-
48
-
-
31144460961
-
GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors
-
Zhu J, Yamane H, Cote-Sierra J, et al.: GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors. Cell Res. 2006; 16(1): 3-10
-
(2006)
Cell Res
, vol.16
, Issue.1
, pp. 3-10
-
-
Zhu, J.1
Yamane, H.2
Cote-Sierra, J.3
|