메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84988815163     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep33892     Document Type: Article
Times cited : (72)

References (52)
  • 1
    • 84942940566 scopus 로고    scopus 로고
    • Defining cell types and states with single-cell genomics
    • Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491-1498 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1491-1498
    • Trapnell, C.1
  • 2
    • 84943799688 scopus 로고    scopus 로고
    • Application of single-cell genomics in cancer: Promise and challenges
    • Wills, Q. F., Mead, A. J. Application of single-cell genomics in cancer: promise and challenges. Hum. Mol. Genet. 24, R74-R84 (2015).
    • (2015) Hum. Mol. Genet. , vol.24 , pp. R74-R84
    • Wills, Q.F.1    Mead, A.J.2
  • 3
    • 84942917849 scopus 로고    scopus 로고
    • The first five years of single-cell cancer genomics and beyond
    • Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499-1507 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1499-1507
    • Navin, N.E.1
  • 4
    • 84894630323 scopus 로고    scopus 로고
    • Entering the era of single-cell transcriptomics in biology and medicine
    • Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22-24 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 22-24
    • Sandberg, R.1
  • 5
    • 84900298771 scopus 로고    scopus 로고
    • Reconstructing complex tissues from single-cell analyses
    • Wen, L., Tang, F. Reconstructing complex tissues from single-cell analyses. Cell 157, 771-773 (2014).
    • (2014) Cell , vol.157 , pp. 771-773
    • Wen, L.1    Tang, F.2
  • 6
    • 84929661801 scopus 로고    scopus 로고
    • Advances and Applications of Single-Cell Sequencing Technologies
    • Wang, Y., Navin, N. E. Advances and Applications of Single-Cell Sequencing Technologies. Mol. Cell 58, 598-609 (2015).
    • (2015) Mol. Cell , vol.58 , pp. 598-609
    • Wang, Y.1    Navin, N.E.2
  • 7
    • 84882455458 scopus 로고    scopus 로고
    • Single-cell sequencing-based technologies will revolutionize whole-organism science
    • Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14, 618-630 (2013).
    • (2013) Nat Rev Genet , vol.14 , pp. 618-630
    • Shapiro, E.1    Biezuner, T.2    Linnarsson, S.3
  • 8
    • 84939159169 scopus 로고    scopus 로고
    • Quantification of cell identity from single-cell gene expression profiles
    • Efroni, I., Ip, P.-L., Nawy, T., Mello, A., Birnbaum, K. D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 16, 9 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 9
    • Efroni, I.1    Ip, P.-L.2    Nawy, T.3    Mello, A.4    Birnbaum, K.D.5
  • 9
    • 84958078627 scopus 로고    scopus 로고
    • The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing
    • Björklund, Å. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451-460 (2016).
    • (2016) Nat. Immunol. , vol.17 , pp. 451-460
    • Björklund, Å.K.1
  • 10
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1
  • 11
    • 84961327715 scopus 로고    scopus 로고
    • Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
    • Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016).
    • (2016) Nat. Neurosci. , vol.19 , pp. 335-346
    • Tasic, B.1
  • 12
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 13
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E., Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 14
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu, C., Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics btv088. doi: 10.1093/bioinformatics/btv088 (2015).
    • (2015) Bioinformatics btv088
    • Xu, C.1    Su, Z.2
  • 15
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle, O., Teichmann, S. A., Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 16
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments.
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 17
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim, J. K., Kolodziejczyk, A. A., Illicic, T., Teichmann, S. A., Marioni, J. C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8687
    • Kim, J.K.1    Kolodziejczyk, A.A.2    Illicic, T.3    Teichmann, S.A.4    Marioni, J.C.5
  • 18
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos, C. A., Marioni, J. C., Richardson, S. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data. PLoS Comput Biol 11, e1004333 (2015).
    • (2015) PLoS Comput Biol , vol.11 , pp. e1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 20
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grun, D., Kester, L., van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637-640 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 637-640
    • Grun, D.1    Kester, L.2    Van Oudenaarden, A.3
  • 21
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher, R., Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016).
    • (2016) Genome Biol. , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 22
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher, R., Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, (2016).
    • (2016) Genome Biol. , vol.17
    • Bacher, R.1    Kendziorski, C.2
  • 24
    • 0142121516 scopus 로고    scopus 로고
    • Exploration, normalization, and summaries of high density oligonucleotide array probe level data
    • Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat. Oxf. Engl. 4, 249-264 (2003).
    • (2003) Biostat. Oxf. Engl. , vol.4 , pp. 249-264
    • Irizarry, R.A.1
  • 25
    • 0347090327 scopus 로고    scopus 로고
    • Adjustment of systematic microarray data biases
    • Benito, M. et al. Adjustment of systematic microarray data biases. Bioinformatics 20, 105-114 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 105-114
    • Benito, M.1
  • 26
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch, J. A., Speed, T. P. Using control genes to correct for unwanted variation in microarray data. Biostat. Oxf. Engl. 13, 539-552 (2012).
    • (2012) Biostat. Oxf. Engl. , vol.13 , pp. 539-552
    • Gagnon-Bartsch, J.A.1    Speed, T.P.2
  • 27
    • 84941929935 scopus 로고    scopus 로고
    • Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11adeficient hematopoietic stem cells
    • Tsang, J. C. H. et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11adeficient hematopoietic stem cells. Genome Biol. 16, 178 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 178
    • Tsang, J.C.H.1
  • 28
    • 84956599311 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
    • Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860-1872 (2015).
    • (2015) Genome Res. , vol.25 , pp. 1860-1872
    • Kowalczyk, M.S.1
  • 29
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotech 32, 381-386 (2014).
    • (2014) Nat. Biotech , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 30
    • 84941010341 scopus 로고    scopus 로고
    • Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis
    • Shin, J. et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 17, 360-372 (2015).
    • (2015) Cell Stem Cell , vol.17 , pp. 360-372
    • Shin, J.1
  • 31
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: An R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq
    • Juliá, M., Telenti, A., Rausell, A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq. Bioinforma. Oxf. Engl. 31, 3380-3382 (2015).
    • (2015) Bioinforma. Oxf. Engl. , vol.31 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 32
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 33
    • 84876085773 scopus 로고    scopus 로고
    • Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic geneexpression heterogeneity
    • Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic geneexpression heterogeneity. Genome Biol. 14, R31 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R31
    • Sasagawa, Y.1
  • 34
    • 84890984246 scopus 로고    scopus 로고
    • Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells
    • Singh, A. M. et al. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Rep. 1, 532-544 (2013).
    • (2013) Stem Cell Rep. , vol.1 , pp. 532-544
    • Singh, A.M.1
  • 35
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage from single-cell transcriptome data
    • Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54-61 (2015).
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1
  • 37
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 115-121
    • Huber, W.1
  • 38
    • 84979860632 scopus 로고    scopus 로고
    • The BioMart community portal: An innovative alternative to large, centralized data repositories
    • gkv350
    • Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. gkv350, doi: 10.1093/nar/gkv350 (2015).
    • (2015) Nucleic Acids Res
    • Smedley, D.1
  • 39
    • 84946735654 scopus 로고    scopus 로고
    • Gene Ontology Consortium: Going forward
    • Consortium, T. G. O. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-D1056 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. D1049-D1056
    • Consortium, T.G.O.1
  • 42
    • 84901188210 scopus 로고    scopus 로고
    • Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids de Novo to Contribute to Immune Homeostasis
    • Mahata, B. et al. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis. Cell Rep. 7, 1130-1142 (2014).
    • (2014) Cell Rep. , vol.7 , pp. 1130-1142
    • Mahata, B.1
  • 43
    • 84941080809 scopus 로고    scopus 로고
    • Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes
    • gku1092
    • Santos, A., Wernersson, R., Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. gku1092, doi: 10.1093/nar/gku1092 (2014).
    • (2014) Nucleic Acids Res
    • Santos, A.1    Wernersson, R.2    Jensen, L.J.3
  • 44
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236-240 (2013).
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 45
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1
  • 46
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P. V., Silberstein, L., Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 47
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1
  • 48
    • 84937573360 scopus 로고    scopus 로고
    • Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
    • Kim, K.-T. et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16, 127 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 127
    • Kim, K.-T.1
  • 49
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733-739 (2010).
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 733-739
    • Leek, J.T.1
  • 50
    • 84959863092 scopus 로고    scopus 로고
    • Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed
    • Jacob, L., Gagnon-Bartsch, J. A., Speed, T. P. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed. Biostatistics 17, 16-28 (2016).
    • (2016) Biostatistics , vol.17 , pp. 16-28
    • Jacob, L.1    Gagnon-Bartsch, J.A.2    Speed, T.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.