-
1
-
-
84942940566
-
Defining cell types and states with single-cell genomics
-
Trapnell, C. Defining cell types and states with single-cell genomics. Genome Res. 25, 1491-1498 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1491-1498
-
-
Trapnell, C.1
-
2
-
-
84943799688
-
Application of single-cell genomics in cancer: Promise and challenges
-
Wills, Q. F., Mead, A. J. Application of single-cell genomics in cancer: promise and challenges. Hum. Mol. Genet. 24, R74-R84 (2015).
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. R74-R84
-
-
Wills, Q.F.1
Mead, A.J.2
-
3
-
-
84942917849
-
The first five years of single-cell cancer genomics and beyond
-
Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499-1507 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1499-1507
-
-
Navin, N.E.1
-
4
-
-
84894630323
-
Entering the era of single-cell transcriptomics in biology and medicine
-
Sandberg, R. Entering the era of single-cell transcriptomics in biology and medicine. Nat. Methods 11, 22-24 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 22-24
-
-
Sandberg, R.1
-
5
-
-
84900298771
-
Reconstructing complex tissues from single-cell analyses
-
Wen, L., Tang, F. Reconstructing complex tissues from single-cell analyses. Cell 157, 771-773 (2014).
-
(2014)
Cell
, vol.157
, pp. 771-773
-
-
Wen, L.1
Tang, F.2
-
6
-
-
84929661801
-
Advances and Applications of Single-Cell Sequencing Technologies
-
Wang, Y., Navin, N. E. Advances and Applications of Single-Cell Sequencing Technologies. Mol. Cell 58, 598-609 (2015).
-
(2015)
Mol. Cell
, vol.58
, pp. 598-609
-
-
Wang, Y.1
Navin, N.E.2
-
7
-
-
84882455458
-
Single-cell sequencing-based technologies will revolutionize whole-organism science
-
Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14, 618-630 (2013).
-
(2013)
Nat Rev Genet
, vol.14
, pp. 618-630
-
-
Shapiro, E.1
Biezuner, T.2
Linnarsson, S.3
-
8
-
-
84939159169
-
Quantification of cell identity from single-cell gene expression profiles
-
Efroni, I., Ip, P.-L., Nawy, T., Mello, A., Birnbaum, K. D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 16, 9 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 9
-
-
Efroni, I.1
Ip, P.-L.2
Nawy, T.3
Mello, A.4
Birnbaum, K.D.5
-
9
-
-
84958078627
-
The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing
-
Björklund, Å. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451-460 (2016).
-
(2016)
Nat. Immunol.
, vol.17
, pp. 451-460
-
-
Björklund, Å.K.1
-
10
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142 (2015).
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
-
11
-
-
84961327715
-
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics
-
Tasic, B. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19, 335-346 (2016).
-
(2016)
Nat. Neurosci.
, vol.19
, pp. 335-346
-
-
Tasic, B.1
-
12
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner, F. et al. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 155-160 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
13
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson, E., Yau, C. ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 241 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
14
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu, C., Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics btv088. doi: 10.1093/bioinformatics/btv088 (2015).
-
(2015)
Bioinformatics btv088
-
-
Xu, C.1
Su, Z.2
-
15
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle, O., Teichmann, S. A., Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133-145 (2015).
-
(2015)
Nat. Rev. Genet.
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
16
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments.
-
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
17
-
-
84944901262
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim, J. K., Kolodziejczyk, A. A., Illicic, T., Teichmann, S. A., Marioni, J. C. Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun. 6, 8687 (2015).
-
(2015)
Nat. Commun.
, vol.6
, pp. 8687
-
-
Kim, J.K.1
Kolodziejczyk, A.A.2
Illicic, T.3
Teichmann, S.A.4
Marioni, J.C.5
-
18
-
-
84953226880
-
BASiCS: Bayesian analysis of single-cell sequencing data
-
Vallejos, C. A., Marioni, J. C., Richardson, S. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data. PLoS Comput Biol 11, e1004333 (2015).
-
(2015)
PLoS Comput Biol
, vol.11
, pp. e1004333
-
-
Vallejos, C.A.1
Marioni, J.C.2
Richardson, S.3
-
20
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grun, D., Kester, L., van Oudenaarden, A. Validation of noise models for single-cell transcriptomics. Nat. Methods 11, 637-640 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 637-640
-
-
Grun, D.1
Kester, L.2
Van Oudenaarden, A.3
-
21
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher, R., Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, 63 (2016).
-
(2016)
Genome Biol.
, vol.17
, pp. 63
-
-
Bacher, R.1
Kendziorski, C.2
-
22
-
-
84962658087
-
Design and computational analysis of single-cell RNA-sequencing experiments
-
Bacher, R., Kendziorski, C. Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol. 17, (2016).
-
(2016)
Genome Biol.
, vol.17
-
-
Bacher, R.1
Kendziorski, C.2
-
24
-
-
0142121516
-
Exploration, normalization, and summaries of high density oligonucleotide array probe level data
-
Irizarry, R. A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat. Oxf. Engl. 4, 249-264 (2003).
-
(2003)
Biostat. Oxf. Engl.
, vol.4
, pp. 249-264
-
-
Irizarry, R.A.1
-
25
-
-
0347090327
-
Adjustment of systematic microarray data biases
-
Benito, M. et al. Adjustment of systematic microarray data biases. Bioinformatics 20, 105-114 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 105-114
-
-
Benito, M.1
-
26
-
-
84862250978
-
Using control genes to correct for unwanted variation in microarray data
-
Gagnon-Bartsch, J. A., Speed, T. P. Using control genes to correct for unwanted variation in microarray data. Biostat. Oxf. Engl. 13, 539-552 (2012).
-
(2012)
Biostat. Oxf. Engl.
, vol.13
, pp. 539-552
-
-
Gagnon-Bartsch, J.A.1
Speed, T.P.2
-
27
-
-
84941929935
-
Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11adeficient hematopoietic stem cells
-
Tsang, J. C. H. et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11adeficient hematopoietic stem cells. Genome Biol. 16, 178 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 178
-
-
Tsang, J.C.H.1
-
28
-
-
84956599311
-
Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells
-
Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 1860-1872 (2015).
-
(2015)
Genome Res.
, vol.25
, pp. 1860-1872
-
-
Kowalczyk, M.S.1
-
29
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotech 32, 381-386 (2014).
-
(2014)
Nat. Biotech
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
30
-
-
84941010341
-
Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis
-
Shin, J. et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 17, 360-372 (2015).
-
(2015)
Cell Stem Cell
, vol.17
, pp. 360-372
-
-
Shin, J.1
-
31
-
-
84947805126
-
Sincell: An R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq
-
Juliá, M., Telenti, A., Rausell, A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from singlecell RNA-seq. Bioinforma. Oxf. Engl. 31, 3380-3382 (2015).
-
(2015)
Bioinforma. Oxf. Engl.
, vol.31
, pp. 3380-3382
-
-
Juliá, M.1
Telenti, A.2
Rausell, A.3
-
32
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall, S. C. et al. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725 (2014).
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
33
-
-
84876085773
-
Quartz-Seq: A highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic geneexpression heterogeneity
-
Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic geneexpression heterogeneity. Genome Biol. 14, R31 (2013).
-
(2013)
Genome Biol.
, vol.14
, pp. R31
-
-
Sasagawa, Y.1
-
34
-
-
84890984246
-
Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells
-
Singh, A. M. et al. Cell-Cycle Control of Developmentally Regulated Transcription Factors Accounts for Heterogeneity in Human Pluripotent Cells. Stem Cell Rep. 1, 532-544 (2013).
-
(2013)
Stem Cell Rep.
, vol.1
, pp. 532-544
-
-
Singh, A.M.1
-
35
-
-
84939772971
-
Computational assignment of cell-cycle stage from single-cell transcriptome data
-
Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods 85, 54-61 (2015).
-
(2015)
Methods
, vol.85
, pp. 54-61
-
-
Scialdone, A.1
-
37
-
-
84961289551
-
Orchestrating high-throughput genomic analysis with Bioconductor
-
Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 115-121
-
-
Huber, W.1
-
38
-
-
84979860632
-
The BioMart community portal: An innovative alternative to large, centralized data repositories
-
gkv350
-
Smedley, D. et al. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res. gkv350, doi: 10.1093/nar/gkv350 (2015).
-
(2015)
Nucleic Acids Res
-
-
Smedley, D.1
-
39
-
-
84946735654
-
Gene Ontology Consortium: Going forward
-
Consortium, T. G. O. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-D1056 (2015).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D1049-D1056
-
-
Consortium, T.G.O.1
-
42
-
-
84901188210
-
Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids de Novo to Contribute to Immune Homeostasis
-
Mahata, B. et al. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis. Cell Rep. 7, 1130-1142 (2014).
-
(2014)
Cell Rep.
, vol.7
, pp. 1130-1142
-
-
Mahata, B.1
-
43
-
-
84941080809
-
Cyclebase 3.0: A multi-organism database on cell-cycle regulation and phenotypes
-
gku1092
-
Santos, A., Wernersson, R., Jensen, L. J. Cyclebase 3.0: a multi-organism database on cell-cycle regulation and phenotypes. Nucleic Acids Res. gku1092, doi: 10.1093/nar/gku1092 (2014).
-
(2014)
Nucleic Acids Res
-
-
Santos, A.1
Wernersson, R.2
Jensen, L.J.3
-
44
-
-
84878997106
-
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
-
Shalek, A. K. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236-240 (2013).
-
(2013)
Nature
, vol.498
, pp. 236-240
-
-
Shalek, A.K.1
-
45
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 278
-
-
Finak, G.1
-
46
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko, P. V., Silberstein, L., Scadden, D. T. Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742 (2014).
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
47
-
-
84902668801
-
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
-
Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401 (2014).
-
(2014)
Science
, vol.344
, pp. 1396-1401
-
-
Patel, A.P.1
-
48
-
-
84937573360
-
Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
-
Kim, K.-T. et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16, 127 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 127
-
-
Kim, K.-T.1
-
49
-
-
77956873627
-
Tackling the widespread and critical impact of batch effects in high-throughput data
-
Leek, J. T. et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11, 733-739 (2010).
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 733-739
-
-
Leek, J.T.1
-
50
-
-
84959863092
-
Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed
-
Jacob, L., Gagnon-Bartsch, J. A., Speed, T. P. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed. Biostatistics 17, 16-28 (2016).
-
(2016)
Biostatistics
, vol.17
, pp. 16-28
-
-
Jacob, L.1
Gagnon-Bartsch, J.A.2
Speed, T.P.3
|