메뉴 건너뛰기




Volumn 32, Issue 9, 2014, Pages 896-902

Normalization of RNA-seq data using factor analysis of control genes or samples

Author keywords

[No Author keywords available]

Indexed keywords

GENES; MULTIVARIANT ANALYSIS; RNA;

EID: 84909644283     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.2931     Document Type: Article
Times cited : (1302)

References (39)
  • 1
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard, J., Purdom, E., Hansen, K. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 11, 94 (2010).
    • (2010) BMC Bioinformatics , vol.11 , pp. 94
    • Bullard, J.1    Purdom, E.2    Hansen, K.3    Dudoit, S.4
  • 3
    • 84887791432 scopus 로고    scopus 로고
    • A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis
    • Dillies, M.-A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 14, 671-683 (2013).
    • (2013) Brief. Bioinform. , vol.14 , pp. 671-683
    • Dillies, M.-A.1
  • 4
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 5
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen, K.D., Irizarry, R.A. & Zhijin, W. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204-216 (2012).
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Zhijin, W.3
  • 6
    • 84870414898 scopus 로고    scopus 로고
    • Systematic comparison of RNA-Seq normalization methods using measurement error models
    • Sun, Z. & Zhu, Y. Systematic comparison of RNA-Seq normalization methods using measurement error models. Bioinformatics 28, 2584-2591 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2584-2591
    • Sun, Z.1    Zhu, Y.2
  • 7
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang, Y.H. et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30, e15 (2002).
    • (2002) Nucleic Acids Res. , vol.30 , pp. 15
    • Yang, Y.H.1
  • 8
    • 34147174227 scopus 로고    scopus 로고
    • Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes
    • Oshlack, A., Emslie, D., Corcoran, L.M. & Smyth, G.K. Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes. Genome Biol. 8, R2 (2007).
    • (2007) Genome Biol. , vol.8 , pp. R2
    • Oshlack, A.1    Emslie, D.2    Corcoran, L.M.3    Smyth, G.K.4
  • 9
    • 84879296979 scopus 로고    scopus 로고
    • The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease
    • Wu, D. et al. The use of miRNA microarrays for the analysis of cancer samples with global miRNA decrease. RNA 19, 876-888 (2013).
    • (2013) RNA , vol.19 , pp. 876-888
    • Wu, D.1
  • 10
    • 70349258646 scopus 로고    scopus 로고
    • A modified LOESS normalization applied to microRNA arrays: A comparative evaluation
    • Risso, D., Massa, M.S., Chiogna, M. & Romualdi, C. A modified LOESS normalization applied to microRNA arrays: a comparative evaluation. Bioinformatics 25, 2685-2691 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 2685-2691
    • Risso, D.1    Massa, M.S.2    Chiogna, M.3    Romualdi, C.4
  • 11
    • 84868010349 scopus 로고    scopus 로고
    • Revisiting global gene expression analysis
    • Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476-482 (2012).
    • (2012) Cell , vol.151 , pp. 476-482
    • Lovén, J.1
  • 12
    • 27144548491 scopus 로고    scopus 로고
    • The external RNA controls consortium: A progress report
    • Baker, S.C. et al. The external RNA controls consortium: a progress report. Nat. Methods 2, 731-734 (2005).
    • (2005) Nat. Methods , vol.2 , pp. 731-734
    • Baker, S.C.1
  • 13
    • 80052521697 scopus 로고    scopus 로고
    • Synthetic spike-in standards for RNA-seq experiments
    • Jiang, L. et al. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 21, 1543-1551 (2011).
    • (2011) Genome Res , vol.21 , pp. 1543-1551
    • Jiang, L.1
  • 14
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density oligonucleotide array data based on variance and bias
    • Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 15
    • 84947318637 scopus 로고
    • Locally weighted regression: An approach to regression analysis by local fitting
    • Cleveland, W.S. & Devlin, S.J. Locally weighted regression: an approach to regression analysis by local fitting. JASA 83, 596-610 (1988).
    • (1988) JASA , vol.83 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 16
    • 84873731270 scopus 로고    scopus 로고
    • MRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies
    • Qing, T., Yu, Y., Du, T. & Shi, L. mRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies. Sci. China Life Sci. 56, 134-142 (2013).
    • (2013) Sci. China Life Sci. , vol.56 , pp. 134-142
    • Qing, T.1    Yu, Y.2    Du, T.3    Shi, L.4
  • 17
    • 84920550975 scopus 로고    scopus 로고
    • A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • SEQC/MAQC-III Consortium 24 August
    • SEQC/MAQC-III Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol. doi:10.1038/nbt.2957 (24 August 2014).
    • (2014) Nat. Biotechnol.
  • 18
    • 33748503420 scopus 로고    scopus 로고
    • Evaluation of DNA microarray results with quantitative gene expression platforms
    • Canales, R.D. et al. Evaluation of DNA microarray results with quantitative gene expression platforms. Nat. Biotechnol. 24, 1115-1122 (2006).
    • (2006) Nat. Biotechnol. , vol.24 , pp. 1115-1122
    • Canales, R.D.1
  • 19
    • 84896703717 scopus 로고    scopus 로고
    • Silencing of odorant receptor genes by G Protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron
    • Ferreira, T. et al. Silencing of odorant receptor genes by G Protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 81, 847-859 (2014).
    • (2014) Neuron , vol.81 , pp. 847-859
    • Ferreira, T.1
  • 20
    • 84862250978 scopus 로고    scopus 로고
    • Using control genes to correct for unwanted variation in microarray data
    • Gagnon-Bartsch, J. & Speed, T. Using control genes to correct for unwanted variation in microarray data. Biostatistics 13, 539-552 (2012).
    • (2012) Biostatistics , vol.13 , pp. 539-552
    • Gagnon-Bartsch, J.1    Speed, T.2
  • 21
    • 84926012059 scopus 로고    scopus 로고
    • Removing unwanted variation from high dimensional data with negative controls
    • Department of Statistics, University of California, Berkeley
    • Gagnon-Bartsch, J., Jacob, L. & Speed, T.P. Removing unwanted variation from high dimensional data with negative controls. Tech. Rep. 820, Department of Statistics, University of California, Berkeley (2013).
    • (2013) Tech. Rep. , vol.820
    • Gagnon-Bartsch, J.1    Jacob, L.2    Speed, T.P.3
  • 22
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • Cancer Genome Atlas Research Network
    • Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068 (2008).
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 23
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia of DNA elements) project
    • ENCODE Project Consortium
    • ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA elements) project. Science 306, 636-640 (2004).
    • (2004) Science , vol.306 , pp. 636-640
  • 24
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724-1735 (2007).
    • (2007) PLoS Genet , vol.3 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 25
    • 84887433583 scopus 로고    scopus 로고
    • Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories
    • 't Hoen, P. et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31, 1015-1022 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1015-1022
    • Hoen, P.1
  • 26
    • 84926012058 scopus 로고    scopus 로고
    • Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed
    • Department of Statistics, University of California, Berkeley
    • Jacob, L., Gagnon-Bartsch, J. & Speed, T.P. Correcting gene expression data when neither the unwanted variation nor the factor of interest are observed. Tech. Rep. 818, Department of Statistics, University of California, Berkeley (2013).
    • (2013) Tech. Rep. , vol.818
    • Jacob, L.1    Gagnon-Bartsch, J.2    Speed, T.P.3
  • 27
    • 79953288433 scopus 로고    scopus 로고
    • Development and applications of single-cell transcriptome analysis
    • Tang, F., Lao, K. & Surani, M.A. Development and applications of single-cell transcriptome analysis. Nat. Methods 8, S6-S11 (2011).
    • (2011) Nat. Methods , vol.8 , pp. S6-S11
    • Tang, F.1    Lao, K.2    Surani, M.A.3
  • 28
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNA-seq experiments
    • Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093-1095 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 29
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. JASA 74, 829-836 (1979).
    • (1979) JASA , vol.74 , pp. 829-836
    • Cleveland, W.S.1
  • 30
    • 84858221706 scopus 로고    scopus 로고
    • Ensembl
    • Flicek, P. et al. Ensembl 2012. Nucleic Acids Res. 40, D84-D90 (2012).
    • (2012) Nucleic Acids Res , vol.40 , pp. D84-D90
    • Flicek, P.1
  • 31
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: Discovering splice junctions with RNA-Seq
    • Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111 (2009).
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 33
    • 78049312702 scopus 로고    scopus 로고
    • Correction for hidden confounders in the genetic analysis of gene expression
    • Listgarten, J., Kadie, C., Schadt, E.E. & Heckerman, D. Correction for hidden confounders in the genetic analysis of gene expression. Proc. Natl. Acad. Sci. USA 107, 16465-16470 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 16465-16470
    • Listgarten, J.1    Kadie, C.2    Schadt, E.E.3    Heckerman, D.4
  • 34
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 35
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 36
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).
    • (2004) Stat. Appl. Genet. Mol. Biol. , vol.3 , pp. 3
    • Smyth, G.K.1
  • 38
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc., B 57, 289-300 (1995).
    • (1995) J. R. Stat. Soc. B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 39
    • 28744458859 scopus 로고    scopus 로고
    • Bioconductor: Open software development for computational biology and bioinformatics
    • Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
    • (2004) Genome Biol , vol.5 , pp. R80
    • Gentleman, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.