-
1
-
-
84878997106
-
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
-
Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, Schwartz S, Yosef N, Malboeuf C, Lu D et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498, 236–240.
-
(2013)
Nature
, vol.498
, pp. 236-240
-
-
Shalek, A.K.1
Satija, R.2
Adiconis, X.3
Gertner, R.S.4
Gaublomme, J.T.5
Raychowdhury, R.6
Schwartz, S.7
Yosef, N.8
Malboeuf, C.9
Lu, D.10
-
2
-
-
84895562012
-
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing
-
Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM and Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24, 496–510.
-
(2014)
Genome Res
, vol.24
, pp. 496-510
-
-
Marinov, G.K.1
Williams, B.A.2
McCue, K.3
Schroth, G.P.4
Gertz, J.5
Myers, R.M.6
Wold, B.J.7
-
3
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
Qiu X, Hill A, Packer J, Lin D, Ma Y-A and Trapnell C (2017) Single-cell mRNA quantification and differential analysis with Census. Nat Methods 14, 309–315.
-
(2017)
Nat Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
Hill, A.2
Packer, J.3
Lin, D.4
Ma, Y.-A.5
Trapnell, C.6
-
4
-
-
84962684884
-
Robust detection of alternative splicing in a population of single cells
-
Welch JD, Hu Y and Prins JF (2016) Robust detection of alternative splicing in a population of single cells. Nucleic Acids Res 44, e73.
-
(2016)
Nucleic Acids Res
, vol.44
-
-
Welch, J.D.1
Hu, Y.2
Prins, J.F.3
-
5
-
-
84872198346
-
Differential analysis of gene regulation at transcript resolution with RNA-seq
-
Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL and Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31, 46–53.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 46-53
-
-
Trapnell, C.1
Hendrickson, D.G.2
Sauvageau, M.3
Goff, L.4
Rinn, J.L.5
Pachter, L.6
-
6
-
-
84892179132
-
Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
-
Deng Q, Ramsköld D, Reinius B and Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343, 193–196.
-
(2014)
Science
, vol.343
, pp. 193-196
-
-
Deng, Q.1
Ramsköld, D.2
Reinius, B.3
Sandberg, R.4
-
7
-
-
84944901262
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim JK, Kolodziejczyk AA, Ilicic T, Illicic T, Teichmann SA and Marioni JC (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat Commun 6, 8687.
-
(2015)
Nat Commun
, vol.6
, pp. 8687
-
-
Kim, J.K.1
Kolodziejczyk, A.A.2
Ilicic, T.3
Illicic, T.4
Teichmann, S.A.5
Marioni, J.C.6
-
8
-
-
84988692357
-
Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq
-
Reinius B, Mold JE, Ramsköld D, Deng Q, Johnsson P, Michaëlsson J, Frisén J and Sandberg R (2016) Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq. Nat Genet 48, 1430–1435.
-
(2016)
Nat Genet
, vol.48
, pp. 1430-1435
-
-
Reinius, B.1
Mold, J.E.2
Ramsköld, D.3
Deng, Q.4
Johnsson, P.5
Michaëlsson, J.6
Frisén, J.7
Sandberg, R.8
-
9
-
-
84954396263
-
Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data
-
Kim JK and Marioni JC (2013) Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data. Genome Biol 14, R7.
-
(2013)
Genome Biol
, vol.14
, pp. R7
-
-
Kim, J.K.1
Marioni, J.C.2
-
10
-
-
85027437879
-
Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression
-
Kar G, Kim JK, Kolodziejczyk AA and Natarajan KN (2017) Flipping between Polycomb repressed and active transcriptional states introduces noise in gene expression. bioRxiv, https://doi.org/10.1101/117267
-
(2017)
bioRxiv
-
-
Kar, G.1
Kim, J.K.2
Kolodziejczyk, A.A.3
Natarajan, K.N.4
-
11
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF, Chen TJ, Shenfeld DK, Nolan GP and Pe'er D (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714–725.
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
Davis, K.L.2
Amir, E.-A.D.3
Tadmor, M.D.4
Simonds, E.F.5
Chen, T.J.6
Shenfeld, D.K.7
Nolan, G.P.8
Pe'er, D.9
-
12
-
-
84984643819
-
Diffusion pseudotime robustly reconstructs lineage branching
-
Haghverdi L, Büttner M, Wolf FA, Buettner F and Theis FJ (2016) Diffusion pseudotime robustly reconstructs lineage branching. Nat Methods 13, 845–848.
-
(2016)
Nat Methods
, vol.13
, pp. 845-848
-
-
Haghverdi, L.1
Büttner, M.2
Wolf, F.A.3
Buettner, F.4
Theis, F.J.5
-
13
-
-
85040750667
-
Temporal mixture modelling of single-cell RNA-seq data resolves a CD4+ T cell fate bifurcation
-
Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, Soon MSF, Fogg LG, Stubbington MJT, Otzen Bagger F et al. (2017) Temporal mixture modelling of single-cell RNA-seq data resolves a CD4+ T cell fate bifurcation. Sci Immunol 2, eaal2192.
-
(2017)
Sci Immunol
, vol.2
-
-
Lönnberg, T.1
Svensson, V.2
James, K.R.3
Fernandez-Ruiz, D.4
Sebina, I.5
Montandon, R.6
Soon, M.S.F.7
Fogg, L.G.8
Stubbington, M.J.T.9
Otzen Bagger, F.10
-
14
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H and van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grün, D.1
Lyubimova, A.2
Kester, L.3
Wiebrands, K.4
Basak, O.5
Sasaki, N.6
Clevers, H.7
van Oudenaarden, A.8
-
15
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C et al. (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
Lönnerberg, P.4
La Manno, G.5
Juréus, A.6
Marques, S.7
Munguba, H.8
He, L.9
Betsholtz, C.10
-
16
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
Nemesh, J.4
Shekhar, K.5
Goldman, M.6
Tirosh, I.7
Bialas, A.R.8
Kamitaki, N.9
Martersteck, E.M.10
-
17
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA and Kirschner MW (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
Peshkin, L.7
Weitz, D.A.8
Kirschner, M.W.9
-
18
-
-
84895069488
-
Quantitative single-cell RNA-seq with unique molecular identifiers
-
Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P and Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11, 163–166.
-
(2014)
Nat Methods
, vol.11
, pp. 163-166
-
-
Islam, S.1
Zeisel, A.2
Joost, S.3
La Manno, G.4
Zajac, P.5
Kasper, M.6
Lönnerberg, P.7
Linnarsson, S.8
-
19
-
-
85013200683
-
Comparative analysis of single-Cell RNA sequencing methods
-
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I and Enard W (2017) Comparative analysis of single-Cell RNA sequencing methods. Mol Cell 65 (631–643), e4.
-
(2017)
Mol Cell
, vol.65
, Issue.631-643
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
Reinius, B.4
Guillaumet-Adkins, A.5
Smets, M.6
Leonhardt, H.7
Heyn, H.8
Hellmann, I.9
Enard, W.10
-
20
-
-
85014524493
-
Power analysis of single-cell RNA-sequencing experiments
-
Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A and Teichmann SA (2017) Power analysis of single-cell RNA-sequencing experiments. Nat Methods 14, 381–387.
-
(2017)
Nat Methods
, vol.14
, pp. 381-387
-
-
Svensson, V.1
Natarajan, K.N.2
Ly, L.-H.3
Miragaia, R.J.4
Labalette, C.5
Macaulay, I.C.6
Cvejic, A.7
Teichmann, S.A.8
-
21
-
-
84923647450
-
Computational and analytical challenges in single-cell transcriptomics
-
Stegle O, Teichmann SA and Marioni JC (2015) Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 16, 133–145.
-
(2015)
Nat Rev Genet
, vol.16
, pp. 133-145
-
-
Stegle, O.1
Teichmann, S.A.2
Marioni, J.C.3
-
22
-
-
84887109584
-
Accounting for technical noise in single-cell RNA-seq experiments
-
Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC et al. (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10, 1093–1095.
-
(2013)
Nat Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
Anders, S.2
Kim, J.K.3
Kołodziejczyk, A.A.4
Zhang, X.5
Proserpio, V.6
Baying, B.7
Benes, V.8
Teichmann, S.A.9
Marioni, J.C.10
-
23
-
-
85003441754
-
Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation
-
Love MI, Hogenesch JB and Irizarry RA (2016) Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation. Nat Biotechnol 34, 1287–1291.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 1287-1291
-
-
Love, M.I.1
Hogenesch, J.B.2
Irizarry, R.A.3
-
24
-
-
85027457031
-
Isolator: accurate and stable analysis of isoform-level expression in RNA-Seq experiments
-
Jones DC, Kuppusamy KT, Palpant NJ, Peng X, Murry CE, Ruohola-Baker H and Ruzzo WL (2016) Isolator: accurate and stable analysis of isoform-level expression in RNA-Seq experiments. bioRxiv, https://doi.org/10.1101/088765
-
(2016)
bioRxiv
-
-
Jones, D.C.1
Kuppusamy, K.T.2
Palpant, N.J.3
Peng, X.4
Murry, C.E.5
Ruohola-Baker, H.6
Ruzzo, W.L.7
-
26
-
-
84883492771
-
Kraken: a set of tools for quality control and analysis of high-throughput sequence data
-
Davis MPA, van Dongen S, Abreu-Goodger C, Bartonicek N and Enright AJ (2013) Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63, 41–49.
-
(2013)
Methods
, vol.63
, pp. 41-49
-
-
Davis, M.P.A.1
van Dongen, S.2
Abreu-Goodger, C.3
Bartonicek, N.4
Enright, A.J.5
-
27
-
-
85010007467
-
scater: Pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R
-
McCarthy DJ, Campbell KR, Lun ATL and Wills QF (2016) scater: Pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRxiv, https://doi.org/10.1101/069633
-
(2016)
bioRxiv
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
29
-
-
84958058589
-
Classification of low quality cells from single-cell RNA-seq data
-
Ilicic T, Kim JK, Kolodziejczyk AA, Bagger FO, McCarthy DJ, Marioni JC and Teichmann SA (2016) Classification of low quality cells from single-cell RNA-seq data. Genome Biol 17, 29.
-
(2016)
Genome Biol
, vol.17
, pp. 29
-
-
Ilicic, T.1
Kim, J.K.2
Kolodziejczyk, A.A.3
Bagger, F.O.4
McCarthy, D.J.5
Marioni, J.C.6
Teichmann, S.A.7
-
30
-
-
84946226911
-
Design and analysis of single-cell sequencing experiments
-
Grün D and van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163, 799–810.
-
(2015)
Cell
, vol.163
, pp. 799-810
-
-
Grün, D.1
van Oudenaarden, A.2
-
31
-
-
0000325341
-
LIII. On lines and planes of closest fit to systems of points in space
-
Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Philos Mag Series 6 2, 559–572.
-
(1901)
Philos Mag Series 6
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
33
-
-
84955706109
-
ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E and Yau C (2015) ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol 16, 241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
34
-
-
84966667709
-
destiny: Diffusion maps for large-scale single-cell data in R
-
Angerer P, Haghverdi L, Büttner M, Theis FJ, Marr C and Buettner F (2016) destiny: Diffusion maps for large-scale single-cell data in R. Bioinformatics 32, 1241–1243.
-
(2016)
Bioinformatics
, vol.32
, pp. 1241-1243
-
-
Angerer, P.1
Haghverdi, L.2
Büttner, M.3
Theis, F.J.4
Marr, C.5
Buettner, F.6
-
35
-
-
84931072284
-
Identification of cell types from single-cell transcriptomes using a novel clustering method
-
Xu C and Su Z (2015) Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974–1980.
-
(2015)
Bioinformatics
, vol.31
, pp. 1974-1980
-
-
Xu, C.1
Su, Z.2
-
36
-
-
84977564015
-
SC3 – consensus clustering of single-cell RNA-Seq data
-
Kiselev VY, Kirschner K, Schaub MT, Andrews T, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR and Hemberg M (2016) SC3 – consensus clustering of single-cell RNA-Seq data. bioRxiv, https://doi.org/10.1101/036558
-
(2016)
bioRxiv
-
-
Kiselev, V.Y.1
Kirschner, K.2
Schaub, M.T.3
Andrews, T.4
Chandra, T.5
Natarajan, K.N.6
Reik, W.7
Barahona, M.8
Green, A.R.9
Hemberg, M.10
-
37
-
-
85014528252
-
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
-
Wang B, Zhu J, Pierson E, Ramazzotti D and Batzoglou S (2017) Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat Methods 14, 414–416.
-
(2017)
Nat Methods
, vol.14
, pp. 414-416
-
-
Wang, B.1
Zhu, J.2
Pierson, E.3
Ramazzotti, D.4
Batzoglou, S.5
-
38
-
-
33746476985
-
Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization
-
Lafon S and Lee AB (2006) Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization. IEEE Trans Pattern Anal Mach Intell 28, 1393–1403.
-
(2006)
IEEE Trans Pattern Anal Mach Intell
, vol.28
, pp. 1393-1403
-
-
Lafon, S.1
Lee, A.B.2
-
39
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
Ward JH Jr (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58, 236–244.
-
(1963)
J Am Stat Assoc
, vol.58
, pp. 236-244
-
-
Ward, J.H.1
-
40
-
-
0041965980
-
Cluster ensembles—a knowledge reuse framework for combining multiple partitions
-
Strehl A and Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3, 583–617.
-
(2002)
J Mach Learn Res
, vol.3
, pp. 583-617
-
-
Strehl, A.1
Ghosh, J.2
-
41
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS and Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
Lennon, N.J.7
Livak, K.J.8
Mikkelsen, T.S.9
Rinn, J.L.10
-
42
-
-
0037620665
-
Reconstructing the temporal ordering of biological samples using microarray data
-
Magwene PM, Lizardi P and Kim J (2003) Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19, 842–850.
-
(2003)
Bioinformatics
, vol.19
, pp. 842-850
-
-
Magwene, P.M.1
Lizardi, P.2
Kim, J.3
-
43
-
-
85027436429
-
Reversed graph embedding resolves complex single-cell developmental trajectories
-
Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner H and Trapnell C (2017) Reversed graph embedding resolves complex single-cell developmental trajectories. bioRxiv, https://doi.org/10.1101/110668
-
(2017)
bioRxiv
-
-
Qiu, X.1
Mao, Q.2
Tang, Y.3
Wang, L.4
Chawla, R.5
Pliner, H.6
Trapnell, C.7
-
44
-
-
84954123824
-
Dimensionality Reduction Via Graph Structure Learning
-
ACM, New York, NY, USA
-
Mao Q, Wang L, Goodison S and Sun Y (2015) Dimensionality Reduction Via Graph Structure Learning. Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 765–774. ACM, New York, NY, USA.
-
(2015)
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 765-774
-
-
Mao, Q.1
Wang, L.2
Goodison, S.3
Sun, Y.4
-
45
-
-
84958103478
-
Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells
-
Macaulay IC, Svensson V, Labalette C, Ferreira L, Hamey F, Voet T, Teichmann SA and Cvejic A (2016) Single-cell RNA-sequencing reveals a continuous spectrum of differentiation in hematopoietic cells. Cell Rep 14, 966–977.
-
(2016)
Cell Rep
, vol.14
, pp. 966-977
-
-
Macaulay, I.C.1
Svensson, V.2
Labalette, C.3
Ferreira, L.4
Hamey, F.5
Voet, T.6
Teichmann, S.A.7
Cvejic, A.8
-
46
-
-
84999791835
-
Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference
-
Campbell KR and Yau C (2016) Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS Comput Biol 12, e1005212.
-
(2016)
PLoS Comput Biol
, vol.12
-
-
Campbell, K.R.1
Yau, C.2
-
47
-
-
85040750667
-
Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria
-
Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, Soon MSF, Fogg LG, Nair AS, Liligeto UN et al. (2017) Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci Immunol 2, eaal2192.
-
(2017)
Sci Immunol
, vol.2
-
-
Lönnberg, T.1
Svensson, V.2
James, K.R.3
Fernandez-Ruiz, D.4
Sebina, I.5
Montandon, R.6
Soon, M.S.F.7
Fogg, L.G.8
Nair, A.S.9
Liligeto, U.N.10
-
48
-
-
85021263276
-
Ouija: Incorporating prior knowledge in single-cell trajectory learning using Bayesian nonlinear factor analysis
-
Campbell K and Yau C (2016) Ouija: Incorporating prior knowledge in single-cell trajectory learning using Bayesian nonlinear factor analysis. bioRxiv.
-
(2016)
bioRxiv
-
-
Campbell, K.1
Yau, C.2
-
49
-
-
84974587998
-
Wishbone identifies bifurcating developmental trajectories from single-cell data
-
Setty M, Tadmor MD, Reich-Zeliger S, Angel O, Salame TM, Kathail P, Choi K, Bendall S, Friedman N and Pe'er D (2016) Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat Biotechnol 34, 637–645.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 637-645
-
-
Setty, M.1
Tadmor, M.D.2
Reich-Zeliger, S.3
Angel, O.4
Salame, T.M.5
Kathail, P.6
Choi, K.7
Bendall, S.8
Friedman, N.9
Pe'er, D.10
-
50
-
-
84924365758
-
Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
-
Marco E, Karp RL, Guo G, Robson P, Hart AH, Trippa L and Yuan G-C (2014) Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc Natl Acad Sci USA 111, E5643–E5650.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E5643-E5650
-
-
Marco, E.1
Karp, R.L.2
Guo, G.3
Robson, P.4
Hart, A.H.5
Trippa, L.6
Yuan, G.-C.7
-
51
-
-
84977080410
-
Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development
-
Chen J, Schlitzer A, Chakarov S, Ginhoux F and Poidinger M (2016) Mpath maps multi-branching single-cell trajectories revealing progenitor cell progression during development. Nat Commun 7, 11988.
-
(2016)
Nat Commun
, vol.7
, pp. 11988
-
-
Chen, J.1
Schlitzer, A.2
Chakarov, S.3
Ginhoux, F.4
Poidinger, M.5
-
52
-
-
0001745298
-
The interpretation of interaction in contingency tables
-
Simpson EH (1951) The interpretation of interaction in contingency tables. J R Stat Soc Series B Stat Methodol 13, 238–241.
-
(1951)
J R Stat Soc Series B Stat Methodol
, vol.13
, pp. 238-241
-
-
Simpson, E.H.1
-
53
-
-
0001308326
-
Notes on the theory of association of attributes in statistics
-
Yule GU (1903) Notes on the theory of association of attributes in statistics. Biometrika 2, 121–134.
-
(1903)
Biometrika
, vol.2
, pp. 121-134
-
-
Yule, G.U.1
-
54
-
-
33845432928
-
Adjusting batch effects in microarray expression data using empirical Bayes methods
-
Johnson WE, Li C and Rabinovic A (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127.
-
(2007)
Biostatistics
, vol.8
, pp. 118-127
-
-
Johnson, W.E.1
Li, C.2
Rabinovic, A.3
-
55
-
-
0347090327
-
Adjustment of systematic microarray data biases
-
Benito M, Parker J, Du Q, Wu J, Xiang D, Perou CM and Marron JS (2004) Adjustment of systematic microarray data biases. Bioinformatics 20, 105–114.
-
(2004)
Bioinformatics
, vol.20
, pp. 105-114
-
-
Benito, M.1
Parker, J.2
Du, Q.3
Wu, J.4
Xiang, D.5
Perou, C.M.6
Marron, J.S.7
-
56
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso D, Ngai J, Speed TP and Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32, 896–902.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 896-902
-
-
Risso, D.1
Ngai, J.2
Speed, T.P.3
Dudoit, S.4
-
57
-
-
84859098571
-
The sva package for removing batch effects and other unwanted variation in high-throughput experiments
-
Leek JT, Johnson WE, Parker HS, Jaffe AE and Storey JD (2012) The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883.
-
(2012)
Bioinformatics
, vol.28
, pp. 882-883
-
-
Leek, J.T.1
Johnson, W.E.2
Parker, H.S.3
Jaffe, A.E.4
Storey, J.D.5
-
58
-
-
84925226706
-
svaseq: Removing batch effects and other unwanted noise from sequencing data
-
Leek JT (2014) svaseq: Removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res, https://doi:10.1093/nar/gku864
-
(2014)
Nucleic Acids Res
-
-
Leek, J.T.1
-
59
-
-
84861734626
-
Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
-
Stegle O, Parts L, Piipari M, Winn J and Durbin R (2012) Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc 7, 500–507.
-
(2012)
Nat Protoc
, vol.7
, pp. 500-507
-
-
Stegle, O.1
Parts, L.2
Piipari, M.3
Winn, J.4
Durbin, R.5
-
60
-
-
84901831004
-
Validation of noise models for single-cell transcriptomics
-
Grün D, Kester L and van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11, 637–640.
-
(2014)
Nat Methods
, vol.11
, pp. 637-640
-
-
Grün, D.1
Kester, L.2
van Oudenaarden, A.3
-
61
-
-
53349161901
-
Imaging individual mRNA molecules using multiple singly labeled probes
-
Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A and Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5, 877–879.
-
(2008)
Nat Methods
, vol.5
, pp. 877-879
-
-
Raj, A.1
van den Bogaard, P.2
Rifkin, S.A.3
van Oudenaarden, A.4
Tyagi, S.5
-
62
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC and Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33, 155–160.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 155-160
-
-
Buettner, F.1
Natarajan, K.N.2
Casale, F.P.3
Proserpio, V.4
Scialdone, A.5
Theis, F.J.6
Teichmann, S.A.7
Marioni, J.C.8
Stegle, O.9
-
64
-
-
84924629414
-
Differential analysis of count data–the DESeq2 package
-
Love M, Anders S and Huber W (2014) Differential analysis of count data–the DESeq2 package. Genome Biol 15, 550.
-
(2014)
Genome Biol
, vol.15
, pp. 550
-
-
Love, M.1
Anders, S.2
Huber, W.3
-
65
-
-
75249087100
-
edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ and Smyth GK (2010) edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
66
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M et al. (2015) MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol 16, 278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
Slichter, C.K.7
Miller, H.W.8
McElrath, M.J.9
Prlic, M.10
-
67
-
-
85029221521
-
Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments
-
Andrews TS and Hemberg M (2016) Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments. bioRxiv.
-
(2016)
bioRxiv
-
-
Andrews, T.S.1
Hemberg, M.2
-
68
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko PV, Silberstein L and Scadden DT (2014) Bayesian approach to single-cell differential expression analysis. Nat Methods 11, 740–742.
-
(2014)
Nat Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
Silberstein, L.2
Scadden, D.T.3
-
69
-
-
84949293695
-
SINCERA: A pipeline for single-cell RNA-seq profiling analysis
-
Guo M, Wang H, Potter SS, Whitsett JA and Xu Y (2015) SINCERA: A pipeline for single-cell RNA-seq profiling analysis. PLoS Comput Biol 11, e1004575.
-
(2015)
PLoS Comput Biol
, vol.11
-
-
Guo, M.1
Wang, H.2
Potter, S.S.3
Whitsett, J.A.4
Xu, Y.5
-
70
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R and Kendziorski C (2016) A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol 17, 222.
-
(2016)
Genome Biol
, vol.17
, pp. 222
-
-
Korthauer, K.D.1
Chu, L.-F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
Kendziorski, C.7
-
71
-
-
79956211692
-
A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression
-
Kalaitzis AA and Lawrence ND (2011) A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. BMC Bioinformat 12, 180.
-
(2011)
BMC Bioinformat
, vol.12
, pp. 180
-
-
Kalaitzis, A.A.1
Lawrence, N.D.2
-
72
-
-
85019119633
-
switchde: Inference of switch-like differential expression along single-cell trajectories
-
Campbell KR and Yau C (2017) switchde: Inference of switch-like differential expression along single-cell trajectories. Bioinformatics 33, 1241–1242.
-
(2017)
Bioinformatics
, vol.33
, pp. 1241-1242
-
-
Campbell, K.R.1
Yau, C.2
-
73
-
-
85020058202
-
ImpulseDE: Detection of differentially expressed genes in time series data using impulse models
-
Sander J, Schultze JL and Yosef N (2017) ImpulseDE: Detection of differentially expressed genes in time series data using impulse models. Bioinformatics 33, 757–759.
-
(2017)
Bioinformatics
, vol.33
, pp. 757-759
-
-
Sander, J.1
Schultze, J.L.2
Yosef, N.3
-
74
-
-
84901188210
-
Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis
-
Mahata B, Zhang X, Kolodziejczyk AA, Proserpio V, Haim-Vilmovsky L, Taylor AE, Hebenstreit D, Dingler FA, Moignard V, Göttgens B et al. (2014) Single-cell RNA sequencing reveals T helper cells synthesizing steroids de novo to contribute to immune homeostasis. Cell Rep 7, 1130–1142.
-
(2014)
Cell Rep
, vol.7
, pp. 1130-1142
-
-
Mahata, B.1
Zhang, X.2
Kolodziejczyk, A.A.3
Proserpio, V.4
Haim-Vilmovsky, L.5
Taylor, A.E.6
Hebenstreit, D.7
Dingler, F.A.8
Moignard, V.9
Göttgens, B.10
-
75
-
-
60549111634
-
WGCNA: An R package for weighted correlation network analysis
-
Langfelder P and Horvath S (2008) WGCNA: An R package for weighted correlation network analysis. BMC Bioinformat 9, 559.
-
(2008)
BMC Bioinformat
, vol.9
, pp. 559
-
-
Langfelder, P.1
Horvath, S.2
-
76
-
-
84883134780
-
Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing
-
Xue Z, Huang K, Cai C, Cai L, Jiang C-Y, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE et al. (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500, 593–597.
-
(2013)
Nature
, vol.500
, pp. 593-597
-
-
Xue, Z.1
Huang, K.2
Cai, C.3
Cai, L.4
Jiang, C.-Y.5
Feng, Y.6
Liu, Z.7
Zeng, Q.8
Cheng, L.9
Sun, Y.E.10
-
77
-
-
84962711132
-
OEFinder: A user interface to identify and visualize ordering effects in single-cell RNA-seq data
-
Leng N, Choi J, Chu L-F, Thomson JA, Kendziorski C and Stewart R (2016) OEFinder: A user interface to identify and visualize ordering effects in single-cell RNA-seq data. Bioinformatics 32, 1408–1410.
-
(2016)
Bioinformatics
, vol.32
, pp. 1408-1410
-
-
Leng, N.1
Choi, J.2
Chu, L.-F.3
Thomson, J.A.4
Kendziorski, C.5
Stewart, R.6
-
78
-
-
84905405443
-
Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
-
Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W and Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11, 817–820.
-
(2014)
Nat Methods
, vol.11
, pp. 817-820
-
-
Smallwood, S.A.1
Lee, H.J.2
Angermueller, C.3
Krueger, F.4
Saadeh, H.5
Peat, J.6
Andrews, S.R.7
Stegle, O.8
Reik, W.9
Kelsey, G.10
-
79
-
-
84937857359
-
Single-cell chromatin accessibility reveals principles of regulatory variation
-
Buenrostro JD, Wu B, Litzenburger UM, Ruff D, Gonzales ML, Snyder MP, Chang HY and Greenleaf WJ (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490.
-
(2015)
Nature
, vol.523
, pp. 486-490
-
-
Buenrostro, J.D.1
Wu, B.2
Litzenburger, U.M.3
Ruff, D.4
Gonzales, M.L.5
Snyder, M.P.6
Chang, H.Y.7
Greenleaf, W.J.8
-
80
-
-
84930178333
-
G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes
-
Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM et al. (2015) G&T-seq: Parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12, 519–522.
-
(2015)
Nat Methods
, vol.12
, pp. 519-522
-
-
Macaulay, I.C.1
Haerty, W.2
Kumar, P.3
Li, Y.I.4
Hu, T.X.5
Teng, M.J.6
Goolam, M.7
Saurat, N.8
Coupland, P.9
Shirley, L.M.10
-
81
-
-
84924423596
-
Integrated genome and transcriptome sequencing of the same cell
-
Dey SS, Kester L, Spanjaard B, Bienko M and van Oudenaarden A (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol 33, 285–289.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 285-289
-
-
Dey, S.S.1
Kester, L.2
Spanjaard, B.3
Bienko, M.4
van Oudenaarden, A.5
-
82
-
-
84934441202
-
Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging
-
Moroz LL and Kohn AB (2013) Single-neuron transcriptome and methylome sequencing for epigenomic analysis of aging. Methods Mol Biol 1048, 323–352.
-
(2013)
Methods Mol Biol
, vol.1048
, pp. 323-352
-
-
Moroz, L.L.1
Kohn, A.B.2
-
83
-
-
84959255113
-
Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
-
Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood SA, Ponting CP, Voet T et al. (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13, 229–232.
-
(2016)
Nat Methods
, vol.13
, pp. 229-232
-
-
Angermueller, C.1
Clark, S.J.2
Lee, H.J.3
Macaulay, I.C.4
Teng, M.J.5
Hu, T.X.6
Krueger, F.7
Smallwood, S.A.8
Ponting, C.P.9
Voet, T.10
-
84
-
-
77956412152
-
Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis
-
Tang F, Barbacioru C, Bao S, Lee C, Nordman E, Wang X, Lao K and Surani MA (2010) Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-Seq analysis. Cell Stem Cell 6, 468–478.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 468-478
-
-
Tang, F.1
Barbacioru, C.2
Bao, S.3
Lee, C.4
Nordman, E.5
Wang, X.6
Lao, K.7
Surani, M.A.8
-
85
-
-
84924353105
-
Decoding the regulatory network of early blood development from single-cell gene expression measurements
-
Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E et al. (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33, 269–276.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 269-276
-
-
Moignard, V.1
Woodhouse, S.2
Haghverdi, L.3
Lilly, A.J.4
Tanaka, Y.5
Wilkinson, A.C.6
Buettner, F.7
Macaulay, I.C.8
Jawaid, W.9
Diamanti, E.10
-
86
-
-
84956681316
-
Single-cell technologies to study the immune system
-
Proserpio V and Mahata B (2016) Single-cell technologies to study the immune system. Immunology 147, 133–140.
-
(2016)
Immunology
, vol.147
, pp. 133-140
-
-
Proserpio, V.1
Mahata, B.2
-
87
-
-
84994065736
-
Genetics and immunity in the era of single-cell genomics
-
Vieira Braga FA, Teichmann SA and Chen X (2016) Genetics and immunity in the era of single-cell genomics. Hum Mol Genet 25, R141–R148.
-
(2016)
Hum Mol Genet
, vol.25
, pp. R141-R148
-
-
Vieira Braga, F.A.1
Teichmann, S.A.2
Chen, X.3
-
88
-
-
84942917849
-
The first five years of single-cell cancer genomics and beyond
-
Navin NE (2015) The first five years of single-cell cancer genomics and beyond. Genome Res 25, 1499–1507.
-
(2015)
Genome Res
, vol.25
, pp. 1499-1507
-
-
Navin, N.E.1
-
89
-
-
84997189950
-
Cancer genomics: single-cell RNA-seq to decipher tumour architecture
-
Cloney R (2017) Cancer genomics: single-cell RNA-seq to decipher tumour architecture. Nat Rev Genet 18, 2–3.
-
(2017)
Nat Rev Genet
, vol.18
, pp. 2-3
-
-
Cloney, R.1
|