메뉴 건너뛰기




Volumn 7, Issue SEP, 2016, Pages

Single-cell transcriptomics bioinformatics and computational challenges

Author keywords

Bioinformatics; Heterogeneity; Microevolution; Single cell analysis; Single cell genomics

Indexed keywords

ALGORITHM; BIOINFORMATICS; GENE EXPRESSION; HUMAN; IN SITU HYBRIDIZATION; MACHINE LEARNING; QUALITY CONTROL; RNA SEQUENCE; SEQUENCE ALIGNMENT; SEQUENCE ANALYSIS; SHORT SURVEY; TRANSCRIPTOMICS;

EID: 84992163193     PISSN: None     EISSN: 16648021     Source Type: Journal    
DOI: 10.3389/fgene.2016.00163     Document Type: Short Survey
Times cited : (93)

References (110)
  • 1
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Aaron, T. L. L., Bach, K., and Marioni, J. C. (2016). Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 17:75. doi: 10.1186/s13059-016-0947-7
    • (2016) Genome Biol , vol.17 , pp. 75
    • Aaron, T.L.L.1    Bach, K.2    Marioni, J.C.3
  • 2
    • 84880280631 scopus 로고    scopus 로고
    • viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, E. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., and Bendall, S. C. (2013). viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545-552. doi: 10.1038/nbt.2594
    • (2013) Nat. Biotechnol , vol.31 , pp. 545-552
    • Amir, E.D.1    Davis, K.L.2    Tadmor, M.D.3    Simonds, E.F.4    Levine, J.H.5    Bendall, S.C.6
  • 3
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11:R106. doi: 10.1186/gb-2010-11-10-r106
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 4
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq-a python framework to work with high-throughput sequencing data
    • Anders, S., Pyl, P. T., and Huber, W. (2014). HTSeq-a python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169. doi: 10.1093/bioinformatics/btu638
    • (2014) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1    Pyl, P.T.2    Huber, W.3
  • 6
    • 0037016775 scopus 로고    scopus 로고
    • The isomap algorithm and topological stability
    • Balasubramanian, M., and Schwartz, E. L. (2002). The isomap algorithm and topological stability. Science 295:7. doi: 10.1126/science.295.5552.7a
    • (2002) Science , vol.295 , pp. 7
    • Balasubramanian, M.1    Schwartz, E.L.2
  • 8
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development
    • Bendall, S. C., Davis, K. L., Amir, El-D, Tadmor, M. D., Simonds, E. F., Chen, T. J., et al. (2014). Single-cell trajectory detection uncovers progression and regulatory coordination in human b cell development. Cell 157, 714-725. doi: 10.1016/j.cell.2014.04.005
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1    Davis, K.L.2    Amir, E.-D.3    Tadmor, M.D.4    Simonds, E.F.5    Chen, T.J.6
  • 10
    • 84905049901 scopus 로고    scopus 로고
    • Trimmomatic: a flexible trimmer for illumina sequence data
    • Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114-2120. doi: 10.1093/bioinformatics/btu170
    • (2014) Bioinformatics , vol.30 , pp. 2114-2120
    • Bolger, A.M.1    Lohse, M.2    Usadel, B.3
  • 11
    • 84939162152 scopus 로고    scopus 로고
    • Scalable microfluidics for single cell rna printing and sequencing
    • Bose, S., Wan, Z., Carr, A., Rizvi, A. H., Vieira, G., Pe'er, D., et al. (2015). Scalable microfluidics for single cell rna printing and sequencing. Genome Biol. 16:120. doi: 10.1186/s13059-015-0684-3
    • (2015) Genome Biol , vol.16 , pp. 120
    • Bose, S.1    Wan, Z.2    Carr, A.3    Rizvi, A.H.4    Vieira, G.5    Pe'er, D.6
  • 12
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525-527. doi: 10.1038/nbt.3519
    • (2016) Nat. Biotechnol , vol.34 , pp. 525-527
    • Bray, N.L.1    Pimentel, H.2    Melsted, P.3    Pachter, L.4
  • 14
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., et al. (2015). Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33, 55-160. doi: 10.1038/nbt.3102
    • (2015) Nat. Biotechnol , vol.33 , pp. 55-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 15
    • 84866463531 scopus 로고    scopus 로고
    • A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
    • Buettner, F., and Theis, F. J. (2012). A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst. Bioinformatics 28, i626-i632. doi: 10.1093/bioinformatics/bts385
    • (2012) Bioinformatics , vol.28 , pp. i626-i632
    • Buettner, F.1    Theis, F.J.2
  • 18
    • 84962023190 scopus 로고    scopus 로고
    • Pan-Cancer analyses reveal long intergenic non-coding rnas relevant to tumor diagnosis, subtyping and prognosis
    • Ching, T., Peplowska, K., Huang, S., Zhu, X., Shen, Y., Molnar, J., et al. (2016). Pan-Cancer analyses reveal long intergenic non-coding rnas relevant to tumor diagnosis, subtyping and prognosis. EBioMedicine 7, 62-72. doi: 10.1016/j.ebiom.2016.03.023
    • (2016) EBioMedicine , vol.7 , pp. 62-72
    • Ching, T.1    Peplowska, K.2    Huang, S.3    Zhu, X.4    Shen, Y.5    Molnar, J.6
  • 19
    • 77957151956 scopus 로고    scopus 로고
    • SolexaQA: at-a-glance quality assessment of illumina second-generation sequencing data
    • Cox, M. P., Peterson, D. A., and Biggs, P. J. (2010). SolexaQA: at-a-glance quality assessment of illumina second-generation sequencing data. BMC Bioinformatics 11:485. doi: 10.1186/1471-2105-11-485
    • (2010) BMC Bioinformatics , vol.11 , pp. 485
    • Cox, M.P.1    Peterson, D.A.2    Biggs, P.J.3
  • 20
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using T-SNE
    • der Maaten, L., and Hinton, G. (2008). Visualizing data using T-SNE. J. Mach. Learn. Res. 9, 2579-2605. Available online at: https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
    • (2008) J. Mach. Learn. Res , vol.9 , pp. 2579-2605
    • der Maaten, L.1    Hinton, G.2
  • 21
    • 84924423596 scopus 로고    scopus 로고
    • Integrated genome and transcriptome sequencing of the same cell
    • Dey, S. S., Kester, L., Spanjaard, B., Bienko, M., and van Oudenaarden, A. (2015). Integrated genome and transcriptome sequencing of the same cell. Nat. Biotechnol. 33, 285-289. doi: 10.1038/nbt.3129
    • (2015) Nat. Biotechnol , vol.33 , pp. 285-289
    • Dey, S.S.1    Kester, L.2    Spanjaard, B.3    Bienko, M.4    van Oudenaarden, A.5
  • 22
    • 84992322906 scopus 로고    scopus 로고
    • SCell: integrated analysis of single-cell RNA-Seq data
    • Diaz, A., Liu, S. J., Sandoval, C., Pollen, A., Nowakowski, T. J., Lim, D. A., et al. (2016). SCell: integrated analysis of single-cell RNA-Seq data. Bioinformatics 32, 2219-2220. doi: 10.1093/bioinformatics/btw201
    • (2016) Bioinformatics , vol.32 , pp. 2219-2220
    • Diaz, A.1    Liu, S.J.2    Sandoval, C.3    Pollen, A.4    Nowakowski, T.J.5    Lim, D.A.6
  • 23
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNA-Seq experiments
    • Ding, B., Zheng, L., Zhu, Y., Li, N., Jia, H., Ai, R., et al. (2015). Normalization and noise reduction for single cell RNA-Seq experiments. Bioinformatics 31, 2225-2227. doi: 10.1093/bioinformatics/btv122
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1    Zheng, L.2    Zhu, Y.3    Li, N.4    Jia, H.5    Ai, R.6
  • 24
    • 85019897120 scopus 로고    scopus 로고
    • Mapping RNA-seq reads with STAR
    • 11.14.1-11.14.19
    • Dobin, A., and Gingeras, T. R. (2015). Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 51, 11.14.1-11.14.19. doi: 10.1002/0471250953.bi1114s51
    • (2015) Curr. Protoc. Bioinform , vol.51
    • Dobin, A.1    Gingeras, T.R.2
  • 25
    • 84888861753 scopus 로고    scopus 로고
    • Systematic evaluation of spliced alignment programs for RNA-seq data
    • Engström, P. G., Steijger, T., Sipos, B., Grant, G. R., Kahles, A., Rätsch, G., et al. (2013). Systematic evaluation of spliced alignment programs for RNA-seq data. Nat. Methods 10, 1185-1191. doi: 10.1038/nmeth.2722
    • (2013) Nat. Methods , vol.10 , pp. 1185-1191
    • Engström, P.G.1    Steijger, T.2    Sipos, B.3    Grant, G.R.4    Kahles, A.5    Rätsch, G.6
  • 26
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan, J.-B., Jean, J. J.-B., Salathia, N., Liu, R., Kaeser, G. E., Yung, Y. C., et al. (2016). Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods 13, 241-244. doi: 10.1038/nmeth.3734
    • (2016) Nat. Methods , vol.13 , pp. 241-244
    • Fan, J.-B.1    Jean, J.J.-B.2    Salathia, N.3    Liu, R.4    Kaeser, G.E.5    Yung, Y.C.6
  • 27
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., et al. (2015). MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16:278. doi: 10.1186/s13059-015-0844-5
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 28
    • 84907500627 scopus 로고    scopus 로고
    • RNA-Seq gene profiling-a systematic empirical comparison
    • Fonseca, N. A., Marioni, J., and Brazma, A. (2014). RNA-Seq gene profiling-a systematic empirical comparison. PloS ONE 9:e107026. doi: 10.1371/journal.pone.0107026
    • (2014) PloS ONE , vol.9
    • Fonseca, N.A.1    Marioni, J.2    Brazma, A.3
  • 29
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato, S. (2010). Community detection in graphs. Phys. Rep. 486, 75-174. doi: 10.1016/j.physrep.2009.11.002
    • (2010) Phys. Rep , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 30
    • 84961778087 scopus 로고    scopus 로고
    • Single-Cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion
    • Freeman, B. T., Jung, J. P., and Ogle, B. M. (2016). Single-Cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion. Sci. Rep. 6:23270. doi: 10.1038/srep23270
    • (2016) Sci. Rep , vol.6 , pp. 23270
    • Freeman, B.T.1    Jung, J.P.2    Ogle, B.M.3
  • 31
    • 85021389457 scopus 로고    scopus 로고
    • Integrative single-cell transcriptomics reveals molecular networks defining neuronal maturation during postnatal neurogenesis
    • [Epub ahead of print]
    • Gao, Y., Wang, F., Eisinger, B. E., Kelnhofer, L. E., Jobe, E. M., and Zhao, X. (2016). Integrative single-cell transcriptomics reveals molecular networks defining neuronal maturation during postnatal neurogenesis. Cereb. Cortex. [Epub ahead of print]. doi: 10.1093/cercor/bhw040
    • (2016) Cereb. Cortex
    • Gao, Y.1    Wang, F.2    Eisinger, B.E.3    Kelnhofer, L.E.4    Jobe, E.M.5    Zhao, X.6
  • 32
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün, D., and van Oudenaarden, A. (2015). Design and analysis of single-cell sequencing experiments. Cell 163, 799-810. doi: 10.1016/j.cell.2015.10.039
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    van Oudenaarden, A.2
  • 33
    • 84949293695 scopus 로고    scopus 로고
    • SINCERA: a Pipeline for Single-Cell RNA-Seq profiling analysis
    • Guo, M., Wang, H., Potter, S. S., Whitsett, J. A., and Xu, Y. (2015). SINCERA: a Pipeline for Single-Cell RNA-Seq profiling analysis. PLoS Comput. Biol. 11:e1004575. doi: 10.1371/journal.pcbi.1004575
    • (2015) PLoS Comput. Biol , vol.11
    • Guo, M.1    Wang, H.2    Potter, S.S.3    Whitsett, J.A.4    Xu, Y.5
  • 34
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi, L., Buettner, F., and Theis, F. J. (2015). Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989-2998. doi: 10.1093/bioinformatics/btv325
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1    Buettner, F.2    Theis, F.J.3
  • 35
    • 84923365432 scopus 로고    scopus 로고
    • Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform
    • Han, L., Zi, X., Garmire, L. X., Wu, Y., Weissman, S. M., Pan, X., et al. (2014). Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform. Sci. Rep. 4:6485. doi: 10.1038/srep06485
    • (2014) Sci. Rep , vol.4 , pp. 6485
    • Han, L.1    Zi, X.2    Garmire, L.X.3    Wu, Y.4    Weissman, S.M.5    Pan, X.6
  • 36
    • 84959475041 scopus 로고    scopus 로고
    • Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics
    • Handel, A. E., Chintawar, S., Lalic, T., Whiteley, E., Vowles, J., Giustacchini, A., et al. (2016). Assessing similarity to primary tissue and cortical layer identity in induced pluripotent stem cell-derived cortical neurons through single-cell transcriptomics. Hum. Mol. Genet. 25, 989-1000. doi: 10.1093/hmg/ddv637
    • (2016) Hum. Mol. Genet , vol.25 , pp. 989-1000
    • Handel, A.E.1    Chintawar, S.2    Lalic, T.3    Whiteley, E.4    Vowles, J.5    Giustacchini, A.6
  • 38
    • 0034515528 scopus 로고    scopus 로고
    • A clustering algorithm based on graph connectivity
    • Hartuv, E., and Shamir, R. (2000). A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175-181. doi: 10.1016/S0020-0190(00)00142-3
    • (2000) Inf. Process. Lett , vol.76 , pp. 175-181
    • Hartuv, E.1    Shamir, R.2
  • 39
    • 84960091878 scopus 로고    scopus 로고
    • Single-Cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
    • Hou, Y., Guo, H., Cao, C., Li, X., Hu, B., Zhu, P., et al. (2016). Single-Cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26, 304-319. doi: 10.1038/cr.2016.23
    • (2016) Cell Res , vol.26 , pp. 304-319
    • Hou, Y.1    Guo, H.2    Cao, C.3    Li, X.4    Hu, B.5    Zhu, P.6
  • 41
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-Cell RNA-Seq with unique molecular identifiers
    • Islam, S., Zeisel, A., Joost, S., La Manno, G., Zajac, P., Kasper, M., et al. (2014). Quantitative single-Cell RNA-Seq with unique molecular identifiers. Nat. Methods 11, 163-166. doi: 10.1038/nmeth.2772
    • (2014) Nat. Methods , vol.11 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    La Manno, G.4    Zajac, P.5    Kasper, M.6
  • 42
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel Single-Cell RNA-Seq for marker-free decomposition of tissues into cell types
    • Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., et al. (2014). Massively parallel Single-Cell RNA-Seq for marker-free decomposition of tissues into cell types. Science 343, 776-779. doi: 10.1126/science.1247651
    • (2014) Science , vol.343 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 43
    • 84982806105 scopus 로고    scopus 로고
    • TSCAN: pseudo-time reconstruction and evaluation in Single-Cell RNA-Seq analysis
    • Ji, Z., and Ji, H. (2016). TSCAN: pseudo-time reconstruction and evaluation in Single-Cell RNA-Seq analysis. Nucl. Acids Res. 44:e117. doi: 10.1093/nar/gkw430
    • (2016) Nucl. Acids Res , vol.44
    • Ji, Z.1    Ji, H.2
  • 44
    • 84976875133 scopus 로고    scopus 로고
    • GiniClust: detecting rare cell types from single-cell gene expression data with gini index
    • Jiang, L., Chen, H., Pinello, L., and Yuan, G.-C. (2016). GiniClust: detecting rare cell types from single-cell gene expression data with gini index. Genome Biol. 17:144. doi: 10.1186/s13059-016-1010-4
    • (2016) Genome Biol , vol.17 , pp. 144
    • Jiang, L.1    Chen, H.2    Pinello, L.3    Yuan, G.-C.4
  • 45
    • 84983372594 scopus 로고    scopus 로고
    • Quality control of Single-Cell RNA-seq by SinQC
    • [Epub ahead of print]
    • Jiang, P., Thomson, J. A, and Stewart, R. (2016). Quality control of Single-Cell RNA-seq by SinQC. Bioinformatics. [Epub ahead of print]. doi: 10.1093/bioinformatics/btw176
    • (2016) Bioinformatics
    • Jiang, P.1    Thomson, J.A.2    Stewart, R.3
  • 46
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical bayes methods
    • Johnson, W. E., Li, C., and Rabinovic, A. (2007). Adjusting batch effects in microarray expression data using empirical bayes methods. Biostatistics 8, 118-127. doi: 10.1093/biostatistics/kxj037
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3
  • 47
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama, S., Töhönen, V., Linnarsson, S., and Kere, J. (2013). SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 29, 2943-2945. doi: 10.1093/bioinformatics/btt511
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Töhönen, V.2    Linnarsson, S.3    Kere, J.4
  • 48
    • 84992094812 scopus 로고    scopus 로고
    • Radiotranscriptomics: a synergy of imaging and transcriptomics in clinical assessment
    • Katrib, A., Hsu, W., Bui, A., and Xing, Y. (2016). Radiotranscriptomics: a synergy of imaging and transcriptomics in clinical assessment. Quant. Biol. 4, 1-12. doi: 10.1007/s40484-016-0061-6
    • (2016) Quant. Biol , vol.4 , pp. 1-12
    • Katrib, A.1    Hsu, W.2    Bui, A.3    Xing, Y.4
  • 49
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P. V., Silberstein, L., and Scadden, D. T. (2014). Bayesian approach to single-cell differential expression analysis. Nat. Methods 11, 740-742. doi: 10.1038/nmeth.2967
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 50
    • 84926519013 scopus 로고    scopus 로고
    • HISAT: a fast spliced aligner with low memory requirements
    • Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357-360. doi: 10.1038/nmeth.3317
    • (2015) Nat. Methods , vol.12 , pp. 357-360
    • Kim, D.1    Langmead, B.2    Salzberg, S.L.3
  • 51
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., Salzberg, S. L., et al. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14:R36. doi: 10.1186/gb-2013-14-4-r36
    • (2013) Genome Biol , vol.14 , pp. R36
    • Kim, D.1    Pertea, G.2    Trapnell, C.3    Pimentel, H.4    Kelley, R.5    Salzberg, S.L.6
  • 52
    • 84937573360 scopus 로고    scopus 로고
    • Single-Cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells
    • Kim, K. T., Lee, H. W., Lee, H. O., Kim, S. C., Seo, Y. J., Chung, W., et al. (2015). Single-Cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol. 16:127. doi: 10.1186/s13059-015-0692-3
    • (2015) Genome Biol , vol.16 , pp. 127
    • Kim, K.T.1    Lee, H.W.2    Lee, H.O.3    Kim, S.C.4    Seo, Y.J.5    Chung, W.6
  • 53
    • 84954562766 scopus 로고    scopus 로고
    • A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages
    • Kimmerling, R. J., Szeto, G. L., Li, J. W., Genshaft, A. S., Kazer, S. W., Payer, K. R., et al. (2016). A microfluidic platform enabling single-cell RNA-seq of multigenerational lineages. Nat. Commun. 7:10220. doi: 10.1038/ncomms10220
    • (2016) Nat. Commun , vol.7 , pp. 10220
    • Kimmerling, R.J.1    Szeto, G.L.2    Li, J.W.3    Genshaft, A.S.4    Kazer, S.W.5    Payer, K.R.6
  • 54
    • 84923188586 scopus 로고    scopus 로고
    • Deconstructing transcriptional heterogeneity in pluripotent stem cells
    • Kumar, R. M., Cahan, P., Shalek, A. K., Satija, R., DaleyKeyser, A. J., Li, H., et al. (2014). Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56-61. doi: 10.1038/nature13920
    • (2014) Nature , vol.516 , pp. 56-61
    • Kumar, R.M.1    Cahan, P.2    Shalek, A.K.3    Satija, R.4    DaleyKeyser, A.J.5    Li, H.6
  • 55
    • 84983542835 scopus 로고    scopus 로고
    • Single cell analysis of cancer cells using an improved RT-MLPA method has potential for cancer diagnosis and monitoring
    • Kvastad, L., Solnestam, B. W., Johansson, E., Nygren, A. O., Laddach, N., Sahlén, P., et al. (2015). Single cell analysis of cancer cells using an improved RT-MLPA method has potential for cancer diagnosis and monitoring. Sci. Rep. 5:16519. doi: 10.1038/srep16519
    • (2015) Sci. Rep , vol.5 , pp. 16519
    • Kvastad, L.1    Solnestam, B.W.2    Johansson, E.3    Nygren, A.O.4    Laddach, N.5    Sahlén, P.6
  • 56
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. (2014). Svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42. doi: 10.1093/nar/gku864
    • (2014) Nucleic Acids Res , pp. 42
    • Leek, J.T.1
  • 57
    • 84962711132 scopus 로고    scopus 로고
    • OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data
    • Leng, N., Choi, J., Chu, L. F., Thomson, J. A., Kendziorski, C., and Stewart, R. (2016). OEFinder: a user interface to identify and visualize ordering effects in single-cell RNA-seq data. Bioinformatics 32, 1408-1410. doi: 10.1093/bioinformatics/btw004
    • (2016) Bioinformatics , vol.32 , pp. 1408-1410
    • Leng, N.1    Choi, J.2    Chu, L.F.3    Thomson, J.A.4    Kendziorski, C.5    Stewart, R.6
  • 58
    • 84959122613 scopus 로고    scopus 로고
    • Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments
    • Leng, N., Chu, L. F., Barry, C., Li, Y., Choi, J., Li, X., et al. (2015). Oscope identifies oscillatory genes in unsynchronized single-cell RNA-seq experiments. Nat. Methods 12, 947-950. doi: 10.1038/nmeth.3549
    • (2015) Nat. Methods , vol.12 , pp. 947-950
    • Leng, N.1    Chu, L.F.2    Barry, C.3    Li, Y.4    Choi, J.5    Li, X.6
  • 59
    • 84934442835 scopus 로고    scopus 로고
    • Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
    • Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., et al. (2015). Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184-197. doi: 10.1016/j.cell.2015.05.047
    • (2015) Cell , vol.162 , pp. 184-197
    • Levine, J.H.1    Simonds, E.F.2    Bendall, S.C.3    Davis, K.L.4    Amir el, A.D.5    Tadmor, M.D.6
  • 60
    • 79961123152 scopus 로고    scopus 로고
    • RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome
    • Li, B., and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12:323. doi: 10.1186/1471-2105-12-323
    • (2011) BMC Bioinformatics , vol.12 , pp. 323
    • Li, B.1    Dewey, C.N.2
  • 61
    • 68549104404 scopus 로고    scopus 로고
    • The sequence alignment/map format and SAMtools
    • Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079. doi: 10.1093/bioinformatics/btp352
    • (2009) Bioinformatics , vol.25 , pp. 2078-2079
    • Li, H.1    Handsaker, B.2    Wysoker, A.3    Fennell, T.4    Ruan, J.5    Homer, N.6
  • 62
    • 84886557480 scopus 로고    scopus 로고
    • Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-seq data
    • Li, J., and Tibshirani, R. (2013). Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-seq data. Stat. Methods Med. Res. 22, 519-536. doi: 10.1177/0962280211428386
    • (2013) Stat. Methods Med. Res , vol.22 , pp. 519-536
    • Li, J.1    Tibshirani, R.2
  • 63
    • 84897397058 scopus 로고    scopus 로고
    • featurecounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao, Y., Smyth, G. K., and Shi, W. (2013). featurecounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. doi: 10.1093/bioinformatics/btt656
    • (2013) Bioinformatics
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 64
    • 84900333051 scopus 로고    scopus 로고
    • Whole exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer
    • Lohr, J. G., Adalsteinsson, V. A., Cibulskis, K., Choudhury, A. D., Rosenberg, M., Cruz-Gordillo, P., et al. (2014). Whole exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32:479. doi: 10.1038/nbt.2892
    • (2014) Nat. Biotechnol , vol.32 , pp. 479
    • Lohr, J.G.1    Adalsteinsson, V.A.2    Cibulskis, K.3    Choudhury, A.D.4    Rosenberg, M.5    Cruz-Gordillo, P.6
  • 65
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1-21. doi: 10.1101/002832
    • (2014) Genome Biol , vol.15 , pp. 1-21
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 66
    • 84930178333 scopus 로고    scopus 로고
    • G&T-Seq: parallel sequencing of single-cell genomes and transcriptomes
    • Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J., et al. (2015). G&T-Seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12, 519-522. doi: 10.1038/nmeth.3370
    • (2015) Nat. Methods , vol.12 , pp. 519-522
    • Macaulay, I.C.1    Haerty, W.2    Kumar, P.3    Li, Y.I.4    Hu, T.X.5    Teng, M.J.6
  • 67
    • 84924365758 scopus 로고    scopus 로고
    • Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape
    • Marco, M., Karp, R. L., Guo, G., Robson, P., Hart, A. H., Trippa, L., et al. (2014). Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad. Sci. 111, E5643-E5650. doi: 10.1073/pnas.1408993111
    • (2014) Proc. Natl. Acad. Sci , vol.111 , pp. E5643-E5650
    • Marco, M.1    Karp, R.L.2    Guo, G.3    Robson, P.4    Hart, A.H.5    Trippa, L.6
  • 68
    • 80255127234 scopus 로고    scopus 로고
    • Cutadapt removes adapter sequences from high-throughput sequencing reads
    • Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17:10. doi: 10.14806/ej.17.1.200
    • (2011) EMBnet. J , vol.17 , pp. 10
    • Martin, M.1
  • 69
    • 84964786844 scopus 로고    scopus 로고
    • Dnmt3a haploinsufficiency transforms Flt3-ITD myeloproliferative disease into a rapid, spontaneous, and fully-penetrant acute myeloid leukemia
    • Meyer, S. E., Qin, T., Muench, D. E., Masuda, K., Venkatasubramanian, M., Orr, E., et al. (2016). Dnmt3a haploinsufficiency transforms Flt3-ITD myeloproliferative disease into a rapid, spontaneous, and fully-penetrant acute myeloid leukemia. Cancer Discov. 6, 501-515. doi: 10.1158/2159-8290.CD-16-0008
    • (2016) Cancer Discov , vol.6 , pp. 501-515
    • Meyer, S.E.1    Qin, T.2    Muench, D.E.3    Masuda, K.4    Venkatasubramanian, M.5    Orr, E.6
  • 70
    • 84942904757 scopus 로고    scopus 로고
    • RNA-seq of single prostate CTCs implicates noncanonical wnt signaling in antiandrogen resistance
    • Miyamoto, D. T., Zheng, Y., Wittner, B. S., Lee, R. J., Zhu, H., Broderick, K. T., et al. (2015). RNA-seq of single prostate CTCs implicates noncanonical wnt signaling in antiandrogen resistance. Science 349, 1351-1356. doi: 10.1126/science.aab0917
    • (2015) Science , vol.349 , pp. 1351-1356
    • Miyamoto, D.T.1    Zheng, Y.2    Wittner, B.S.3    Lee, R.J.4    Zhu, H.5    Broderick, K.T.6
  • 71
    • 84924353105 scopus 로고    scopus 로고
    • Decoding the regulatory network of early blood development from single-cell gene expression measurements
    • Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson, A. C., et al. (2015). Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat. Biotechnol. 33, 269-276. doi: 10.1038/nbt.3154
    • (2015) Nat. Biotechnol , vol.33 , pp. 269-276
    • Moignard, V.1    Woodhouse, S.2    Haghverdi, L.3    Lilly, A.J.4    Tanaka, Y.5    Wilkinson, A.C.6
  • 72
    • 79953766940 scopus 로고    scopus 로고
    • Tumour evolution inferred by single-cell sequencing
    • Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. Nature 472, 90-94. doi: 10.1038/nature09807
    • (2011) Nature , vol.472 , pp. 90-94
    • Navin, N.1    Kendall, J.2    Troge, J.3    Andrews, P.4    Rodgers, L.5    McIndoo, J.6
  • 73
    • 84969856092 scopus 로고    scopus 로고
    • Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
    • Ntranos, V., Kamath, G. M., Zhang, J. M., Pachter, L., and Tse, D. N. (2016). Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts. bioRxiv. 17:112. doi: 10.1186/s13059-016-0970-8
    • (2016) bioRxiv , vol.17 , pp. 112
    • Ntranos, V.1    Kamath, G.M.2    Zhang, J.M.3    Pachter, L.4    Tse, D.N.5
  • 74
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., et al. (2014). Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344, 1396-1401. doi: 10.1126/science.1254257
    • (2014) Science , vol.344 , pp. 1396-1401
    • Patel, A.P.1    Tirosh, I.2    Trombetta, J.J.3    Shalek, A.K.4    Gillespie, S.M.5    Wakimoto, H.6
  • 75
    • 84962688754 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals lineage and x chromosome dynamics in human preimplantation embryos
    • Petropoulos, S., Edsgärd, D., Reinius, B., Deng, Q., Panula, S. P, Codeluppi, S., et al. (2016). Single-cell RNA-seq reveals lineage and x chromosome dynamics in human preimplantation embryos. Cell 165, 1012-1026. doi: 10.1016/j.cell.2016.03.023
    • (2016) Cell , vol.165 , pp. 1012-1026
    • Petropoulos, S.1    Edsgärd, D.2    Reinius, B.3    Deng, Q.4    Panula, S.P.5    Codeluppi, S.6
  • 76
    • 84907587700 scopus 로고    scopus 로고
    • Identifying cell types from spatially referenced single-cell expression datasets
    • Pettit, J.-B., Tomer, R, Achim, K, Richardson, S, Azizi, L., and Marioni, J. (2014). Identifying cell types from spatially referenced single-cell expression datasets. PLoS Comput Biol 10:e1003824. doi: 10.1371/journal.pcbi.1003824
    • (2014) PLoS Comput Biol , vol.10
    • Pettit, J.-B.1    Tomer, R.2    Achim, K.3    Richardson, S.4    Azizi, L.5    Marioni, J.6
  • 77
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson, E., and Yau, C. (2015). ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 16, 1-10. doi: 10.1186/s13059-015-0805-z
    • (2015) Genome Biol , vol.16 , pp. 1-10
    • Pierson, E.1    Yau, C.2
  • 78
    • 84922321862 scopus 로고    scopus 로고
    • Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex
    • Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A, Lui, J. H., et al. (2014). Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053-1058. doi: 10.1038/nbt.2967
    • (2014) Nat. Biotechnol , vol.32 , pp. 1053-1058
    • Pollen, A.A.1    Nowakowski, T.J.2    Shuga, J.3    Wang, X.4    Leyrat, A.A.5    Lui, J.H.6
  • 79
    • 84992108405 scopus 로고    scopus 로고
    • "Dirichlet process mixture model for correcting technical variation in single-cell gene expression data."
    • (New York, NY)
    • Prabhakaran, S., Azizi, E., and Pe'er, D. (2016). "Dirichlet process mixture model for correcting technical variation in single-cell gene expression data." in Proceedings of The 33rd International Conference on Machine Learning (New York, NY), 1070-1079.
    • (2016) Proceedings of The 33rd International Conference on Machine Learning , pp. 1070-1079
    • Prabhakaran, S.1    Azizi, E.2    Pe'er, D.3
  • 80
    • 84864880991 scopus 로고    scopus 로고
    • Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells
    • Ramsköld, D., Luo, S., Wang, Y.-C., Li, R., Deng, Q., Faridani, O. R., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777-782. doi: 10.1038/nbt.2282
    • (2012) Nat. Biotechnol , vol.30 , pp. 777-782
    • Ramsköld, D.1    Luo, S.2    Wang, Y.-C.3    Li, R.4    Deng, Q.5    Faridani, O.R.6
  • 81
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M. D., McCarthy, D. J, and Smyth, G. K. (2010). edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140. doi: 10.1093/bioinformatics/btp616
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 82
    • 84946545109 scopus 로고    scopus 로고
    • Single-Cell ChIP-seq reveals cell subpopulations defined by chromatin state
    • Rotem, A., Ram, O., Shoresh, N., Sperling, R. A., Goren, A., Weitz, D. A., et al. (2015). Single-Cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165-1172. doi: 10.1038/nbt.3383
    • (2015) Nat. Biotechnol , vol.33 , pp. 1165-1172
    • Rotem, A.1    Ram, O.2    Shoresh, N.3    Sperling, R.A.4    Goren, A.5    Weitz, D.A.6
  • 83
    • 84929151009 scopus 로고    scopus 로고
    • Spatial reconstruction of single-cell gene expression data
    • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F., and Regev, A. (2015). Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502. doi: 10.1038/nbt.3192
    • (2015) Nat. Biotechnol , vol.33 , pp. 495-502
    • Satija, R.1    Farrell, J.A.2    Gennert, D.3    Schier, A.F.4    Regev, A.5
  • 84
    • 84970949920 scopus 로고    scopus 로고
    • How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use?
    • Schurch, N. J., Schofield, P., Gierlinski, M., Cole, C., Sherstnev, A., Singh, V., et al. (2016). How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22, 839-851. doi: 10.1261/rna.053959.115
    • (2016) RNA , vol.22 , pp. 839-851
    • Schurch, N.J.1    Schofield, P.2    Gierlinski, M.3    Cole, C.4    Sherstnev, A.5    Singh, V.6
  • 85
    • 84891956083 scopus 로고    scopus 로고
    • Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE)
    • Shekhar, K., Brodin, P., Davis, M. M., and Chakraborty, A. K. (2014). Automatic classification of cellular expression by nonlinear stochastic embedding (ACCENSE). Proc. Natl. Acad. Sci.U.S.A. 111, 202-207. doi: 10.1073/pnas.1321405111
    • (2014) Proc. Natl. Acad. Sci.U.S.A , vol.111 , pp. 202-207
    • Shekhar, K.1    Brodin, P.2    Davis, M.M.3    Chakraborty, A.K.4
  • 86
    • 84941010341 scopus 로고    scopus 로고
    • Single-Cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis
    • Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., et al. (2015). Single-Cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17, 360-372. doi: 10.1016/j.stem.2015.07.013
    • (2015) Cell Stem Cell , vol.17 , pp. 360-372
    • Shin, J.1    Berg, D.A.2    Zhu, Y.3    Shin, J.Y.4    Song, J.5    Bonaguidi, M.A.6
  • 87
    • 77956412152 scopus 로고    scopus 로고
    • Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis
    • Tang, F., Barbacioru, C., Bao, S., Lee, C., Nordman, E., Wang, X., et al. (2010). Tracing the derivation of embryonic stem cells from the inner cell mass by single-cell RNA-seq analysis. Cell Stem Cell 6, 468-478. doi: 10.1016/j.stem.2010.03.015
    • (2010) Cell Stem Cell , vol.6 , pp. 468-478
    • Tang, F.1    Barbacioru, C.2    Bao, S.3    Lee, C.4    Nordman, E.5    Wang, X.6
  • 88
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J. B., De Silva, V., and Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323. doi: 10.1126/science.290.5500.2319
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 89
    • 84907414338 scopus 로고    scopus 로고
    • Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells
    • Ting, D. T., Wittner, B. S., Ligorio, M., Jordan, N. V, Shah, A. M., Miyamoto, D. T., et al. (2014). Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell Rep. 8, 1905-1918. doi: 10.1016/j.celrep.2014.08.029
    • (2014) Cell Rep , vol.8 , pp. 1905-1918
    • Ting, D.T.1    Wittner, B.S.2    Ligorio, M.3    Jordan, N.V.4    Shah, A.M.5    Miyamoto, D.T.6
  • 90
    • 84963614956 scopus 로고    scopus 로고
    • Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq
    • Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., Treacy, D., Trombetta, J. J., et al. (2016). Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science 352, 189-196. doi: 10.1126/science.aad0501
    • (2016) Science , vol.352 , pp. 189-196
    • Tirosh, I.1    Izar, B.2    Prakadan, S.M.3    Wadsworth, M.H.4    Treacy, D.5    Trombetta, J.J.6
  • 91
    • 84900873950 scopus 로고    scopus 로고
    • Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions
    • Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., et al. (2014). Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions. Nat. Biotechnol. 32, 381. doi: 10.1038/nbt.2859
    • (2014) Nat. Biotechnol , vol.32 , pp. 381
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 92
    • 65449136284 scopus 로고    scopus 로고
    • TopHat: discovering splice junctions with RNA-seq
    • Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-seq. Bioinformatics 25, 1105-1111. doi: 10.1093/bioinformatics/btp120
    • (2009) Bioinformatics , vol.25 , pp. 1105-1111
    • Trapnell, C.1    Pachter, L.2    Salzberg, S.L.3
  • 93
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., et al. (2010). Transcript assembly and quantification by RNA-seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515. doi: 10.1038/nbt.1621
    • (2010) Nat. Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3    Mortazavi, A.4    Kwan, G.5    Van Baren, M.J.6
  • 94
    • 84951287682 scopus 로고    scopus 로고
    • Non-coding yet non-trivial: a review on the computational genomics of lincRNAs
    • Travers, C., Masaki, J., Weirather, J., Garmire, L. X., Ching, T., Masaki, J., et al. (2015). Non-coding yet non-trivial: a review on the computational genomics of lincRNAs. BioData Min. 8:44. doi: 10.1186/s13040-015-0075-z
    • (2015) BioData Min , vol.8 , pp. 44
    • Travers, C.1    Masaki, J.2    Weirather, J.3    Garmire, L.X.4    Ching, T.5    Masaki, J.6
  • 95
    • 84900529199 scopus 로고    scopus 로고
    • Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    • Treutlein, B., Brownfield, D. G., Wu, A. R., Neff, N. F., Mantalas, G. L., Espinoza, F. H., et al. (2014). Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371-375. doi: 10.1038/nature13173
    • (2014) Nature , vol.509 , pp. 371-375
    • Treutlein, B.1    Brownfield, D.G.2    Wu, A.R.3    Neff, N.F.4    Mantalas, G.L.5    Espinoza, F.H.6
  • 96
    • 19544387813 scopus 로고    scopus 로고
    • Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices
    • Tsafrir, D., Tsafrir, I., Ein-Dor, L., Zuk, O., Notterman, D. A., and Domany, E. (2005). Sorting points into neighborhoods (SPIN): data analysis and visualization by ordering distance matrices. Bioinformatics 21, 2301-2308. doi: 10.1093/bioinformatics/bti329
    • (2005) Bioinformatics , vol.21 , pp. 2301-2308
    • Tsafrir, D.1    Tsafrir, I.2    Ein-Dor, L.3    Zuk, O.4    Notterman, D.A.5    Domany, E.6
  • 97
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos, C. A., Marioni, J. C., and Richardson, S. (2015). BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput. Biol. 11:e1004333. doi: 10.1371/journal.pcbi.1004333
    • (2015) PLoS Comput. Biol , vol.11
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 98
    • 84984845042 scopus 로고    scopus 로고
    • Beta-poisson model for single-cell RNA-seq data analyses
    • Vu, T. N., Wills, Q. F., Kalari, K. R., Niu, N., Wang, L., Rantalainen, M., et al. (2016). Beta-poisson model for single-cell RNA-seq data analyses. Bioinformatics 32, 2128-2135. doi: 10.1093/bioinformatics/btw202
    • (2016) Bioinformatics , vol.32 , pp. 2128-2135
    • Vu, T.N.1    Wills, Q.F.2    Kalari, K.R.3    Niu, N.4    Wang, L.5    Rantalainen, M.6
  • 99
    • 85029436397 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
    • Wang, B., Zhu, J., Pierson, E., and Batzoglou, S. (2016). Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. bioRxiv. 52225. doi: 10.1101/052225
    • (2016) bioRxiv 52225
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Batzoglou, S.4
  • 100
    • 84869109105 scopus 로고    scopus 로고
    • Multiple graph regularized protein domain ranking
    • Wang, J.-Y., Bensmail, H., and Gao, X. (2012). Multiple graph regularized protein domain ranking. BMC Bioinformatics 13:307. doi: 10.1186/1471-2105-13-307
    • (2012) BMC Bioinformatics , vol.13 , pp. 307
    • Wang, J.-Y.1    Bensmail, H.2    Gao, X.3
  • 101
    • 78649345104 scopus 로고    scopus 로고
    • MapSplice: accurate mapping of RNA-seq reads for splice junction discovery
    • Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., et al. (2010). MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38:e178. doi: 10.1093/nar/gkq622
    • (2010) Nucleic Acids Res , vol.38
    • Wang, K.1    Singh, D.2    Zeng, Z.3    Coleman, S.J.4    Huang, Y.5    Savich, G.L.6
  • 102
    • 84969505817 scopus 로고    scopus 로고
    • SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
    • Welch, J. D., Hartemink, A. J., and Prins, J. F. (2016). SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol. 17:106. doi: 10.1186/s13059-016-0975-3
    • (2016) Genome Biol , vol.17 , pp. 106
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 103
    • 84961618446 scopus 로고    scopus 로고
    • GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality
    • Wu, T. D., Reeder, J., Lawrence, M., Becker, G., and Brauer, M. J. (2016). GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality. Stat. Genomics Methods Protoc. 1418, 283-334. doi: 10.1007/978-1-4939-3578-9_15
    • (2016) Stat. Genomics Methods Protoc , vol.1418 , pp. 283-334
    • Wu, T.D.1    Reeder, J.2    Lawrence, M.3    Becker, G.4    Brauer, M.J.5
  • 104
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu, C., and Su, Z. (2015). Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31, 1974-1980. doi: 10.1093/bioinformatics/btv088
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 105
    • 84883743509 scopus 로고    scopus 로고
    • Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells
    • Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., et al. (2013). Single-cell RNA-seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20, 1131-1139. doi: 10.1038/nsmb.2660
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 1131-1139
    • Yan, L.1    Yang, M.2    Guo, H.3    Yang, L.4    Wu, J.5    Li, R.6
  • 106
    • 84873041419 scopus 로고    scopus 로고
    • HTQC: a fast quality control toolkit for illumina sequencing data
    • Yang, X., Liu, D., Liu, F., Wu, J., Zou, J., Xiao, X., et al. (2013). HTQC: a fast quality control toolkit for illumina sequencing data. BMC Bioinformatics 14:33. doi: 10.1186/1471-2105-14-33
    • (2013) BMC Bioinformatics , vol.14 , pp. 33
    • Yang, X.1    Liu, D.2    Liu, F.3    Wu, J.4    Zou, J.5    Xiao, X.6
  • 107
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A., Muñoz-Manchado, A. B., Codeluppi, S., Lönnerberg, P., Manno, G. L., Juréus, A., et al. (2015). Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138-1142. doi: 10.1126/science.aaa1934
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3    Lönnerberg, P.4    Manno, G.L.5    Juréus, A.6
  • 108
    • 84863054719 scopus 로고    scopus 로고
    • BIGpre: a quality assessment package for next-generation sequencing data
    • Zhang, T., Luo, Y., Liu, K., Pan, L., Zhang, B., Yu, J., et al. (2011). BIGpre: a quality assessment package for next-generation sequencing data. Genomics, Proteomics Bioinformatics 9, 238-244. doi: 10.1016/S1672-0229(11)60027-2
    • (2011) Genomics, Proteomics Bioinformatics , vol.9 , pp. 238-244
    • Zhang, T.1    Luo, Y.2    Liu, K.3    Pan, L.4    Zhang, B.5    Yu, J.6
  • 109
    • 84960877099 scopus 로고    scopus 로고
    • Constructing 3D interaction maps from 1D epigenomes
    • Zhu, Z., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J. W., et al. (2016). Constructing 3D interaction maps from 1D epigenomes. Nat. Commun. 7:10812. doi: 10.1038/ncomms10812
    • (2016) Nat. Commun , vol.7 , pp. 10812
    • Zhu, Z.1    Chen, Z.2    Zhang, K.3    Wang, M.4    Medovoy, D.5    Whitaker, J.W.6
  • 110
    • 84977499231 scopus 로고    scopus 로고
    • pcaReduce: hierarchical clustering of single cell transcriptional profiles
    • Zurauskiene, J., and Yau, C. (2015). pcaReduce: hierarchical clustering of single cell transcriptional profiles. bioRxiv. 26385. doi: 10.1186/s12859-016-0984-y
    • (2015) bioRxiv 26385
    • Zurauskiene, J.1    Yau, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.