메뉴 건너뛰기




Volumn 33, Issue 8, 2017, Pages 1179-1186

Scater: Pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R

Author keywords

[No Author keywords available]

Indexed keywords

RNA;

EID: 85019072518     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btw777     Document Type: Article
Times cited : (1029)

References (54)
  • 1
    • 84880280631 scopus 로고    scopus 로고
    • ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
    • Amir, E.A.D. et al. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545-552.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 545-552
    • Amir, E.A.D.1
  • 2
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 3
    • 84928987900 scopus 로고    scopus 로고
    • HTSeq - A Python framework to work with highthroughput sequencing data
    • Anders, S. et al. (2015) HTSeq-a Python framework to work with highthroughput sequencing data. Bioinformatics, 31, 166-169.
    • (2015) Bioinformatics , vol.31 , pp. 166-169
    • Anders, S.1
  • 4
    • 84966667709 scopus 로고    scopus 로고
    • Destiny: Diffusion maps for large-scale single-cell data in R
    • Angerer, P. et al. (2015) destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics, 32, 1241-1243.
    • (2015) Bioinformatics , vol.32 , pp. 1241-1243
    • Angerer, P.1
  • 5
    • 84899574465 scopus 로고    scopus 로고
    • Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
    • Bendall, S.C. et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157, 714-725.
    • (2014) Cell , vol.157 , pp. 714-725
    • Bendall, S.C.1
  • 6
    • 84966283954 scopus 로고    scopus 로고
    • Near-optimal probabilistic RNA-seq quantification
    • Bray, N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol., 34, 525-527.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 525-527
    • Bray, N.L.1
  • 7
    • 84887109584 scopus 로고    scopus 로고
    • Accounting for technical noise in single-cell RNAseq experiments
    • Brennecke, P. et al. (2013) Accounting for technical noise in single-cell RNAseq experiments. Nat. Methods, 10, 1093-1095.
    • (2013) Nat. Methods , vol.10 , pp. 1093-1095
    • Brennecke, P.1
  • 8
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner, F. et al. (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155-160.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 155-160
    • Buettner, F.1
  • 9
    • 84874446279 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard, J.H. et al. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 247, 1-62.
    • (2010) BMC Bioinformatics , vol.247 , pp. 1-62
    • Bullard, J.H.1
  • 11
    • 84929624387 scopus 로고    scopus 로고
    • CellCODE: A robust latent variable approach to differential expression analysis for heterogeneous cell populations
    • Chikina, M. et al. (2015) CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics, 31, 1584-1591.
    • (2015) Bioinformatics , vol.31 , pp. 1584-1591
    • Chikina, M.1
  • 12
    • 84936803955 scopus 로고    scopus 로고
    • Normalization and noise reduction for single cell RNAseq experiments
    • Ding, B. et al. (2015) Normalization and noise reduction for single cell RNAseq experiments. Bioinformatics, 31, 2225-2227.
    • (2015) Bioinformatics , vol.31 , pp. 2225-2227
    • Ding, B.1
  • 13
    • 84959189722 scopus 로고    scopus 로고
    • Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
    • Fan, J. et al. (2016) Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods, 13, 241-244.
    • (2016) Nat. Methods , vol.13 , pp. 241-244
    • Fan, J.1
  • 14
    • 35548978494 scopus 로고    scopus 로고
    • Outlier identification in high dimensions
    • Filzmoser, P. et al. (2008) Outlier identification in high dimensions. Comput. Stat. Data Anal., 52, 1694-1711.
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 1694-1711
    • Filzmoser, P.1
  • 15
    • 84951574149 scopus 로고    scopus 로고
    • MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak, G. et al. (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol., 16, 278.
    • (2015) Genome Biol. , vol.16 , pp. 278
    • Finak, G.1
  • 16
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grün, D. and van Oudenaarden, A. (2015) Design and analysis of single-cell sequencing experiments. Cell, 163, 799-810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grün, D.1    Van Oudenaarden, A.2
  • 17
    • 84941201582 scopus 로고    scopus 로고
    • Single-cell messenger RNA sequencing reveals rare intestinal cell types
    • Grün, D. et al. (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature, 525, 251-255.
    • (2015) Nature , vol.525 , pp. 251-255
    • Grün, D.1
  • 18
    • 84949293695 scopus 로고    scopus 로고
    • SINCERA: A pipeline for single-cell RNA-Seq profiling analysis
    • Guo, M. et al. (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput. Biol., 11, e1004575.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004575
    • Guo, M.1
  • 19
    • 84941753288 scopus 로고    scopus 로고
    • Diffusion maps for high-dimensional single-cell analysis of differentiation data
    • Haghverdi, L. et al. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989-2998.
    • (2015) Bioinformatics , vol.31 , pp. 2989-2998
    • Haghverdi, L.1
  • 20
    • 79956195991 scopus 로고    scopus 로고
    • Analysis and simulation of gene expression profiles in pure and mixed cell populations
    • Hebenstreit, D. and Teichmann, S.A. (2011) Analysis and simulation of gene expression profiles in pure and mixed cell populations. Phys. Biol., 8, 035013.
    • (2011) Phys. Biol. , vol.8 , pp. 035013
    • Hebenstreit, D.1    Teichmann, S.A.2
  • 22
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • Huber, W. et al. (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods, 12, 115-121.
    • (2015) Nat. Methods , vol.12 , pp. 115-121
    • Huber, W.1
  • 23
    • 84958058589 scopus 로고    scopus 로고
    • Classification of low quality cells from single-cell RNAseq data
    • Ilicic, T. et al. (2016) Classification of low quality cells from single-cell RNAseq data. Genome Biol., 17, 29.
    • (2016) Genome Biol. , vol.17 , pp. 29
    • Ilicic, T.1
  • 24
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: An R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
    • Juliá, M. et al. (2015) Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics, 31, 3380-3382.
    • (2015) Bioinformatics , vol.31 , pp. 3380-3382
    • Juliá, M.1
  • 25
    • 84937691256 scopus 로고    scopus 로고
    • Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
    • Kanitz, A. et al. (2015) Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol., 16, 150.
    • (2015) Genome Biol. , vol.16 , pp. 150
    • Kanitz, A.1
  • 26
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko, P.V. et al. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740-742.
    • (2014) Nat. Methods , vol.11 , pp. 740-742
    • Kharchenko, P.V.1
  • 27
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim, D. et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36.
    • (2013) Genome Biol. , vol.14 , pp. R36
    • Kim, D.1
  • 28
    • 84944901262 scopus 로고    scopus 로고
    • Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
    • Kim, J.K. et al. (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun., 6, 8687.
    • (2015) Nat. Commun. , vol.6 , pp. 8687
    • Kim, J.K.1
  • 30
    • 84859210032 scopus 로고    scopus 로고
    • Fast gapped-read alignment with Bowtie 2
    • Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359.
    • (2012) Nat. Methods , vol.9 , pp. 357-359
    • Langmead, B.1    Salzberg, S.L.2
  • 31
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J.T. (2014) svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res., 42, e161.
    • (2014) Nucleic Acids Res. , vol.42 , pp. e161
    • Leek, J.T.1
  • 32
    • 34848914038 scopus 로고    scopus 로고
    • Capturing heterogeneity in gene expression studies by surrogate variable analysis
    • Leek, J.T. and Storey, J.D. (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet., 3, 1724-1735.
    • (2007) PLoS Genet. , vol.3 , pp. 1724-1735
    • Leek, J.T.1    Storey, J.D.2
  • 33
    • 77956873627 scopus 로고    scopus 로고
    • Tackling the widespread and critical impact of batch effects in high-throughput data
    • Leek, J.T. et al. (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 11, 733-739.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 733-739
    • Leek, J.T.1
  • 34
    • 84897397058 scopus 로고    scopus 로고
    • FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features
    • Liao, Y. et al. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930.
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1
  • 35
    • 85010931059 scopus 로고    scopus 로고
    • A step-by-step workflow for low-level analysis of single-cell RNA-seq data
    • Lun, A.T.L. et al. (2016a) A step-by-step workflow for low-level analysis of single-cell RNA-seq data. F1000Research, 5, 2122.
    • (2016) F1000Research , vol.5 , pp. 2122
    • Lun, A.T.L.1
  • 36
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun, A.T.L. et al. (2016b) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol., 17, 75.
    • (2016) Genome Biol. , vol.17 , pp. 75
    • Lun, A.T.L.1
  • 37
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko, E.Z. et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202-1214.
    • (2015) Cell , vol.161 , pp. 1202-1214
    • Macosko, E.Z.1
  • 39
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D. et al. (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol., 32, 896-902.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 896-902
    • Risso, D.1
  • 40
    • 84926507971 scopus 로고    scopus 로고
    • Limma powers differential expression analyses for RNA-sequencing and microarray studies
    • Ritchie, M.E. et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
    • (2015) Nucleic Acids Res. , vol.43 , pp. e47
    • Ritchie, M.E.1
  • 41
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
    • (2010) Genome Biol. , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 42
    • 75249087100 scopus 로고    scopus 로고
    • EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson, M.D. et al. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 43
    • 84939772971 scopus 로고    scopus 로고
    • Computational assignment of cell-cycle stage from single-cell transcriptome data
    • Scialdone, A. et al. (2015) Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61.
    • (2015) Methods , vol.85 , pp. 54-61
    • Scialdone, A.1
  • 44
    • 84978761773 scopus 로고    scopus 로고
    • Resolving early mesoderm diversification through single-cell expression profiling
    • Scialdone, A. et al. (2016) Resolving early mesoderm diversification through single-cell expression profiling. Nature, 535, 289-293.
    • (2016) Nature , vol.535 , pp. 289-293
    • Scialdone, A.1
  • 45
    • 84878997106 scopus 로고    scopus 로고
    • Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    • Shalek, A.K. et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236-240.
    • (2013) Nature , vol.498 , pp. 236-240
    • Shalek, A.K.1
  • 46
    • 84861734626 scopus 로고    scopus 로고
    • Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
    • Stegle, O. et al. (2012) Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc., 7, 500-507.
    • (2012) Nat. Protoc. , vol.7 , pp. 500-507
    • Stegle, O.1
  • 47
    • 84989332129 scopus 로고    scopus 로고
    • A benchmark for RNA-seq quantification pipelines
    • Teng, M. et al. (2016) A benchmark for RNA-seq quantification pipelines. Genome Biol., 17, 74.
    • (2016) Genome Biol. , vol.17 , pp. 74
    • Teng, M.1
  • 48
    • 84872198346 scopus 로고    scopus 로고
    • Differential analysis of gene regulation at transcript resolution with RNA-seq
    • Trapnell, C. et al. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46-53.
    • (2013) Nat. Biotechnol. , vol.31 , pp. 46-53
    • Trapnell, C.1
  • 49
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell, C. et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32, 381-386.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 381-386
    • Trapnell, C.1
  • 50
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos, C.A. et al. (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Computat. Biol., 11, e1004333.
    • (2015) PLoS Computat. Biol. , vol.11 , pp. e1004333
    • Vallejos, C.A.1
  • 51
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
    • Vallejos, C.A. et al. (2016) Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol., 17, 70.
    • (2016) Genome Biol. , vol.17 , pp. 70
    • Vallejos, C.A.1
  • 53
    • 84976870685 scopus 로고    scopus 로고
    • Ensembl 2016
    • Yates, A. et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710-D716.
    • (2016) Nucleic Acids Res. , vol.44 , pp. D710-D716
    • Yates, A.1
  • 54
    • 84924565530 scopus 로고    scopus 로고
    • Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel, A. et al. (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347, 1138-1142.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.