-
1
-
-
84880280631
-
ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir, E.A.D. et al. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol., 31, 545-552.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 545-552
-
-
Amir, E.A.D.1
-
2
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
-
(2010)
Genome Biol.
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
3
-
-
84928987900
-
HTSeq - A Python framework to work with highthroughput sequencing data
-
Anders, S. et al. (2015) HTSeq-a Python framework to work with highthroughput sequencing data. Bioinformatics, 31, 166-169.
-
(2015)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
-
4
-
-
84966667709
-
Destiny: Diffusion maps for large-scale single-cell data in R
-
Angerer, P. et al. (2015) destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics, 32, 1241-1243.
-
(2015)
Bioinformatics
, vol.32
, pp. 1241-1243
-
-
Angerer, P.1
-
5
-
-
84899574465
-
Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development
-
Bendall, S.C. et al. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell, 157, 714-725.
-
(2014)
Cell
, vol.157
, pp. 714-725
-
-
Bendall, S.C.1
-
6
-
-
84966283954
-
Near-optimal probabilistic RNA-seq quantification
-
Bray, N.L. et al. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol., 34, 525-527.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 525-527
-
-
Bray, N.L.1
-
7
-
-
84887109584
-
Accounting for technical noise in single-cell RNAseq experiments
-
Brennecke, P. et al. (2013) Accounting for technical noise in single-cell RNAseq experiments. Nat. Methods, 10, 1093-1095.
-
(2013)
Nat. Methods
, vol.10
, pp. 1093-1095
-
-
Brennecke, P.1
-
8
-
-
84923292191
-
Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
-
Buettner, F. et al. (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155-160.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 155-160
-
-
Buettner, F.1
-
9
-
-
84874446279
-
Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
-
Bullard, J.H. et al. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 247, 1-62.
-
(2010)
BMC Bioinformatics
, vol.247
, pp. 1-62
-
-
Bullard, J.H.1
-
11
-
-
84929624387
-
CellCODE: A robust latent variable approach to differential expression analysis for heterogeneous cell populations
-
Chikina, M. et al. (2015) CellCODE: a robust latent variable approach to differential expression analysis for heterogeneous cell populations. Bioinformatics, 31, 1584-1591.
-
(2015)
Bioinformatics
, vol.31
, pp. 1584-1591
-
-
Chikina, M.1
-
12
-
-
84936803955
-
Normalization and noise reduction for single cell RNAseq experiments
-
Ding, B. et al. (2015) Normalization and noise reduction for single cell RNAseq experiments. Bioinformatics, 31, 2225-2227.
-
(2015)
Bioinformatics
, vol.31
, pp. 2225-2227
-
-
Ding, B.1
-
13
-
-
84959189722
-
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis
-
Fan, J. et al. (2016) Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods, 13, 241-244.
-
(2016)
Nat. Methods
, vol.13
, pp. 241-244
-
-
Fan, J.1
-
14
-
-
35548978494
-
Outlier identification in high dimensions
-
Filzmoser, P. et al. (2008) Outlier identification in high dimensions. Comput. Stat. Data Anal., 52, 1694-1711.
-
(2008)
Comput. Stat. Data Anal.
, vol.52
, pp. 1694-1711
-
-
Filzmoser, P.1
-
15
-
-
84951574149
-
MAST: A flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak, G. et al. (2015) MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol., 16, 278.
-
(2015)
Genome Biol.
, vol.16
, pp. 278
-
-
Finak, G.1
-
16
-
-
84946226911
-
Design and analysis of single-cell sequencing experiments
-
Grün, D. and van Oudenaarden, A. (2015) Design and analysis of single-cell sequencing experiments. Cell, 163, 799-810.
-
(2015)
Cell
, vol.163
, pp. 799-810
-
-
Grün, D.1
Van Oudenaarden, A.2
-
17
-
-
84941201582
-
Single-cell messenger RNA sequencing reveals rare intestinal cell types
-
Grün, D. et al. (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature, 525, 251-255.
-
(2015)
Nature
, vol.525
, pp. 251-255
-
-
Grün, D.1
-
18
-
-
84949293695
-
SINCERA: A pipeline for single-cell RNA-Seq profiling analysis
-
Guo, M. et al. (2015) SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLoS Comput. Biol., 11, e1004575.
-
(2015)
PLoS Comput. Biol.
, vol.11
, pp. e1004575
-
-
Guo, M.1
-
19
-
-
84941753288
-
Diffusion maps for high-dimensional single-cell analysis of differentiation data
-
Haghverdi, L. et al. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics, 31, 2989-2998.
-
(2015)
Bioinformatics
, vol.31
, pp. 2989-2998
-
-
Haghverdi, L.1
-
20
-
-
79956195991
-
Analysis and simulation of gene expression profiles in pure and mixed cell populations
-
Hebenstreit, D. and Teichmann, S.A. (2011) Analysis and simulation of gene expression profiles in pure and mixed cell populations. Phys. Biol., 8, 035013.
-
(2011)
Phys. Biol.
, vol.8
, pp. 035013
-
-
Hebenstreit, D.1
Teichmann, S.A.2
-
22
-
-
84961289551
-
Orchestrating high-throughput genomic analysis with Bioconductor
-
Huber, W. et al. (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods, 12, 115-121.
-
(2015)
Nat. Methods
, vol.12
, pp. 115-121
-
-
Huber, W.1
-
23
-
-
84958058589
-
Classification of low quality cells from single-cell RNAseq data
-
Ilicic, T. et al. (2016) Classification of low quality cells from single-cell RNAseq data. Genome Biol., 17, 29.
-
(2016)
Genome Biol.
, vol.17
, pp. 29
-
-
Ilicic, T.1
-
24
-
-
84947805126
-
Sincell: An R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
-
Juliá, M. et al. (2015) Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics, 31, 3380-3382.
-
(2015)
Bioinformatics
, vol.31
, pp. 3380-3382
-
-
Juliá, M.1
-
25
-
-
84937691256
-
Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data
-
Kanitz, A. et al. (2015) Comparative assessment of methods for the computational inference of transcript isoform abundance from RNA-seq data. Genome Biol., 16, 150.
-
(2015)
Genome Biol.
, vol.16
, pp. 150
-
-
Kanitz, A.1
-
26
-
-
84903574951
-
Bayesian approach to single-cell differential expression analysis
-
Kharchenko, P.V. et al. (2014) Bayesian approach to single-cell differential expression analysis. Nat. Methods, 11, 740-742.
-
(2014)
Nat. Methods
, vol.11
, pp. 740-742
-
-
Kharchenko, P.V.1
-
27
-
-
84876996918
-
TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim, D. et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36.
-
(2013)
Genome Biol.
, vol.14
, pp. R36
-
-
Kim, D.1
-
28
-
-
84944901262
-
Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression
-
Kim, J.K. et al. (2015) Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression. Nat. Commun., 6, 8687.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8687
-
-
Kim, J.K.1
-
30
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359.
-
(2012)
Nat. Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
31
-
-
84925226706
-
Svaseq: Removing batch effects and other unwanted noise from sequencing data
-
Leek, J.T. (2014) svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res., 42, e161.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. e161
-
-
Leek, J.T.1
-
32
-
-
34848914038
-
Capturing heterogeneity in gene expression studies by surrogate variable analysis
-
Leek, J.T. and Storey, J.D. (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet., 3, 1724-1735.
-
(2007)
PLoS Genet.
, vol.3
, pp. 1724-1735
-
-
Leek, J.T.1
Storey, J.D.2
-
33
-
-
77956873627
-
Tackling the widespread and critical impact of batch effects in high-throughput data
-
Leek, J.T. et al. (2010) Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet., 11, 733-739.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 733-739
-
-
Leek, J.T.1
-
34
-
-
84897397058
-
FeatureCounts: An efficient general purpose program for assigning sequence reads to genomic features
-
Liao, Y. et al. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930.
-
(2014)
Bioinformatics
, vol.30
, pp. 923-930
-
-
Liao, Y.1
-
35
-
-
85010931059
-
A step-by-step workflow for low-level analysis of single-cell RNA-seq data
-
Lun, A.T.L. et al. (2016a) A step-by-step workflow for low-level analysis of single-cell RNA-seq data. F1000Research, 5, 2122.
-
(2016)
F1000Research
, vol.5
, pp. 2122
-
-
Lun, A.T.L.1
-
36
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun, A.T.L. et al. (2016b) Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol., 17, 75.
-
(2016)
Genome Biol.
, vol.17
, pp. 75
-
-
Lun, A.T.L.1
-
37
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
Macosko, E.Z. et al. (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202-1214.
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
39
-
-
84909644283
-
Normalization of RNA-seq data using factor analysis of control genes or samples
-
Risso, D. et al. (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol., 32, 896-902.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 896-902
-
-
Risso, D.1
-
40
-
-
84926507971
-
Limma powers differential expression analyses for RNA-sequencing and microarray studies
-
Ritchie, M.E. et al. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. e47
-
-
Ritchie, M.E.1
-
41
-
-
77953176036
-
A scaling normalization method for differential expression analysis of RNA-seq data
-
Robinson, M.D. and Oshlack, A. (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol., 11, R25.
-
(2010)
Genome Biol.
, vol.11
, pp. R25
-
-
Robinson, M.D.1
Oshlack, A.2
-
42
-
-
75249087100
-
EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson, M.D. et al. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
-
43
-
-
84939772971
-
Computational assignment of cell-cycle stage from single-cell transcriptome data
-
Scialdone, A. et al. (2015) Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods, 85, 54-61.
-
(2015)
Methods
, vol.85
, pp. 54-61
-
-
Scialdone, A.1
-
44
-
-
84978761773
-
Resolving early mesoderm diversification through single-cell expression profiling
-
Scialdone, A. et al. (2016) Resolving early mesoderm diversification through single-cell expression profiling. Nature, 535, 289-293.
-
(2016)
Nature
, vol.535
, pp. 289-293
-
-
Scialdone, A.1
-
45
-
-
84878997106
-
Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
-
Shalek, A.K. et al. (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236-240.
-
(2013)
Nature
, vol.498
, pp. 236-240
-
-
Shalek, A.K.1
-
46
-
-
84861734626
-
Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
-
Stegle, O. et al. (2012) Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc., 7, 500-507.
-
(2012)
Nat. Protoc.
, vol.7
, pp. 500-507
-
-
Stegle, O.1
-
47
-
-
84989332129
-
A benchmark for RNA-seq quantification pipelines
-
Teng, M. et al. (2016) A benchmark for RNA-seq quantification pipelines. Genome Biol., 17, 74.
-
(2016)
Genome Biol.
, vol.17
, pp. 74
-
-
Teng, M.1
-
48
-
-
84872198346
-
Differential analysis of gene regulation at transcript resolution with RNA-seq
-
Trapnell, C. et al. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46-53.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 46-53
-
-
Trapnell, C.1
-
49
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell, C. et al. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 32, 381-386.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
-
50
-
-
84953226880
-
BASiCS: Bayesian analysis of single-cell sequencing data
-
Vallejos, C.A. et al. (2015) BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Computat. Biol., 11, e1004333.
-
(2015)
PLoS Computat. Biol.
, vol.11
, pp. e1004333
-
-
Vallejos, C.A.1
-
51
-
-
84962861088
-
Beyond comparisons of means: Understanding changes in gene expression at the single-cell level
-
Vallejos, C.A. et al. (2016) Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol., 17, 70.
-
(2016)
Genome Biol.
, vol.17
, pp. 70
-
-
Vallejos, C.A.1
-
53
-
-
84976870685
-
Ensembl 2016
-
Yates, A. et al. (2016) Ensembl 2016. Nucleic Acids Res., 44, D710-D716.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. D710-D716
-
-
Yates, A.1
-
54
-
-
84924565530
-
Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel, A. et al. (2015) Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347, 1138-1142.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
|