-
1
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell (2010) 40:280-93. doi:10.1016/j.molcel.2010.09.023
-
(2010)
Mol Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
Mariño, G.2
Levine, B.3
-
2
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell (2008) 132:27-42. doi:10.1016/j.cell.2007.12.018
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
3
-
-
84905405893
-
Getting ready for building: signaling and autophagosome biogenesis
-
Abada A, Elazar Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep (2014) 15:839-52. doi:10.15252/embr.201439076
-
(2014)
EMBO Rep
, vol.15
, pp. 839-852
-
-
Abada, A.1
Elazar, Z.2
-
4
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet (2009) 43:67-93. doi:10.1146/annurev-genet-102808-114910
-
(2009)
Annu Rev Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
5
-
-
34250864795
-
Protein turnover via autophagy: implications for metabolism
-
Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr (2007) 27:19-40. doi:10.1146/annurev.nutr.27.061406.093749
-
(2007)
Annu Rev Nutr
, vol.27
, pp. 19-40
-
-
Mizushima, N.1
Klionsky, D.J.2
-
6
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy (2012) 8:445-544. doi:10.4161/auto.19496
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
-
7
-
-
1342321743
-
Two ubiquitin-like conjugation systems essential for autophagy
-
Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol (2004) 15:231-6. doi:10.1016/j.semcdb.2003.12.004
-
(2004)
Semin Cell Dev Biol
, vol.15
, pp. 231-236
-
-
Ohsumi, Y.1
Mizushima, N.2
-
8
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy (2011) 7:279-96. doi:10.4161/auto.7.3.14487
-
(2011)
Autophagy
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
10
-
-
84926145894
-
AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation
-
Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol (2015) 17:20-30. doi:10.1038/ncb3072
-
(2015)
Nat Cell Biol
, vol.17
, pp. 20-30
-
-
Cianfanelli, V.1
Fuoco, C.2
Lorente, M.3
Salazar, M.4
Quondamatteo, F.5
Gherardini, P.F.6
-
11
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by Beclin 1
-
Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature (1999) 402:672-6. doi:10.1038/45257
-
(1999)
Nature
, vol.402
, pp. 672-676
-
-
Liang, X.H.1
Jackson, S.2
Seaman, M.3
Brown, K.4
Kempkes, B.5
Hibshoosh, H.6
-
12
-
-
33745751085
-
Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG
-
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B-H, et al. Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nat Cell Biol (2006) 8:688-99. doi:10.1038/ncb1426
-
(2006)
Nat Cell Biol
, vol.8
, pp. 688-699
-
-
Liang, C.1
Feng, P.2
Ku, B.3
Dotan, I.4
Canaani, D.5
Oh, B.-H.6
-
13
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene
-
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest (2003) 112:1809-20. doi:10.1172/JCI200320039
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
-
14
-
-
34848899280
-
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol (2007) 9:1142-51. doi:10.1038/ncb1634
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.D.4
Sun, M.5
Sato, Y.6
-
15
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev (2011) 25:795-800. doi:10.1101/gad.2016211
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
-
16
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A (2003) 100:15077-82. doi:10.1073/pnas.2436255100
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
17
-
-
34249863298
-
Chromosomal instability autophagy suppresses tumor progression by limiting chromosomal instability
-
Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, et al. Chromosomal instability autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev (2007) 21:1367-81. doi:10.1101/gad.1545107
-
(2007)
Genes Dev
, vol.21
, pp. 1367-1381
-
-
Mathew, R.1
Kongara, S.2
Beaudoin, B.3
Karp, C.M.4
Bray, K.5
Degenhardt, K.6
-
18
-
-
84926252071
-
Autophagy in malignant transformation and cancer progression
-
Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F, et al. Autophagy in malignant transformation and cancer progression. EMBO J (2015) 34:856-80. doi:10.15252/embj.201490784
-
(2015)
EMBO J
, vol.34
, pp. 856-880
-
-
Galluzzi, L.1
Pietrocola, F.2
Bravo-San Pedro, J.M.3
Amaravadi, R.K.4
Baehrecke, E.H.5
Cecconi, F.6
-
19
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer (2012) 12:401-10. doi:10.1038/nrc3262
-
(2012)
Nat Rev Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
20
-
-
84864828634
-
Autophagy and cell growth-the yin and yang of nutrient responses
-
Neufeld TP. Autophagy and cell growth-the yin and yang of nutrient responses. J Cell Sci (2012) 125:2359-68. doi:10.1242/jcs.103333
-
(2012)
J Cell Sci
, vol.125
, pp. 2359-2368
-
-
Neufeld, T.P.1
-
21
-
-
84876488191
-
mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
-
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol (2013) 15:406-16. doi:10.1038/ncb2708
-
(2013)
Nat Cell Biol
, vol.15
, pp. 406-416
-
-
Nazio, F.1
Strappazzon, F.2
Antonioli, M.3
Bielli, P.4
Cianfanelli, V.5
Bordi, M.6
-
22
-
-
10344222155
-
How cells coordinate growth and division
-
Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol (2004) 14:1014-27. doi:10.1016/j.cub.2004.11.027
-
(2004)
Curr Biol
, vol.14
, pp. 1014-1027
-
-
Jorgensen, P.1
Tyers, M.2
-
23
-
-
60749109846
-
Cell cycle, CDKs and cancer: a changing paradigm
-
Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer (2009) 9:153-66. doi:10.1038/nrc2602
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 153-166
-
-
Malumbres, M.1
Barbacid, M.2
-
24
-
-
9244239811
-
G1 cell-cycle control and cancer
-
Massagué J. G1 cell-cycle control and cancer. Nature (2004) 432:298-306. doi:10.1038/nature03094
-
(2004)
Nature
, vol.432
, pp. 298-306
-
-
Massagué, J.1
-
25
-
-
16644385890
-
The mammalian cell cycle: an overview
-
Harper JV, Brooks G. The mammalian cell cycle: an overview. Methods Mol Biol (2005) 296:113-53. doi:10.1385/1-59259-857-9:113
-
(2005)
Methods Mol Biol
, vol.296
, pp. 113-153
-
-
Harper, J.V.1
Brooks, G.2
-
26
-
-
35148815242
-
Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy
-
Tasdemir E, Maiuri MC, Tajeddine N, Vitale I, Criollo A, Vicencio JM, et al. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy. Cell Cycle (2007) 6:2263-7. doi:10.4161/cc.6.18.4681
-
(2007)
Cell Cycle
, vol.6
, pp. 2263-2267
-
-
Tasdemir, E.1
Maiuri, M.C.2
Tajeddine, N.3
Vitale, I.4
Criollo, A.5
Vicencio, J.M.6
-
27
-
-
78650823745
-
A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle
-
Kaminskyy V, Abdi A, Zhivotovsky B. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy (2011) 7:83-90. doi:10.4161/auto.7.1.13893
-
(2011)
Autophagy
, vol.7
, pp. 83-90
-
-
Kaminskyy, V.1
Abdi, A.2
Zhivotovsky, B.3
-
28
-
-
0036899730
-
Inhibition of autophagy in mitotic animal cells
-
Eskelinen E-L, Prescott AR, Cooper J, Brachmann SM, Wang L, Tang X, et al. Inhibition of autophagy in mitotic animal cells. Traffic (2002) 3:878-93. doi:10.1034/j.1600-0854.2002.31204.x
-
(2002)
Traffic
, vol.3
, pp. 878-893
-
-
Eskelinen, E.-L.1
Prescott, A.R.2
Cooper, J.3
Brachmann, S.M.4
Wang, L.5
Tang, X.6
-
29
-
-
77952576359
-
Negative regulation of Vps34 by Cdk mediated phosphorylation
-
Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell (2010) 38:500-11. doi:10.1016/j.molcel.2010.05.009
-
(2010)
Mol Cell
, vol.38
, pp. 500-511
-
-
Furuya, T.1
Kim, M.2
Lipinski, M.3
Li, J.4
Kim, D.5
Lu, T.6
-
30
-
-
0029939911
-
Sequestration of mitotic (M-phase) chromosomes in autophagosomes: mitotic programmed cell death in human Chang liver cells induced by an OH* burst from vanadyl(4)
-
Sit KH, Paramanantham R, Bay BH, Chan HL, Wong KP, Thong P, et al. Sequestration of mitotic (M-phase) chromosomes in autophagosomes: mitotic programmed cell death in human Chang liver cells induced by an OH* burst from vanadyl(4). Anat Rec (1996) 245:1-8. doi:10.1002/(SICI)1097-0185(199605)245:1<1:AID-AR1>3.0.CO;2-2
-
(1996)
Anat Rec
, vol.245
, pp. 1-8
-
-
Sit, K.H.1
Paramanantham, R.2
Bay, B.H.3
Chan, H.L.4
Wong, K.P.5
Thong, P.6
-
31
-
-
84904049068
-
Preparing a cell for nuclear envelope breakdown: spatio-temporal control of phosphorylation during mitotic entry
-
álvarez-Fernández M, Malumbres M. Preparing a cell for nuclear envelope breakdown: spatio-temporal control of phosphorylation during mitotic entry. Bioessays (2014) 36:757-65. doi:10.1002/bies.201400040
-
(2014)
Bioessays
, vol.36
, pp. 757-765
-
-
Álvarez-Fernández, M.1
Malumbres, M.2
-
32
-
-
0034678366
-
W(h)ither the Golgi during mitosis?
-
Nelson WJ. W(h)ither the Golgi during mitosis? J Cell Biol (2000) 149:243-8. doi:10.1083/jcb.149.2.243
-
(2000)
J Cell Biol
, vol.149
, pp. 243-248
-
-
Nelson, W.J.1
-
33
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol (2011) 13:589-98. doi:10.1038/ncb2220
-
(2011)
Nat Cell Biol
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
Di Benedetto, G.2
Scorrano, L.3
-
34
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA (2011) 108:10190-5. doi:10.1073/pnas.1107402108
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
Kostelecky, B.2
Elia, N.3
Lippincott-Schwartz, J.4
-
35
-
-
50949115617
-
High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy
-
Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta (2008) 1777:860-6. doi:10.1016/j.bbabio.2008.05.442
-
(2008)
Biochim Biophys Acta
, vol.1777
, pp. 860-866
-
-
Gomes, L.C.1
Scorrano, L.2
-
37
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem (2007) 282:11521-9. doi:10.1074/jbc.M607279200
-
(2007)
J Biol Chem
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
Ishihara, N.2
Jofuku, A.3
Oka, T.4
Mihara, K.5
-
38
-
-
84942990367
-
AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest
-
Doménech E, Maestre C, Esteban-Martínez L, Partida D, Pascual R, Fernández-Miranda G, et al. AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol (2015) 17:1304-16. doi:10.1038/ncb3231
-
(2015)
Nat Cell Biol
, vol.17
, pp. 1304-1316
-
-
Doménech, E.1
Maestre, C.2
Esteban-Martínez, L.3
Partida, D.4
Pascual, R.5
Fernández-Miranda, G.6
-
39
-
-
84982994792
-
Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle
-
Li Z, Ji X, Wang D, Liu J, Zhang X. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget (2016) 7:39705-18. doi:10.18632/oncotarget.9451
-
(2016)
Oncotarget
, vol.7
, pp. 39705-39718
-
-
Li, Z.1
Ji, X.2
Wang, D.3
Liu, J.4
Zhang, X.5
-
40
-
-
84900805843
-
High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy
-
Loukil A, Zonca M, Rebouissou C, Baldin V, Coux O, Biard-Piechaczyk M, et al. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci (2014) 127:2145-50. doi:10.1242/jcs.139188
-
(2014)
J Cell Sci
, vol.127
, pp. 2145-2150
-
-
Loukil, A.1
Zonca, M.2
Rebouissou, C.3
Baldin, V.4
Coux, O.5
Biard-Piechaczyk, M.6
-
41
-
-
66849104285
-
Robust autophagy/mitophagy persists during mitosis
-
Liu L, Xie R, Nguyen S, Ye M, McKeehan WL. Robust autophagy/mitophagy persists during mitosis. Cell Cycle (2009) 8:1616-20. doi:10.4161/cc.8.10.8577
-
(2009)
Cell Cycle
, vol.8
, pp. 1616-1620
-
-
Liu, L.1
Xie, R.2
Nguyen, S.3
Ye, M.4
McKeehan, W.L.5
-
42
-
-
38849187293
-
CDK inhibitors: cell cycle regulators and beyond
-
Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell (2008) 14:159-69. doi:10.1016/j.devcel.2008.01.013
-
(2008)
Dev Cell
, vol.14
, pp. 159-169
-
-
Besson, A.1
Dowdy, S.F.2
Roberts, J.M.3
-
43
-
-
0033574614
-
Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors
-
Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol (1999) 287:821-8. doi:10.1006/jmbi.1999.2640
-
(1999)
J Mol Biol
, vol.287
, pp. 821-828
-
-
Pavletich, N.P.1
-
44
-
-
84867271418
-
CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis
-
Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle (2012) 11:3599-610. doi:10.4161/cc.21884
-
(2012)
Cell Cycle
, vol.11
, pp. 3599-3610
-
-
Capparelli, C.1
Chiavarina, B.2
Whitaker-Menezes, D.3
Pestell, T.G.4
Pestell, R.G.5
Hulit, J.6
-
45
-
-
78049262912
-
The RB-E2F1 pathway regulates autophagy
-
Jiang H, Martin V, Gomez-Manzano C, Johnson DG, Alonso M, White E, et al. The RB-E2F1 pathway regulates autophagy. Cancer Res (2010) 70:7882-93. doi:10.1158/0008-5472.CAN-10-1604
-
(2010)
Cancer Res
, vol.70
, pp. 7882-7893
-
-
Jiang, H.1
Martin, V.2
Gomez-Manzano, C.3
Johnson, D.G.4
Alonso, M.5
White, E.6
-
46
-
-
33947250696
-
The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis
-
Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol (2007) 9:218-24. doi:10.1038/ncb1537
-
(2007)
Nat Cell Biol
, vol.9
, pp. 218-224
-
-
Liang, J.1
Shao, S.H.2
Xu, Z.-X.3
Hennessy, B.4
Ding, Z.5
Larrea, M.6
-
47
-
-
70349437076
-
p53 and E2f: partners in life and death
-
Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer (2009) 9:738-48. doi:10.1038/nrc2718
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 738-748
-
-
Polager, S.1
Ginsberg, D.2
-
48
-
-
0033564697
-
CDK inhibitors: positive and negative regulators of G1-phase progression
-
Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev (1999) 13:1501-12. doi:10.1101/gad.13.12.1501
-
(1999)
Genes Dev
, vol.13
, pp. 1501-1512
-
-
Sherr, C.J.1
Roberts, J.M.2
-
49
-
-
84876808719
-
Molecular mechanisms underlying RB protein function
-
Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol (2013) 14:297-306. doi:10.1038/nrm3567
-
(2013)
Nat Rev Mol Cell Biol
, vol.14
, pp. 297-306
-
-
Dick, F.A.1
Rubin, S.M.2
-
50
-
-
0029664461
-
Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle
-
Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science (1996) 272:877-80. doi:10.1126/science.272.5263.877
-
(1996)
Science
, vol.272
, pp. 877-880
-
-
Coats, S.1
Flanagan, W.M.2
Nourse, J.3
Roberts, J.M.4
-
51
-
-
0029666482
-
Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts
-
Rivard N, L'Allemain G, Bartek J, Pouysségur J. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts. J Biol Chem (1996) 271:18337-41. doi:10.1074/jbc.271.31.18337
-
(1996)
J Biol Chem
, vol.271
, pp. 18337-18341
-
-
Rivard, N.1
L'Allemain, G.2
Bartek, J.3
Pouysségur, J.4
-
52
-
-
0032012062
-
Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade
-
Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell (1998) 1:553-63. doi:10.1016/S1097-2765(00)80055-6
-
(1998)
Mol Cell
, vol.1
, pp. 553-563
-
-
Levkau, B.1
Koyama, H.2
Raines, E.W.3
Clurman, B.E.4
Herren, B.5
Orth, K.6
-
53
-
-
84955184800
-
Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy
-
Campos T, Ziehe J, Palma M, Escobar D, Tapia JC, Pincheira R, et al. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog (2016) 55:220-9. doi:10.1002/mc.22272
-
(2016)
Mol Carcinog
, vol.55
, pp. 220-229
-
-
Campos, T.1
Ziehe, J.2
Palma, M.3
Escobar, D.4
Tapia, J.C.5
Pincheira, R.6
-
54
-
-
77951001692
-
Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae
-
Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell (2010) 38:250-64. doi:10.1016/j.molcel.2010.02.033
-
(2010)
Mol Cell
, vol.38
, pp. 250-264
-
-
Yang, Z.1
Geng, J.2
Yen, W.L.3
Wang, K.4
Klionsky, D.J.5
-
55
-
-
49649121765
-
E2F1 regulates autophagy and the transcription of autophagy genes
-
Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene (2008) 27:4860-4. doi:10.1038/onc.2008.117
-
(2008)
Oncogene
, vol.27
, pp. 4860-4864
-
-
Polager, S.1
Ofir, M.2
Ginsberg, D.3
-
56
-
-
0034802618
-
Use of chromatin immunoprecipitation to clone novel E2F target promoters
-
Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol (2001) 21:6820-32. doi:10.1128/MCB.21.20.6820-6832.2001
-
(2001)
Mol Cell Biol
, vol.21
, pp. 6820-6832
-
-
Weinmann, A.S.1
Bartley, S.M.2
Zhang, T.3
Zhang, M.Q.4
Farnham, P.J.5
-
57
-
-
33646523798
-
A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death
-
Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell (2006) 22:463-75. doi:10.1016/j.molcel.2006.04.014
-
(2006)
Mol Cell
, vol.22
, pp. 463-475
-
-
Reef, S.1
Zalckvar, E.2
Shifman, O.3
Bialik, S.4
Sabanay, H.5
Oren, M.6
-
58
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol (2007) 27:6229-42. doi:10.1128/MCB.02246-06
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
59
-
-
65549120715
-
Modes of p53 regulation
-
Kruse JP, Gu W. Modes of p53 regulation. Cell (2009) 137:609-22. doi:10.1016/j.cell.2009.04.050
-
(2009)
Cell
, vol.137
, pp. 609-622
-
-
Kruse, J.P.1
Gu, W.2
-
61
-
-
84988905857
-
Recent insights into the function of autophagy in cancer
-
Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev (2016) 30:1913-30. doi:10.1101/gad.287524.116
-
(2016)
Genes Dev
, vol.30
, pp. 1913-1930
-
-
Amaravadi, R.1
Kimmelman, A.C.2
White, E.3
-
62
-
-
77951243028
-
Autophagy regulation by p53
-
Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol (2010) 22:181-5. doi:10.1016/j.ceb.2009.12.001
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 181-185
-
-
Maiuri, M.C.1
Galluzzi, L.2
Morselli, E.3
Kepp, O.4
Malik, S.A.5
Kroemer, G.6
-
63
-
-
84884820652
-
Seminars in cancer biology regulation of autophagy by stress-responsive transcription factors
-
Pietrocola F, Izzo V, Niso-santano M, Kroemer G. Seminars in cancer biology regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol (2013) 23:310-22. doi:10.1016/j.semcancer.2013.05.008
-
(2013)
Semin Cancer Biol
, vol.23
, pp. 310-322
-
-
Pietrocola, F.1
Izzo, V.2
Niso-santano, M.3
Kroemer, G.4
-
64
-
-
34248194200
-
The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
-
Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res (2007) 67:3043-53. doi:10.1158/0008-5472.CAN-06-4149
-
(2007)
Cancer Res
, vol.67
, pp. 3043-3053
-
-
Feng, Z.1
Hu, W.2
de Stanchina, E.3
Teresky, A.K.4
Jin, S.5
Lowe, S.6
-
65
-
-
48449101433
-
p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling
-
Budanov AV, Karin M. p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell (2008) 134:451-60. doi:10.1016/j.cell.2008.06.028
-
(2008)
Cell
, vol.134
, pp. 451-460
-
-
Budanov, A.V.1
Karin, M.2
-
66
-
-
66849111716
-
Stimulation of autophagy by the p53 target gene Sestrin2
-
Maiuri MC, Malik SA, Morselli E, Kepp O, Criollo A, Mouchel PL, et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle (2009) 8:1571-6. doi:10.4161/cc.8.10.8498
-
(2009)
Cell Cycle
, vol.8
, pp. 1571-1576
-
-
Maiuri, M.C.1
Malik, S.A.2
Morselli, E.3
Kepp, O.4
Criollo, A.5
Mouchel, P.L.6
-
67
-
-
84877311822
-
Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
-
Kenzelmann Broz D, Mello SS, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev (2013) 27:1016-31. doi:10.1101/gad.212282.112
-
(2013)
Genes Dev
, vol.27
, pp. 1016-1031
-
-
Kenzelmann Broz, D.1
Mello, S.S.2
Bieging, K.T.3
Jiang, D.4
Dusek, R.L.5
Brady, C.A.6
-
68
-
-
0034854091
-
Regulation of PTEN transcriptional by p53
-
Stambolic V, MacPherson D, Sas D, Lin Y, Snow B, Jang Y, et al. Regulation of PTEN transcriptional by p53. Mol Cell (2001) 8:317-25. doi:10.1016/S1097-2765(01)00323-9
-
(2001)
Mol Cell
, vol.8
, pp. 317-325
-
-
Stambolic, V.1
MacPherson, D.2
Sas, D.3
Lin, Y.4
Snow, B.5
Jang, Y.6
-
69
-
-
20444363122
-
The coordinate regulation of the p53 and mTOR pathways in cells
-
Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A (2005) 102:8204-9. doi:10.1073/pnas.0502857102
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 8204-8209
-
-
Feng, Z.1
Zhang, H.2
Levine, A.J.3
Jin, S.4
-
70
-
-
80052719816
-
Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death
-
Gao W, Shen Z, Shang L, Wang X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ (2011) 18:1598-607. doi:10.1038/cdd.2011.33
-
(2011)
Cell Death Differ
, vol.18
, pp. 1598-1607
-
-
Gao, W.1
Shen, Z.2
Shang, L.3
Wang, X.4
-
71
-
-
68249106060
-
BH3-only proteins in apoptosis and beyond: an overview
-
Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene (2008) 27(Suppl 1):S2-19. doi:10.1038/onc.2009.39
-
(2008)
Oncogene
, vol.27
, pp. S2-S19
-
-
Lomonosova, E.1
Chinnadurai, G.2
-
72
-
-
34248998801
-
Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1
-
Maiuri MC, Le Toumelin G, Criollo A, Rain J-C, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J (2007) 26:2527-39. doi:10.1038/sj.emboj.7601689
-
(2007)
EMBO J
, vol.26
, pp. 2527-2539
-
-
Maiuri, M.C.1
Le Toumelin, G.2
Criollo, A.3
Rain, J.-C.4
Gautier, F.5
Juin, P.6
-
73
-
-
14844337826
-
DAPK1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53
-
Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine J-C. DAPK1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene (2005) 24:1461-6. doi:10.1038/sj.onc.1208256
-
(2005)
Oncogene
, vol.24
, pp. 1461-1466
-
-
Martoriati, A.1
Doumont, G.2
Alcalay, M.3
Bellefroid, E.4
Pelicci, P.G.5
Marine, J.-C.6
-
74
-
-
61849102389
-
DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of Beclin 1 from Bcl-XL and induction of autophagy
-
Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of Beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep (2009) 10:285-92. doi:10.1038/embor.2008.246
-
(2009)
EMBO Rep
, vol.10
, pp. 285-292
-
-
Zalckvar, E.1
Berissi, H.2
Mizrachy, L.3
Idelchuk, Y.4
Koren, I.5
Eisenstein, M.6
-
75
-
-
33745885329
-
DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
-
Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell (2006) 126:121-34. doi:10.1016/j.cell.2006.05.034
-
(2006)
Cell
, vol.126
, pp. 121-134
-
-
Crighton, D.1
Wilkinson, S.2
O'Prey, J.3
Syed, N.4
Smith, P.5
Harrison, P.R.6
-
76
-
-
84859639962
-
Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
-
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJR, Motoyama N, et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science (2012) 336:225-8. doi:10.1126/science.1218395
-
(2012)
Science
, vol.336
, pp. 225-228
-
-
Lee, I.H.1
Kawai, Y.2
Fergusson, M.M.3
Rovira, I.I.4
Bishop, A.J.R.5
Motoyama, N.6
-
77
-
-
20844449238
-
AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
-
Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell (2005) 18:283-93. doi:10.1016/j.molcel.2005.03.027
-
(2005)
Mol Cell
, vol.18
, pp. 283-293
-
-
Jones, R.G.1
Plas, D.R.2
Kubek, S.3
Buzzai, M.4
Mu, J.5
Xu, Y.6
-
78
-
-
80053501671
-
Beclin 1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
-
Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, et al. Beclin 1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell (2011) 147:223-34. doi:10.1016/j.cell.2011.08.037
-
(2011)
Cell
, vol.147
, pp. 223-234
-
-
Liu, J.1
Xia, H.2
Kim, M.3
Xu, L.4
Li, Y.5
Zhang, L.6
-
79
-
-
75749132016
-
USP10 regulates p53 localization and stability by deubiquitinating p53
-
Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell (2010) 140:384-96. doi:10.1016/j.cell.2009.12.032
-
(2010)
Cell
, vol.140
, pp. 384-396
-
-
Yuan, J.1
Luo, K.2
Zhang, L.3
Cheville, J.C.4
Lou, Z.5
-
80
-
-
84921451081
-
FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation
-
Xiao J, Zhang T, Xu D, Wang H, Cai Y, Jin T, et al. FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation. Genes Dev (2015) 29:184-96. doi:10.1101/gad.252528.114
-
(2015)
Genes Dev
, vol.29
, pp. 184-196
-
-
Xiao, J.1
Zhang, T.2
Xu, D.3
Wang, H.4
Cai, Y.5
Jin, T.6
-
81
-
-
44649141966
-
Regulation of autophagy by cytoplasmic p53
-
Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol (2008) 10:676-87. doi:10.1038/ncb1730
-
(2008)
Nat Cell Biol
, vol.10
, pp. 676-687
-
-
Tasdemir, E.1
Maiuri, M.C.2
Galluzzi, L.3
Vitale, I.4
Djavaheri-Mergny, M.5
D'Amelio, M.6
-
82
-
-
53649086181
-
Mutant p53 protein localized in the cytoplasm inhibits autophagy
-
Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, et al. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle (2008) 7:3056-61. doi:10.4161/cc.7.19.6751
-
(2008)
Cell Cycle
, vol.7
, pp. 3056-3061
-
-
Morselli, E.1
Tasdemir, E.2
Maiuri, M.C.3
Galluzzi, L.4
Kepp, O.5
Criollo, A.6
-
83
-
-
80051707399
-
p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200
-
Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Mariño G, Galluzzi L, et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle (2011) 10:2763-9. doi:10.4161/cc.10.16.16868
-
(2011)
Cell Cycle
, vol.10
, pp. 2763-2769
-
-
Morselli, E.1
Shen, S.2
Ruckenstuhl, C.3
Bauer, M.A.4
Mariño, G.5
Galluzzi, L.6
-
84
-
-
84983418010
-
The cell fate: senescence or quiescence
-
Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep (2016) 43(11):1213-20. doi:10.1007/s11033-016-4065-0
-
(2016)
Mol Biol Rep
, vol.43
, Issue.11
, pp. 1213-1220
-
-
Terzi, M.Y.1
Izmirli, M.2
Gogebakan, B.3
-
85
-
-
79957880743
-
Cell cycle arrest is not senescence
-
Blagosklonny MV. Cell cycle arrest is not senescence. Aging (2011) 3:94-101. doi:10.18632/aging.100281
-
(2011)
Aging
, vol.3
, pp. 94-101
-
-
Blagosklonny, M.V.1
-
86
-
-
84951952822
-
Senescence as a general cellular response to stress: a mini-review
-
Fridlyanskaya I, Alekseenko L, Nikolsky N. Senescence as a general cellular response to stress: a mini-review. Exp Gerontol (2015) 72:124-8. doi:10.1016/j.exger.2015.09.021
-
(2015)
Exp Gerontol
, vol.72
, pp. 124-128
-
-
Fridlyanskaya, I.1
Alekseenko, L.2
Nikolsky, N.3
-
87
-
-
84877332618
-
Autophagy and senescence: a partnership in search of definition
-
Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy (2013) 9:808-12. doi:10.4161/auto.23922
-
(2013)
Autophagy
, vol.9
, pp. 808-812
-
-
Gewirtz, D.A.1
-
88
-
-
64349105425
-
Eating to exit: autophagy-enabled senescence revealed
-
White E, Lowe SW. Eating to exit: autophagy-enabled senescence revealed. Genes Dev (2009) 23:784-7. doi:10.1101/gad.1795309
-
(2009)
Genes Dev
, vol.23
, pp. 784-787
-
-
White, E.1
Lowe, S.W.2
-
89
-
-
84946567021
-
Autophagy mediates degradation of nuclear lamina
-
Dou Z, Xu C, Donahue G, Shimi T, Pan J-A, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature (2015) 527:1-17. doi:10.1038/nature15548
-
(2015)
Nature
, vol.527
, pp. 1-17
-
-
Dou, Z.1
Xu, C.2
Donahue, G.3
Shimi, T.4
Pan, J.-A.5
Zhu, J.6
-
90
-
-
84869214214
-
The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?
-
Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther (2012) 343:763-78. doi:10.1124/jpet.112.197590
-
(2012)
J Pharmacol Exp Ther
, vol.343
, pp. 763-778
-
-
Goehe, R.W.1
Di, X.2
Sharma, K.3
Bristol, M.L.4
Henderson, S.C.5
Valerie, K.6
-
91
-
-
84884693919
-
Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma
-
Liu H, He Z, von Rütte T, Yousefi S, Hunger RE, Simon H-U. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med (2013) 5:202ra123. doi:10.1126/scitranslmed.3005864
-
(2013)
Sci Transl Med
, vol.5
-
-
Liu, H.1
He, Z.2
von Rütte, T.3
Yousefi, S.4
Hunger, R.E.5
Simon, H.-U.6
-
92
-
-
84877297444
-
Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells
-
Qi M, Fan S, Yao G, Li Z, Zhou H, Tashiro S, et al. Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells. J Pharmacol Sci (2013) 121:200-11. doi:10.1254/jphs.12269FP
-
(2013)
J Pharmacol Sci
, vol.121
, pp. 200-211
-
-
Qi, M.1
Fan, S.2
Yao, G.3
Li, Z.4
Zhou, H.5
Tashiro, S.6
-
93
-
-
64349123107
-
Autophagy mediates the mitotic senescence transition
-
Young ARJ, Narita M, Ferreira M, Kirschner K, Sadaie M, Darot JFJ, et al. Autophagy mediates the mitotic senescence transition. Genes Dev (2009) 23:798-803. doi:10.1101/gad.519709
-
(2009)
Genes Dev
, vol.23
, pp. 798-803
-
-
Young, A.R.J.1
Narita, M.2
Ferreira, M.3
Kirschner, K.4
Sadaie, M.5
Darot, J.F.J.6
-
94
-
-
84880585547
-
Lysosome-mediated processing of chromatin in senescence
-
Ivanov A, Pawlikowski J, Manoharan I, van Tuyn J, Nelson DM, Rai TS, et al. Lysosome-mediated processing of chromatin in senescence. J Cell Biol (2013) 202:129-43. doi:10.1083/jcb.201212110
-
(2013)
J Cell Biol
, vol.202
, pp. 129-143
-
-
Ivanov, A.1
Pawlikowski, J.2
Manoharan, I.3
van Tuyn, J.4
Nelson, D.M.5
Rai, T.S.6
-
95
-
-
84907306512
-
Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence
-
Horikawa I, Fujita K, Jenkins LMM, Hiyoshi Y, Mondal AM, Vojtesek B, et al. Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence. Nat Commun (2014) 5:4706. doi:10.1038/ncomms5706
-
(2014)
Nat Commun
, vol.5
, pp. 4706
-
-
Horikawa, I.1
Fujita, K.2
Jenkins, L.M.M.3
Hiyoshi, Y.4
Mondal, A.M.5
Vojtesek, B.6
-
96
-
-
24344448786
-
p53 isoforms can regulate p53 transcriptional activity
-
Bourdon J-C, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev (2005) 19:2122-37. doi:10.1101/gad.1339905
-
(2005)
Genes Dev
, vol.19
, pp. 2122-2137
-
-
Bourdon, J.-C.1
Fernandes, K.2
Murray-Zmijewski, F.3
Liu, G.4
Diot, A.5
Xirodimas, D.P.6
-
97
-
-
69949171557
-
p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence
-
Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol (2009) 11:1135-42. doi:10.1038/ncb1928
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1135-1142
-
-
Fujita, K.1
Mondal, A.M.2
Horikawa, I.3
Nguyen, G.H.4
Kumamoto, K.5
Sohn, J.J.6
-
98
-
-
84862886876
-
Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production
-
Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle (2012) 11:2285-302. doi:10.4161/cc.20718
-
(2012)
Cell Cycle
, vol.11
, pp. 2285-2302
-
-
Capparelli, C.1
Guido, C.2
Whitaker-Menezes, D.3
Bonuccelli, G.4
Balliet, R.5
Pestell, T.G.6
-
99
-
-
84859754266
-
AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy
-
Astle MV, Hannan KM, Ng PY, Lee RS, George AJ, Hsu AK, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene (2012) 31:1949-62. doi:10.1038/onc.2011.394
-
(2012)
Oncogene
, vol.31
, pp. 1949-1962
-
-
Astle, M.V.1
Hannan, K.M.2
Ng, P.Y.3
Lee, R.S.4
George, A.J.5
Hsu, A.K.6
-
100
-
-
69249206717
-
mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging
-
Castilho RM, Squarize CH, Chodosh LA, Williams BO, Gutkind JS. mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell (2009) 5:279-89. doi:10.1016/j.stem.2009.06.017
-
(2009)
Cell Stem Cell
, vol.5
, pp. 279-289
-
-
Castilho, R.M.1
Squarize, C.H.2
Chodosh, L.A.3
Williams, B.O.4
Gutkind, J.S.5
-
101
-
-
67649316033
-
Rapamycin decelerates cellular senescence
-
Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV. Rapamycin decelerates cellular senescence. Cell Cycle (2009) 8:1888-95. doi:10.4161/cc.8.12.8606
-
(2009)
Cell Cycle
, vol.8
, pp. 1888-1895
-
-
Demidenko, Z.N.1
Zubova, S.G.2
Bukreeva, E.I.3
Pospelov, V.A.4
Pospelova, T.V.5
Blagosklonny, M.V.6
-
102
-
-
77955747085
-
The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway
-
Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) (2010) 2:344-52. doi:10.18632/aging.100160
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 344-352
-
-
Korotchkina, L.G.1
Leontieva, O.V.2
Bukreeva, E.I.3
Demidenko, Z.N.4
Gudkov, A.V.5
Blagosklonny, M.V.6
-
103
-
-
80054005335
-
Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin
-
Leontieva OV, Demidenko ZN, Gudkov AV, Blagosklonny MV. Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin. PLoS One (2011) 6:e26126. doi:10.1371/journal.pone.0026126
-
(2011)
PLoS One
, vol.6
-
-
Leontieva, O.V.1
Demidenko, Z.N.2
Gudkov, A.V.3
Blagosklonny, M.V.4
-
104
-
-
84934441088
-
Cell senescence as both a dynamic and a static phenotype
-
Young ARJ, Narita M, Narita M. Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol (2013) 965:1-13. doi:10.1007/978-1-62703-239-1_1
-
(2013)
Methods Mol Biol
, vol.965
, pp. 1-13
-
-
Young, A.R.J.1
Narita, M.2
Narita, M.3
-
105
-
-
50549087736
-
Growth stimulation leads to cellular senescence when the cell cycle is blocked
-
Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle (2008) 7:3355-61. doi:10.4161/cc.7.21.6919
-
(2008)
Cell Cycle
, vol.7
, pp. 3355-3361
-
-
Demidenko, Z.N.1
Blagosklonny, M.V.2
-
106
-
-
84863430906
-
Status of mTOR activity may phenotypically differentiate senescence and quiescence
-
Cho S, Hwang ES. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells (2012) 33:597-604. doi:10.1007/s10059-012-0042-1
-
(2012)
Mol Cells
, vol.33
, pp. 597-604
-
-
Cho, S.1
Hwang, E.S.2
-
107
-
-
79956325949
-
Spatial coupling of mTOR and autophagy augments secretory phenotypes
-
Narita M, Young ARJ, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S, et al. Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science (2011) 332:966-70. doi:10.1126/science.1205407
-
(2011)
Science
, vol.332
, pp. 966-970
-
-
Narita, M.1
Young, A.R.J.2
Arakawa, S.3
Samarajiwa, S.A.4
Nakashima, T.5
Yoshida, S.6
-
108
-
-
77951768486
-
Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell (2010) 141:290-303. doi:10.1016/j.cell.2010.02.024
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
109
-
-
84884634690
-
Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers
-
Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans (2013) 41:1103-30. doi:10.1042/BST20130134
-
(2013)
Biochem Soc Trans
, vol.41
, pp. 1103-1130
-
-
Sarkar, S.1
-
110
-
-
84953872755
-
Autophagy maintains stemness by preventing senescence
-
García-Prat L, Martínez-Vicente M, Perdiguero E, Ortet L, Rodríguez-Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature (2016) 529:37-42. doi:10.1038/nature16187
-
(2016)
Nature
, vol.529
, pp. 37-42
-
-
García-Prat, L.1
Martínez-Vicente, M.2
Perdiguero, E.3
Ortet, L.4
Rodríguez-Ubreva, J.5
Rebollo, E.6
-
111
-
-
79961194820
-
Autophagy impairment induces premature senescence in primary human fibroblasts
-
Kang HT, Lee KB, Kim SY, Choi HR, Park SC. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One (2011) 6:e23367. doi:10.1371/journal.pone.0023367
-
(2011)
PLoS One
, vol.6
-
-
Kang, H.T.1
Lee, K.B.2
Kim, S.Y.3
Choi, H.R.4
Park, S.C.5
-
112
-
-
84942456107
-
The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
-
Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science (2015) 349:aaa5612-5612. doi:10.1126/science.aaa5612
-
(2015)
Science
, vol.349
-
-
Kang, C.1
Xu, Q.2
Martin, T.D.3
Li, M.Z.4
Demaria, M.5
Aron, L.6
-
113
-
-
84865191462
-
Autophagic activity dictates the cellular response to oncogenic RAS
-
Wang Y, Wang XD, Lapi E, Sullivan A, Jia W, He Y-W, et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci U S A (2012) 109:13325-30. doi:10.1073/pnas.1120193109
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 13325-13330
-
-
Wang, Y.1
Wang, X.D.2
Lapi, E.3
Sullivan, A.4
Jia, W.5
He, Y.-W.6
-
114
-
-
0033565655
-
Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
-
Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J (1999) 18:3888-96. doi:10.1093/emboj/18.14.3888
-
(1999)
EMBO J
, vol.18
, pp. 3888-3896
-
-
Mizushima, N.1
Noda, T.2
Ohsumi, Y.3
-
115
-
-
25844475838
-
On the road to cancer: aneuploidy and the mitotic checkpoint
-
Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer (2005) 5:773-85. doi:10.1038/nrc1714
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 773-785
-
-
Kops, G.J.1
Weaver, B.A.2
Cleveland, D.W.3
-
116
-
-
77949579365
-
Mechanisms of chromosomal instability
-
Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Curr Biol (2010) 20:R285-95. doi:10.1016/j.cub.2010.01.034
-
(2010)
Curr Biol
, vol.20
, pp. R285-R295
-
-
Thompson, S.L.1
Bakhoum, S.F.2
Compton, D.A.3
-
117
-
-
84860514120
-
Molecular control of animal cell cytokinesis
-
Fededa JP, Gerlich DW. Molecular control of animal cell cytokinesis. Nat Cell Biol (2012) 14:440-7. doi:10.1038/ncb2482
-
(2012)
Nat Cell Biol
, vol.14
, pp. 440-447
-
-
Fededa, J.P.1
Gerlich, D.W.2
-
118
-
-
77950510375
-
PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody
-
Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol (2010) 12:362-71. doi:10.1038/ncb2036
-
(2010)
Nat Cell Biol
, vol.12
, pp. 362-371
-
-
Sagona, A.P.1
Nezis, I.P.2
Pedersen, N.M.3
Liestøl, K.4
Poulton, J.5
Rusten, T.E.6
-
119
-
-
78049271501
-
A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic
-
Thoresen SB, Pedersen NM, Liestøl K, Stenmark H. A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res (2010) 316:3368-78. doi:10.1016/j.yexcr.2010.07.008
-
(2010)
Exp Cell Res
, vol.316
, pp. 3368-3378
-
-
Thoresen, S.B.1
Pedersen, N.M.2
Liestøl, K.3
Stenmark, H.4
-
120
-
-
84975907022
-
Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation
-
You SY, Park YS, Jeon H-J, Cho D-H, Jeon HB, Kim SH, et al. Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation. Cell Cycle (2016) 15:1611-9. doi:10.1080/15384101.2016.1181235
-
(2016)
Cell Cycle
, vol.15
, pp. 1611-1619
-
-
You, S.Y.1
Park, Y.S.2
Jeon, H.-J.3
Cho, D.-H.4
Jeon, H.B.5
Kim, S.H.6
-
121
-
-
79953043624
-
A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis
-
Sagona AP, Nezis IP, Bache KG, Haglund K, Bakken AC, Skotheim RI, et al. A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis. PLoS One (2011) 6:e17086. doi:10.1371/journal.pone.0017086
-
(2011)
PLoS One
, vol.6
-
-
Sagona, A.P.1
Nezis, I.P.2
Bache, K.G.3
Haglund, K.4
Bakken, A.C.5
Skotheim, R.I.6
-
122
-
-
79960726254
-
Phosphatases: providing safe passage through mitotic exit
-
Wurzenberger C, Gerlich DW. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol (2011) 12:469-82. doi:10.1038/nrm3149
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 469-482
-
-
Wurzenberger, C.1
Gerlich, D.W.2
-
124
-
-
27144507868
-
Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells
-
Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature (2005) 437:1043-7. doi:10.1038/nature04217
-
(2005)
Nature
, vol.437
, pp. 1043-1047
-
-
Fujiwara, T.1
Bandi, M.2
Nitta, M.3
Ivanova, E.V.4
Bronson, R.T.5
Pellman, D.6
-
125
-
-
59049101302
-
Aurora B-mediated abscission checkpoint protects against tetraploidization
-
Steigemann P, Wurzenberger C, Schmitz MHA, Held M, Guizetti J, Maar S, et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell (2009) 136:473-84. doi:10.1016/j.cell.2008.12.020
-
(2009)
Cell
, vol.136
, pp. 473-484
-
-
Steigemann, P.1
Wurzenberger, C.2
Schmitz, M.H.A.3
Held, M.4
Guizetti, J.5
Maar, S.6
-
126
-
-
39749141485
-
The regulation and function of Class III PI3Ks: novel roles for Vps34
-
Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J (2008) 410:1-17. doi:10.1042/BJ20071427
-
(2008)
Biochem J
, vol.410
, pp. 1-17
-
-
Backer, J.M.1
-
127
-
-
84880863625
-
Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability
-
Belaid A, Cerezo M, Chargui A, Corcelle-Termeau E, Pedeutour F, Giuliano S, et al. Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res (2013) 73:4311-22. doi:10.1158/0008-5472.CAN-12-4142
-
(2013)
Cancer Res
, vol.73
, pp. 4311-4322
-
-
Belaid, A.1
Cerezo, M.2
Chargui, A.3
Corcelle-Termeau, E.4
Pedeutour, F.5
Giuliano, S.6
-
128
-
-
28244444494
-
Cytokinesis: welcome to the Rho zone
-
Piekny A, Werner M, Glotzer M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol (2005) 15:651-8. doi:10.1016/j.tcb.2005.10.006
-
(2005)
Trends Cell Biol
, vol.15
, pp. 651-658
-
-
Piekny, A.1
Werner, M.2
Glotzer, M.3
-
129
-
-
23944499922
-
An ECT2-centralspindlin complex regulates the localization and function of RhoA
-
Yüce ö, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol (2005) 170:571-82. doi:10.1083/jcb.200501097
-
(2005)
J Cell Biol
, vol.170
, pp. 571-582
-
-
Yüce, Ö.1
Piekny, A.2
Glotzer, M.3
-
130
-
-
84856712951
-
A novel function for Cyclin A2: control of cell invasion via RhoA signaling
-
Arsic N, Bendris N, Peter M, Begon-Pescia C, Rebouissou C, Gadéa G, et al. A novel function for Cyclin A2: control of cell invasion via RhoA signaling. J Cell Biol (2012) 196:147-62. doi:10.1083/jcb.201102085
-
(2012)
J Cell Biol
, vol.196
, pp. 147-162
-
-
Arsic, N.1
Bendris, N.2
Peter, M.3
Begon-Pescia, C.4
Rebouissou, C.5
Gadéa, G.6
-
131
-
-
0035795414
-
Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase
-
den Elzen N, Pines J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol (2001) 153:121-35. doi:10.1083/jcb.153.1.121
-
(2001)
J Cell Biol
, vol.153
, pp. 121-135
-
-
den Elzen, N.1
Pines, J.2
-
132
-
-
0035795408
-
Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint
-
Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol (2001) 153:137-47. doi:10.1083/jcb.153.1.137
-
(2001)
J Cell Biol
, vol.153
, pp. 137-147
-
-
Geley, S.1
Kramer, E.2
Gieffers, C.3
Gannon, J.4
Peters, J.M.5
Hunt, T.6
-
133
-
-
0029025606
-
The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis
-
Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell (1995) 6:185-97. doi:10.1091/mbc.6.2.185
-
(1995)
Mol Biol Cell
, vol.6
, pp. 185-197
-
-
Sudakin, V.1
Ganoth, D.2
Dahan, A.3
Heller, H.4
Hershko, J.5
Luca, F.C.6
-
134
-
-
84930631701
-
ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins
-
Caballe A, Wenzel DM, Agromayor M, Alam SL, Skalicky JJ, Kloc M, et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife (2015) 4:1-70. doi:10.7554/eLife.06547
-
(2015)
Elife
, vol.4
, pp. 1-70
-
-
Caballe, A.1
Wenzel, D.M.2
Agromayor, M.3
Alam, S.L.4
Skalicky, J.J.5
Kloc, M.6
-
135
-
-
77954957013
-
Membrane budding and scission by the ESCRT machinery: it's all in the neck
-
Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol (2010) 11:556-66. doi:10.1038/nrm2937
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 556-566
-
-
Hurley, J.H.1
Hanson, P.I.2
-
136
-
-
85005917673
-
The abscission checkpoint: making it to the final cut
-
Nähse V, Christ L, Stenmark H, Campsteijn C. The abscission checkpoint: making it to the final cut. Trends Cell Biol (2017) 27:1-11. doi:10.1016/j.tcb.2016.10.001
-
(2017)
Trends Cell Biol
, vol.27
, pp. 1-11
-
-
Nähse, V.1
Christ, L.2
Stenmark, H.3
Campsteijn, C.4
-
137
-
-
33847005413
-
Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1
-
Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol (2007) 176:483-95. doi:10.1083/jcb.200608137
-
(2007)
J Cell Biol
, vol.176
, pp. 483-495
-
-
Dubreuil, V.1
Marzesco, A.M.2
Corbeil, D.3
Huttner, W.B.4
Wilsch-Bräuninger, M.5
-
138
-
-
80055064443
-
Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour
-
Ettinger AW, Wilsch-Bräuninger M, Marzesco A-M, Bickle M, Lohmann A, Maliga Z, et al. Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun (2011) 2:503. doi:10.1038/ncomms1511
-
(2011)
Nat Commun
, vol.2
, pp. 503
-
-
Ettinger, A.W.1
Wilsch-Bräuninger, M.2
Marzesco, A.-M.3
Bickle, M.4
Lohmann, A.5
Maliga, Z.6
-
139
-
-
38349050937
-
Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis
-
Kieserman EK, Glotzer M, Wallingford JB. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr Biol (2008) 18:116-23. doi:10.1016/j.cub.2007.12.028
-
(2008)
Curr Biol
, vol.18
, pp. 116-123
-
-
Kieserman, E.K.1
Glotzer, M.2
Wallingford, J.B.3
-
140
-
-
84890828812
-
TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy
-
Isakson P, Lystad AH, Breen K, Koster G, Stenmark H, Simonsen A. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy (2013) 9:1955-64. doi:10.4161/auto.26085
-
(2013)
Autophagy
, vol.9
, pp. 1955-1964
-
-
Isakson, P.1
Lystad, A.H.2
Breen, K.3
Koster, G.4
Stenmark, H.5
Simonsen, A.6
-
141
-
-
80053564250
-
Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
-
Kuo T-C, Chen C-T, Baron D, Onder TT, Loewer S, Almeida S, et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol (2011) 13:1467-1467. doi:10.1038/ncb2405
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1467-1467
-
-
Kuo, T.-C.1
Chen, C.-T.2
Baron, D.3
Onder, T.T.4
Loewer, S.5
Almeida, S.6
-
142
-
-
58149344946
-
Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
-
Pohl C, Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol (2009) 11:65-70. doi:10.1038/ncb1813
-
(2009)
Nat Cell Biol
, vol.11
, pp. 65-70
-
-
Pohl, C.1
Jentsch, S.2
-
144
-
-
84855712059
-
Autophagic removal of micronuclei
-
Rello-Varona S, Lissa D, Shen S, Niso-Santano M, Senovilla L, Mariño G, et al. Autophagic removal of micronuclei. Cell Cycle (2012) 11:170-6. doi:10.4161/cc.11.1.18564
-
(2012)
Cell Cycle
, vol.11
, pp. 170-176
-
-
Rello-Varona, S.1
Lissa, D.2
Shen, S.3
Niso-Santano, M.4
Senovilla, L.5
Mariño, G.6
-
145
-
-
84897543250
-
Association of CHMP4B and autophagy with micronuclei: implications for cataract formation
-
Sagona AP, Nezis IP, Stenmark H. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Biomed Res Int (2014) 2014:974393. doi:10.1155/2014/974393
-
(2014)
Biomed Res Int
, vol.2014
-
-
Sagona, A.P.1
Nezis, I.P.2
Stenmark, H.3
-
146
-
-
84907886531
-
Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae
-
An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, et al. Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy (2014) 10:1702-11. doi:10.4161/auto.32122
-
(2014)
Autophagy
, vol.10
, pp. 1702-1711
-
-
An, Z.1
Tassa, A.2
Thomas, C.3
Zhong, R.4
Xiao, G.5
Fotedar, R.6
-
147
-
-
84873521661
-
The role of autophagy in genome stability through suppression of abnormal mitosis under starvation
-
Matsui A, Kamada Y, Matsuura A. The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet (2013) 9:e1003245. doi:10.1371/journal.pgen.1003245
-
(2013)
PLoS Genet
, vol.9
-
-
Matsui, A.1
Kamada, Y.2
Matsuura, A.3
-
148
-
-
79960957085
-
Mitotic catastrophe: a mechanism for avoiding genomic instability
-
Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol (2011) 12:385-92. doi:10.1038/nrm3115
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 385-392
-
-
Vitale, I.1
Galluzzi, L.2
Castedo, M.3
Kroemer, G.4
-
149
-
-
84901822090
-
SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors
-
Inoue T, Nakayama Y, Li Y, Matsumori H, Takahashi H, Kojima H, et al. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors. FEBS J (2014) 281:2623-37. doi:10.1111/febs.12810
-
(2014)
FEBS J
, vol.281
, pp. 2623-2637
-
-
Inoue, T.1
Nakayama, Y.2
Li, Y.3
Matsumori, H.4
Takahashi, H.5
Kojima, H.6
-
150
-
-
84883130930
-
ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy
-
Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun (2013) 4:2130. doi:10.1038/ncomms3130
-
(2013)
Nat Commun
, vol.4
, pp. 2130
-
-
Maskey, D.1
Yousefi, S.2
Schmid, I.3
Zlobec, I.4
Perren, A.5
Friis, R.6
-
151
-
-
84355161919
-
Chemical genetic screen for AMPKa2 substrates uncovers a network of proteins involved in mitosis
-
Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, et al. Chemical genetic screen for AMPKa2 substrates uncovers a network of proteins involved in mitosis. Mol Cell (2011) 44:878-92. doi:10.1016/j.molcel.2011.11.005
-
(2011)
Mol Cell
, vol.44
, pp. 878-892
-
-
Banko, M.R.1
Allen, J.J.2
Schaffer, B.E.3
Wilker, E.W.4
Tsou, P.5
White, J.L.6
-
152
-
-
19944413010
-
Genome-wide survey of protein kinases required for cell cycle progression
-
Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature (2004) 432:980-7. doi:10.1038/nature03160
-
(2004)
Nature
, vol.432
, pp. 980-987
-
-
Bettencourt-Dias, M.1
Giet, R.2
Sinka, R.3
Mazumdar, A.4
Lock, W.G.5
Balloux, F.6
-
153
-
-
84865115634
-
AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain
-
Thaiparambil JT, Eggers CM, Marcus AI. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain. Mol Cell Biol (2012) 32:3203-17. doi:10.1128/MCB.00418-12
-
(2012)
Mol Cell Biol
, vol.32
, pp. 3203-3217
-
-
Thaiparambil, J.T.1
Eggers, C.M.2
Marcus, A.I.3
-
154
-
-
34250827107
-
Energy-dependent regulation of cell structure by AMP-activated protein kinase
-
Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature (2007) 447:1017-20. doi:10.1038/nature05828
-
(2007)
Nature
, vol.447
, pp. 1017-1020
-
-
Lee, J.H.1
Koh, H.2
Kim, M.3
Kim, Y.4
Lee, S.Y.5
Karess, R.E.6
-
155
-
-
68449094064
-
The active form of the metabolic sensor AMP-activated protein kinase a (AMPKa) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis
-
Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. The active form of the metabolic sensor AMP-activated protein kinase a (AMPKa) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle (2009) 8:2385-98. doi:10.4161/cc.8.15.9082
-
(2009)
Cell Cycle
, vol.8
, pp. 2385-2398
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Menendez, J.A.3
-
156
-
-
21744445075
-
Regulation of myosin II during cytokinesis in higher eukaryotes
-
Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol (2005) 15:371-7. doi:10.1016/j.tcb.2005.05.004
-
(2005)
Trends Cell Biol
, vol.15
, pp. 371-377
-
-
Matsumura, F.1
-
157
-
-
2042544799
-
Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
-
Rosenblatt J, Cramer LP, Baum B, McGee KM. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell (2004) 117:361-72. doi:10.1016/S0092-8674(04)00341-1
-
(2004)
Cell
, vol.117
, pp. 361-372
-
-
Rosenblatt, J.1
Cramer, L.P.2
Baum, B.3
McGee, K.M.4
-
158
-
-
0034677906
-
Myosins: a diverse superfamily
-
Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta (2000) 1496:3-22. doi:10.1016/S0167-4889(00)00005-7
-
(2000)
Biochim Biophys Acta
, vol.1496
, pp. 3-22
-
-
Sellers, J.R.1
-
160
-
-
0032438538
-
Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK)
-
Chew T-L, Masaracchia RA, Goeckeler ZM, Wysolmerski RB. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK). J Muscle Res Cell Motil (1998) 19:839-54. doi:10.1023/A:1005417926585
-
(1998)
J Muscle Res Cell Motil
, vol.19
, pp. 839-854
-
-
Chew, T.-L.1
Masaracchia, R.A.2
Goeckeler, Z.M.3
Wysolmerski, R.B.4
-
161
-
-
1942538405
-
Myosin phosphatase: structure, regulation and function
-
Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem (2004) 259:197-209. doi:10.1023/B:MCBI.0000021373.14288.00
-
(2004)
Mol Cell Biochem
, vol.259
, pp. 197-209
-
-
Ito, M.1
Nakano, T.2
Erdodi, F.3
Hartshorne, D.J.4
-
162
-
-
40849097955
-
Myosin phosphatase target subunit: many roles in cell function
-
Matsumura F, Hartshorne DJ. Myosin phosphatase target subunit: many roles in cell function. Biochem Biophys Res Commun (2008) 369:149-56. doi:10.1016/j.bbrc.2007.12.090
-
(2008)
Biochem Biophys Res Commun
, vol.369
, pp. 149-156
-
-
Matsumura, F.1
Hartshorne, D.J.2
-
163
-
-
0021348015
-
Activation of actin-activated ATPase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I
-
Tuazon PT, Traugh JA. Activation of actin-activated ATPase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I. J Biol Chem (1984) 259:541-6
-
(1984)
J Biol Chem
, vol.259
, pp. 541-546
-
-
Tuazon, P.T.1
Traugh, J.A.2
-
164
-
-
79951805767
-
Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy
-
Tang H-W, Wang Y-B, Wang S-L, Wu M-H, Lin S-Y, Chen G-C. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J (2011) 30:636-51. doi:10.1038/emboj.2010.338
-
(2011)
EMBO J
, vol.30
, pp. 636-651
-
-
Tang, H.-W.1
Wang, Y.-B.2
Wang, S.-L.3
Wu, M.-H.4
Lin, S.-Y.5
Chen, G.-C.6
-
165
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol (2012) 13:251-62. doi:10.1038/nrm3311
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
166
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRADa/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, et al. Complexes between the LKB1 tumor suppressor, STRADa/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol (2003) 2:28. doi:10.1186/1475-4924-2-28
-
(2003)
J Biol
, vol.2
, pp. 28
-
-
Hawley, S.A.1
Boudeau, J.2
Reid, J.L.3
Mustard, K.J.4
Udd, L.5
Mäkelä, T.P.6
-
167
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A (2004) 101:3329-35. doi:10.1073/pnas.0308061100
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
-
168
-
-
10744230065
-
LKB1 Is the upstream kinase in the AMP-activated protein kinase cascade
-
Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D, et al. LKB1 Is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol (2003) 13:2004-8. doi:10.1016/j.cub.2003.10.031
-
(2003)
Curr Biol
, vol.13
, pp. 2004-2008
-
-
Woods, A.1
Johnstone, S.R.2
Dickerson, K.3
Leiper, F.C.4
Fryer, L.G.D.5
Neumann, D.6
-
169
-
-
23044432463
-
Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
-
Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab (2005) 2:9-19. doi:10.1016/j.cmet.2005.05.009
-
(2005)
Cell Metab
, vol.2
, pp. 9-19
-
-
Hawley, S.A.1
Pan, D.A.2
Mustard, K.J.3
Ross, L.4
Bain, J.5
Edelman, A.M.6
-
170
-
-
23044437445
-
Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
-
Woods A, Dickerson K, Heath R, Hong S, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab (2005) 2:21-33. doi:10.1016/j.cmet.2005.06.005
-
(2005)
Cell Metab
, vol.2
, pp. 21-33
-
-
Woods, A.1
Dickerson, K.2
Heath, R.3
Hong, S.4
Momcilovic, M.5
Johnstone, S.R.6
-
171
-
-
34547689069
-
Identification of S6K2 as a centrosome-located kinase
-
Rossi R, Pester JM, McDowell M, Soza S, Montecucco A, Lee-Fruman KK. Identification of S6K2 as a centrosome-located kinase. FEBS Lett (2007) 581:4058-64. doi:10.1016/j.febslet.2007.07.047
-
(2007)
FEBS Lett
, vol.581
, pp. 4058-4064
-
-
Rossi, R.1
Pester, J.M.2
McDowell, M.3
Soza, S.4
Montecucco, A.5
Lee-Fruman, K.K.6
|