메뉴 건너뛰기




Volumn 7, Issue MAR, 2017, Pages

Autophagy and the cell cycle: A complex landscape

Author keywords

Autophagy; Cancer; Cell cycle; Cell stress; Cytokinesis; Mitosis; P53; Senescence

Indexed keywords

CYCLIN DEPENDENT KINASE; GREEN FLUORESCENT PROTEIN; PROTEIN P53; RAPAMYCIN; RETINOBLASTOMA PROTEIN; TUNICAMYCIN;

EID: 85017115427     PISSN: None     EISSN: 2234943X     Source Type: Journal    
DOI: 10.3389/fonc.2017.00051     Document Type: Review
Times cited : (153)

References (171)
  • 1
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell (2010) 40:280-93. doi:10.1016/j.molcel.2010.09.023
    • (2010) Mol Cell , vol.40 , pp. 280-293
    • Kroemer, G.1    Mariño, G.2    Levine, B.3
  • 2
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell (2008) 132:27-42. doi:10.1016/j.cell.2007.12.018
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 3
    • 84905405893 scopus 로고    scopus 로고
    • Getting ready for building: signaling and autophagosome biogenesis
    • Abada A, Elazar Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep (2014) 15:839-52. doi:10.15252/embr.201439076
    • (2014) EMBO Rep , vol.15 , pp. 839-852
    • Abada, A.1    Elazar, Z.2
  • 4
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet (2009) 43:67-93. doi:10.1146/annurev-genet-102808-114910
    • (2009) Annu Rev Genet , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 5
    • 34250864795 scopus 로고    scopus 로고
    • Protein turnover via autophagy: implications for metabolism
    • Mizushima N, Klionsky DJ. Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr (2007) 27:19-40. doi:10.1146/annurev.nutr.27.061406.093749
    • (2007) Annu Rev Nutr , vol.27 , pp. 19-40
    • Mizushima, N.1    Klionsky, D.J.2
  • 7
    • 1342321743 scopus 로고    scopus 로고
    • Two ubiquitin-like conjugation systems essential for autophagy
    • Ohsumi Y, Mizushima N. Two ubiquitin-like conjugation systems essential for autophagy. Semin Cell Dev Biol (2004) 15:231-6. doi:10.1016/j.semcdb.2003.12.004
    • (2004) Semin Cell Dev Biol , vol.15 , pp. 231-236
    • Ohsumi, Y.1    Mizushima, N.2
  • 8
    • 79952355107 scopus 로고    scopus 로고
    • Selective autophagy mediated by autophagic adapter proteins
    • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy (2011) 7:279-96. doi:10.4161/auto.7.3.14487
    • (2011) Autophagy , vol.7 , pp. 279-296
    • Johansen, T.1    Lamark, T.2
  • 10
    • 84926145894 scopus 로고    scopus 로고
    • AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation
    • Cianfanelli V, Fuoco C, Lorente M, Salazar M, Quondamatteo F, Gherardini PF, et al. AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation. Nat Cell Biol (2015) 17:20-30. doi:10.1038/ncb3072
    • (2015) Nat Cell Biol , vol.17 , pp. 20-30
    • Cianfanelli, V.1    Fuoco, C.2    Lorente, M.3    Salazar, M.4    Quondamatteo, F.5    Gherardini, P.F.6
  • 11
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by Beclin 1
    • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, et al. Induction of autophagy and inhibition of tumorigenesis by Beclin 1. Nature (1999) 402:672-6. doi:10.1038/45257
    • (1999) Nature , vol.402 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3    Brown, K.4    Kempkes, B.5    Hibshoosh, H.6
  • 12
    • 33745751085 scopus 로고    scopus 로고
    • Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG
    • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B-H, et al. Autophagic and tumour suppressor activity of a novel Beclin 1-binding protein UVRAG. Nat Cell Biol (2006) 8:688-99. doi:10.1038/ncb1426
    • (2006) Nat Cell Biol , vol.8 , pp. 688-699
    • Liang, C.1    Feng, P.2    Ku, B.3    Dotan, I.4    Canaani, D.5    Oh, B.-H.6
  • 13
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene
    • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, et al. Promotion of tumorigenesis by heterozygous disruption of the Beclin 1 autophagy gene. J Clin Invest (2003) 112:1809-20. doi:10.1172/JCI200320039
    • (2003) J Clin Invest , vol.112 , pp. 1809-1820
    • Qu, X.1    Yu, J.2    Bhagat, G.3    Furuya, N.4    Hibshoosh, H.5    Troxel, A.6
  • 14
    • 34848899280 scopus 로고    scopus 로고
    • Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
    • Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol (2007) 9:1142-51. doi:10.1038/ncb1634
    • (2007) Nat Cell Biol , vol.9 , pp. 1142-1151
    • Takahashi, Y.1    Coppola, D.2    Matsushita, N.3    Cualing, H.D.4    Sun, M.5    Sato, Y.6
  • 16
    • 0345166111 scopus 로고    scopus 로고
    • Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
    • Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A (2003) 100:15077-82. doi:10.1073/pnas.2436255100
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 15077-15082
    • Yue, Z.1    Jin, S.2    Yang, C.3    Levine, A.J.4    Heintz, N.5
  • 17
    • 34249863298 scopus 로고    scopus 로고
    • Chromosomal instability autophagy suppresses tumor progression by limiting chromosomal instability
    • Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, et al. Chromosomal instability autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev (2007) 21:1367-81. doi:10.1101/gad.1545107
    • (2007) Genes Dev , vol.21 , pp. 1367-1381
    • Mathew, R.1    Kongara, S.2    Beaudoin, B.3    Karp, C.M.4    Bray, K.5    Degenhardt, K.6
  • 19
    • 84861526009 scopus 로고    scopus 로고
    • Deconvoluting the context-dependent role for autophagy in cancer
    • White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer (2012) 12:401-10. doi:10.1038/nrc3262
    • (2012) Nat Rev Cancer , vol.12 , pp. 401-410
    • White, E.1
  • 20
    • 84864828634 scopus 로고    scopus 로고
    • Autophagy and cell growth-the yin and yang of nutrient responses
    • Neufeld TP. Autophagy and cell growth-the yin and yang of nutrient responses. J Cell Sci (2012) 125:2359-68. doi:10.1242/jcs.103333
    • (2012) J Cell Sci , vol.125 , pp. 2359-2368
    • Neufeld, T.P.1
  • 21
    • 84876488191 scopus 로고    scopus 로고
    • mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol (2013) 15:406-16. doi:10.1038/ncb2708
    • (2013) Nat Cell Biol , vol.15 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3    Bielli, P.4    Cianfanelli, V.5    Bordi, M.6
  • 22
    • 10344222155 scopus 로고    scopus 로고
    • How cells coordinate growth and division
    • Jorgensen P, Tyers M. How cells coordinate growth and division. Curr Biol (2004) 14:1014-27. doi:10.1016/j.cub.2004.11.027
    • (2004) Curr Biol , vol.14 , pp. 1014-1027
    • Jorgensen, P.1    Tyers, M.2
  • 23
    • 60749109846 scopus 로고    scopus 로고
    • Cell cycle, CDKs and cancer: a changing paradigm
    • Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer (2009) 9:153-66. doi:10.1038/nrc2602
    • (2009) Nat Rev Cancer , vol.9 , pp. 153-166
    • Malumbres, M.1    Barbacid, M.2
  • 24
    • 9244239811 scopus 로고    scopus 로고
    • G1 cell-cycle control and cancer
    • Massagué J. G1 cell-cycle control and cancer. Nature (2004) 432:298-306. doi:10.1038/nature03094
    • (2004) Nature , vol.432 , pp. 298-306
    • Massagué, J.1
  • 25
    • 16644385890 scopus 로고    scopus 로고
    • The mammalian cell cycle: an overview
    • Harper JV, Brooks G. The mammalian cell cycle: an overview. Methods Mol Biol (2005) 296:113-53. doi:10.1385/1-59259-857-9:113
    • (2005) Methods Mol Biol , vol.296 , pp. 113-153
    • Harper, J.V.1    Brooks, G.2
  • 26
  • 27
    • 78650823745 scopus 로고    scopus 로고
    • A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle
    • Kaminskyy V, Abdi A, Zhivotovsky B. A quantitative assay for the monitoring of autophagosome accumulation in different phases of the cell cycle. Autophagy (2011) 7:83-90. doi:10.4161/auto.7.1.13893
    • (2011) Autophagy , vol.7 , pp. 83-90
    • Kaminskyy, V.1    Abdi, A.2    Zhivotovsky, B.3
  • 29
    • 77952576359 scopus 로고    scopus 로고
    • Negative regulation of Vps34 by Cdk mediated phosphorylation
    • Furuya T, Kim M, Lipinski M, Li J, Kim D, Lu T, et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell (2010) 38:500-11. doi:10.1016/j.molcel.2010.05.009
    • (2010) Mol Cell , vol.38 , pp. 500-511
    • Furuya, T.1    Kim, M.2    Lipinski, M.3    Li, J.4    Kim, D.5    Lu, T.6
  • 30
    • 0029939911 scopus 로고    scopus 로고
    • Sequestration of mitotic (M-phase) chromosomes in autophagosomes: mitotic programmed cell death in human Chang liver cells induced by an OH* burst from vanadyl(4)
    • Sit KH, Paramanantham R, Bay BH, Chan HL, Wong KP, Thong P, et al. Sequestration of mitotic (M-phase) chromosomes in autophagosomes: mitotic programmed cell death in human Chang liver cells induced by an OH* burst from vanadyl(4). Anat Rec (1996) 245:1-8. doi:10.1002/(SICI)1097-0185(199605)245:1<1:AID-AR1>3.0.CO;2-2
    • (1996) Anat Rec , vol.245 , pp. 1-8
    • Sit, K.H.1    Paramanantham, R.2    Bay, B.H.3    Chan, H.L.4    Wong, K.P.5    Thong, P.6
  • 31
    • 84904049068 scopus 로고    scopus 로고
    • Preparing a cell for nuclear envelope breakdown: spatio-temporal control of phosphorylation during mitotic entry
    • álvarez-Fernández M, Malumbres M. Preparing a cell for nuclear envelope breakdown: spatio-temporal control of phosphorylation during mitotic entry. Bioessays (2014) 36:757-65. doi:10.1002/bies.201400040
    • (2014) Bioessays , vol.36 , pp. 757-765
    • Álvarez-Fernández, M.1    Malumbres, M.2
  • 32
    • 0034678366 scopus 로고    scopus 로고
    • W(h)ither the Golgi during mitosis?
    • Nelson WJ. W(h)ither the Golgi during mitosis? J Cell Biol (2000) 149:243-8. doi:10.1083/jcb.149.2.243
    • (2000) J Cell Biol , vol.149 , pp. 243-248
    • Nelson, W.J.1
  • 33
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol (2011) 13:589-98. doi:10.1038/ncb2220
    • (2011) Nat Cell Biol , vol.13 , pp. 589-598
    • Gomes, L.C.1    Di Benedetto, G.2    Scorrano, L.3
  • 34
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA (2011) 108:10190-5. doi:10.1073/pnas.1107402108
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 10190-10195
    • Rambold, A.S.1    Kostelecky, B.2    Elia, N.3    Lippincott-Schwartz, J.4
  • 35
    • 50949115617 scopus 로고    scopus 로고
    • High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy
    • Gomes LC, Scorrano L. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim Biophys Acta (2008) 1777:860-6. doi:10.1016/j.bbabio.2008.05.442
    • (2008) Biochim Biophys Acta , vol.1777 , pp. 860-866
    • Gomes, L.C.1    Scorrano, L.2
  • 37
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem (2007) 282:11521-9. doi:10.1074/jbc.M607279200
    • (2007) J Biol Chem , vol.282 , pp. 11521-11529
    • Taguchi, N.1    Ishihara, N.2    Jofuku, A.3    Oka, T.4    Mihara, K.5
  • 39
    • 84982994792 scopus 로고    scopus 로고
    • Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle
    • Li Z, Ji X, Wang D, Liu J, Zhang X. Autophagic flux is highly active in early mitosis and differentially regulated throughout the cell cycle. Oncotarget (2016) 7:39705-18. doi:10.18632/oncotarget.9451
    • (2016) Oncotarget , vol.7 , pp. 39705-39718
    • Li, Z.1    Ji, X.2    Wang, D.3    Liu, J.4    Zhang, X.5
  • 40
    • 84900805843 scopus 로고    scopus 로고
    • High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy
    • Loukil A, Zonca M, Rebouissou C, Baldin V, Coux O, Biard-Piechaczyk M, et al. High-resolution live-cell imaging reveals novel cyclin A2 degradation foci involving autophagy. J Cell Sci (2014) 127:2145-50. doi:10.1242/jcs.139188
    • (2014) J Cell Sci , vol.127 , pp. 2145-2150
    • Loukil, A.1    Zonca, M.2    Rebouissou, C.3    Baldin, V.4    Coux, O.5    Biard-Piechaczyk, M.6
  • 41
    • 66849104285 scopus 로고    scopus 로고
    • Robust autophagy/mitophagy persists during mitosis
    • Liu L, Xie R, Nguyen S, Ye M, McKeehan WL. Robust autophagy/mitophagy persists during mitosis. Cell Cycle (2009) 8:1616-20. doi:10.4161/cc.8.10.8577
    • (2009) Cell Cycle , vol.8 , pp. 1616-1620
    • Liu, L.1    Xie, R.2    Nguyen, S.3    Ye, M.4    McKeehan, W.L.5
  • 42
    • 38849187293 scopus 로고    scopus 로고
    • CDK inhibitors: cell cycle regulators and beyond
    • Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell (2008) 14:159-69. doi:10.1016/j.devcel.2008.01.013
    • (2008) Dev Cell , vol.14 , pp. 159-169
    • Besson, A.1    Dowdy, S.F.2    Roberts, J.M.3
  • 43
    • 0033574614 scopus 로고    scopus 로고
    • Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors
    • Pavletich NP. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol (1999) 287:821-8. doi:10.1006/jmbi.1999.2640
    • (1999) J Mol Biol , vol.287 , pp. 821-828
    • Pavletich, N.P.1
  • 44
    • 84867271418 scopus 로고    scopus 로고
    • CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis
    • Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J, et al. CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis. Cell Cycle (2012) 11:3599-610. doi:10.4161/cc.21884
    • (2012) Cell Cycle , vol.11 , pp. 3599-3610
    • Capparelli, C.1    Chiavarina, B.2    Whitaker-Menezes, D.3    Pestell, T.G.4    Pestell, R.G.5    Hulit, J.6
  • 46
    • 33947250696 scopus 로고    scopus 로고
    • The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis
    • Liang J, Shao SH, Xu Z-X, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol (2007) 9:218-24. doi:10.1038/ncb1537
    • (2007) Nat Cell Biol , vol.9 , pp. 218-224
    • Liang, J.1    Shao, S.H.2    Xu, Z.-X.3    Hennessy, B.4    Ding, Z.5    Larrea, M.6
  • 47
    • 70349437076 scopus 로고    scopus 로고
    • p53 and E2f: partners in life and death
    • Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer (2009) 9:738-48. doi:10.1038/nrc2718
    • (2009) Nat Rev Cancer , vol.9 , pp. 738-748
    • Polager, S.1    Ginsberg, D.2
  • 48
    • 0033564697 scopus 로고    scopus 로고
    • CDK inhibitors: positive and negative regulators of G1-phase progression
    • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev (1999) 13:1501-12. doi:10.1101/gad.13.12.1501
    • (1999) Genes Dev , vol.13 , pp. 1501-1512
    • Sherr, C.J.1    Roberts, J.M.2
  • 49
    • 84876808719 scopus 로고    scopus 로고
    • Molecular mechanisms underlying RB protein function
    • Dick FA, Rubin SM. Molecular mechanisms underlying RB protein function. Nat Rev Mol Cell Biol (2013) 14:297-306. doi:10.1038/nrm3567
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 297-306
    • Dick, F.A.1    Rubin, S.M.2
  • 50
    • 0029664461 scopus 로고    scopus 로고
    • Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle
    • Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science (1996) 272:877-80. doi:10.1126/science.272.5263.877
    • (1996) Science , vol.272 , pp. 877-880
    • Coats, S.1    Flanagan, W.M.2    Nourse, J.3    Roberts, J.M.4
  • 51
    • 0029666482 scopus 로고    scopus 로고
    • Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts
    • Rivard N, L'Allemain G, Bartek J, Pouysségur J. Abrogation of p27Kip1 by cDNA antisense suppresses quiescence (G0 state) in fibroblasts. J Biol Chem (1996) 271:18337-41. doi:10.1074/jbc.271.31.18337
    • (1996) J Biol Chem , vol.271 , pp. 18337-18341
    • Rivard, N.1    L'Allemain, G.2    Bartek, J.3    Pouysségur, J.4
  • 52
    • 0032012062 scopus 로고    scopus 로고
    • Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade
    • Levkau B, Koyama H, Raines EW, Clurman BE, Herren B, Orth K, et al. Cleavage of p21Cip1/Waf1 and p27Kip1 mediates apoptosis in endothelial cells through activation of Cdk2: role of a caspase cascade. Mol Cell (1998) 1:553-63. doi:10.1016/S1097-2765(00)80055-6
    • (1998) Mol Cell , vol.1 , pp. 553-563
    • Levkau, B.1    Koyama, H.2    Raines, E.W.3    Clurman, B.E.4    Herren, B.5    Orth, K.6
  • 53
    • 84955184800 scopus 로고    scopus 로고
    • Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy
    • Campos T, Ziehe J, Palma M, Escobar D, Tapia JC, Pincheira R, et al. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog (2016) 55:220-9. doi:10.1002/mc.22272
    • (2016) Mol Carcinog , vol.55 , pp. 220-229
    • Campos, T.1    Ziehe, J.2    Palma, M.3    Escobar, D.4    Tapia, J.C.5    Pincheira, R.6
  • 54
    • 77951001692 scopus 로고    scopus 로고
    • Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae
    • Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell (2010) 38:250-64. doi:10.1016/j.molcel.2010.02.033
    • (2010) Mol Cell , vol.38 , pp. 250-264
    • Yang, Z.1    Geng, J.2    Yen, W.L.3    Wang, K.4    Klionsky, D.J.5
  • 55
    • 49649121765 scopus 로고    scopus 로고
    • E2F1 regulates autophagy and the transcription of autophagy genes
    • Polager S, Ofir M, Ginsberg D. E2F1 regulates autophagy and the transcription of autophagy genes. Oncogene (2008) 27:4860-4. doi:10.1038/onc.2008.117
    • (2008) Oncogene , vol.27 , pp. 4860-4864
    • Polager, S.1    Ofir, M.2    Ginsberg, D.3
  • 56
    • 0034802618 scopus 로고    scopus 로고
    • Use of chromatin immunoprecipitation to clone novel E2F target promoters
    • Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ. Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol (2001) 21:6820-32. doi:10.1128/MCB.21.20.6820-6832.2001
    • (2001) Mol Cell Biol , vol.21 , pp. 6820-6832
    • Weinmann, A.S.1    Bartley, S.M.2    Zhang, T.3    Zhang, M.Q.4    Farnham, P.J.5
  • 57
    • 33646523798 scopus 로고    scopus 로고
    • A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death
    • Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, et al. A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell (2006) 22:463-75. doi:10.1016/j.molcel.2006.04.014
    • (2006) Mol Cell , vol.22 , pp. 463-475
    • Reef, S.1    Zalckvar, E.2    Shifman, O.3    Bialik, S.4    Sabanay, H.5    Oren, M.6
  • 59
    • 65549120715 scopus 로고    scopus 로고
    • Modes of p53 regulation
    • Kruse JP, Gu W. Modes of p53 regulation. Cell (2009) 137:609-22. doi:10.1016/j.cell.2009.04.050
    • (2009) Cell , vol.137 , pp. 609-622
    • Kruse, J.P.1    Gu, W.2
  • 61
    • 84988905857 scopus 로고    scopus 로고
    • Recent insights into the function of autophagy in cancer
    • Amaravadi R, Kimmelman AC, White E. Recent insights into the function of autophagy in cancer. Genes Dev (2016) 30:1913-30. doi:10.1101/gad.287524.116
    • (2016) Genes Dev , vol.30 , pp. 1913-1930
    • Amaravadi, R.1    Kimmelman, A.C.2    White, E.3
  • 63
    • 84884820652 scopus 로고    scopus 로고
    • Seminars in cancer biology regulation of autophagy by stress-responsive transcription factors
    • Pietrocola F, Izzo V, Niso-santano M, Kroemer G. Seminars in cancer biology regulation of autophagy by stress-responsive transcription factors. Semin Cancer Biol (2013) 23:310-22. doi:10.1016/j.semcancer.2013.05.008
    • (2013) Semin Cancer Biol , vol.23 , pp. 310-322
    • Pietrocola, F.1    Izzo, V.2    Niso-santano, M.3    Kroemer, G.4
  • 64
    • 34248194200 scopus 로고    scopus 로고
    • The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways
    • Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S, et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res (2007) 67:3043-53. doi:10.1158/0008-5472.CAN-06-4149
    • (2007) Cancer Res , vol.67 , pp. 3043-3053
    • Feng, Z.1    Hu, W.2    de Stanchina, E.3    Teresky, A.K.4    Jin, S.5    Lowe, S.6
  • 65
    • 48449101433 scopus 로고    scopus 로고
    • p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling
    • Budanov AV, Karin M. p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell (2008) 134:451-60. doi:10.1016/j.cell.2008.06.028
    • (2008) Cell , vol.134 , pp. 451-460
    • Budanov, A.V.1    Karin, M.2
  • 67
    • 84877311822 scopus 로고    scopus 로고
    • Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses
    • Kenzelmann Broz D, Mello SS, Bieging KT, Jiang D, Dusek RL, Brady CA, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses. Genes Dev (2013) 27:1016-31. doi:10.1101/gad.212282.112
    • (2013) Genes Dev , vol.27 , pp. 1016-1031
    • Kenzelmann Broz, D.1    Mello, S.S.2    Bieging, K.T.3    Jiang, D.4    Dusek, R.L.5    Brady, C.A.6
  • 69
    • 20444363122 scopus 로고    scopus 로고
    • The coordinate regulation of the p53 and mTOR pathways in cells
    • Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A (2005) 102:8204-9. doi:10.1073/pnas.0502857102
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 8204-8209
    • Feng, Z.1    Zhang, H.2    Levine, A.J.3    Jin, S.4
  • 70
    • 80052719816 scopus 로고    scopus 로고
    • Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death
    • Gao W, Shen Z, Shang L, Wang X. Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ (2011) 18:1598-607. doi:10.1038/cdd.2011.33
    • (2011) Cell Death Differ , vol.18 , pp. 1598-1607
    • Gao, W.1    Shen, Z.2    Shang, L.3    Wang, X.4
  • 71
    • 68249106060 scopus 로고    scopus 로고
    • BH3-only proteins in apoptosis and beyond: an overview
    • Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene (2008) 27(Suppl 1):S2-19. doi:10.1038/onc.2009.39
    • (2008) Oncogene , vol.27 , pp. S2-S19
    • Lomonosova, E.1    Chinnadurai, G.2
  • 72
    • 34248998801 scopus 로고    scopus 로고
    • Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1
    • Maiuri MC, Le Toumelin G, Criollo A, Rain J-C, Gautier F, Juin P, et al. Functional and physical interaction between Bcl-XL and a BH3-like domain in Beclin-1. EMBO J (2007) 26:2527-39. doi:10.1038/sj.emboj.7601689
    • (2007) EMBO J , vol.26 , pp. 2527-2539
    • Maiuri, M.C.1    Le Toumelin, G.2    Criollo, A.3    Rain, J.-C.4    Gautier, F.5    Juin, P.6
  • 73
    • 14844337826 scopus 로고    scopus 로고
    • DAPK1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53
    • Martoriati A, Doumont G, Alcalay M, Bellefroid E, Pelicci PG, Marine J-C. DAPK1, encoding an activator of a p19ARF-p53-mediated apoptotic checkpoint, is a transcription target of p53. Oncogene (2005) 24:1461-6. doi:10.1038/sj.onc.1208256
    • (2005) Oncogene , vol.24 , pp. 1461-1466
    • Martoriati, A.1    Doumont, G.2    Alcalay, M.3    Bellefroid, E.4    Pelicci, P.G.5    Marine, J.-C.6
  • 74
    • 61849102389 scopus 로고    scopus 로고
    • DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of Beclin 1 from Bcl-XL and induction of autophagy
    • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, et al. DAP-kinase-mediated phosphorylation on the BH3 domain of Beclin 1 promotes dissociation of Beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep (2009) 10:285-92. doi:10.1038/embor.2008.246
    • (2009) EMBO Rep , vol.10 , pp. 285-292
    • Zalckvar, E.1    Berissi, H.2    Mizrachy, L.3    Idelchuk, Y.4    Koren, I.5    Eisenstein, M.6
  • 75
    • 33745885329 scopus 로고    scopus 로고
    • DRAM, a p53-induced modulator of autophagy, is critical for apoptosis
    • Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, et al. DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell (2006) 126:121-34. doi:10.1016/j.cell.2006.05.034
    • (2006) Cell , vol.126 , pp. 121-134
    • Crighton, D.1    Wilkinson, S.2    O'Prey, J.3    Syed, N.4    Smith, P.5    Harrison, P.R.6
  • 76
    • 84859639962 scopus 로고    scopus 로고
    • Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
    • Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJR, Motoyama N, et al. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science (2012) 336:225-8. doi:10.1126/science.1218395
    • (2012) Science , vol.336 , pp. 225-228
    • Lee, I.H.1    Kawai, Y.2    Fergusson, M.M.3    Rovira, I.I.4    Bishop, A.J.R.5    Motoyama, N.6
  • 77
    • 20844449238 scopus 로고    scopus 로고
    • AMP-activated protein kinase induces a p53-dependent metabolic checkpoint
    • Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell (2005) 18:283-93. doi:10.1016/j.molcel.2005.03.027
    • (2005) Mol Cell , vol.18 , pp. 283-293
    • Jones, R.G.1    Plas, D.R.2    Kubek, S.3    Buzzai, M.4    Mu, J.5    Xu, Y.6
  • 78
    • 80053501671 scopus 로고    scopus 로고
    • Beclin 1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
    • Liu J, Xia H, Kim M, Xu L, Li Y, Zhang L, et al. Beclin 1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell (2011) 147:223-34. doi:10.1016/j.cell.2011.08.037
    • (2011) Cell , vol.147 , pp. 223-234
    • Liu, J.1    Xia, H.2    Kim, M.3    Xu, L.4    Li, Y.5    Zhang, L.6
  • 79
    • 75749132016 scopus 로고    scopus 로고
    • USP10 regulates p53 localization and stability by deubiquitinating p53
    • Yuan J, Luo K, Zhang L, Cheville JC, Lou Z. USP10 regulates p53 localization and stability by deubiquitinating p53. Cell (2010) 140:384-96. doi:10.1016/j.cell.2009.12.032
    • (2010) Cell , vol.140 , pp. 384-396
    • Yuan, J.1    Luo, K.2    Zhang, L.3    Cheville, J.C.4    Lou, Z.5
  • 80
    • 84921451081 scopus 로고    scopus 로고
    • FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation
    • Xiao J, Zhang T, Xu D, Wang H, Cai Y, Jin T, et al. FBXL20-mediated Vps34 ubiquitination as a p53 controlled checkpoint in regulating autophagy and receptor degradation. Genes Dev (2015) 29:184-96. doi:10.1101/gad.252528.114
    • (2015) Genes Dev , vol.29 , pp. 184-196
    • Xiao, J.1    Zhang, T.2    Xu, D.3    Wang, H.4    Cai, Y.5    Jin, T.6
  • 82
  • 83
    • 80051707399 scopus 로고    scopus 로고
    • p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200
    • Morselli E, Shen S, Ruckenstuhl C, Bauer MA, Mariño G, Galluzzi L, et al. p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle (2011) 10:2763-9. doi:10.4161/cc.10.16.16868
    • (2011) Cell Cycle , vol.10 , pp. 2763-2769
    • Morselli, E.1    Shen, S.2    Ruckenstuhl, C.3    Bauer, M.A.4    Mariño, G.5    Galluzzi, L.6
  • 84
    • 84983418010 scopus 로고    scopus 로고
    • The cell fate: senescence or quiescence
    • Terzi MY, Izmirli M, Gogebakan B. The cell fate: senescence or quiescence. Mol Biol Rep (2016) 43(11):1213-20. doi:10.1007/s11033-016-4065-0
    • (2016) Mol Biol Rep , vol.43 , Issue.11 , pp. 1213-1220
    • Terzi, M.Y.1    Izmirli, M.2    Gogebakan, B.3
  • 85
    • 79957880743 scopus 로고    scopus 로고
    • Cell cycle arrest is not senescence
    • Blagosklonny MV. Cell cycle arrest is not senescence. Aging (2011) 3:94-101. doi:10.18632/aging.100281
    • (2011) Aging , vol.3 , pp. 94-101
    • Blagosklonny, M.V.1
  • 86
    • 84951952822 scopus 로고    scopus 로고
    • Senescence as a general cellular response to stress: a mini-review
    • Fridlyanskaya I, Alekseenko L, Nikolsky N. Senescence as a general cellular response to stress: a mini-review. Exp Gerontol (2015) 72:124-8. doi:10.1016/j.exger.2015.09.021
    • (2015) Exp Gerontol , vol.72 , pp. 124-128
    • Fridlyanskaya, I.1    Alekseenko, L.2    Nikolsky, N.3
  • 87
    • 84877332618 scopus 로고    scopus 로고
    • Autophagy and senescence: a partnership in search of definition
    • Gewirtz DA. Autophagy and senescence: a partnership in search of definition. Autophagy (2013) 9:808-12. doi:10.4161/auto.23922
    • (2013) Autophagy , vol.9 , pp. 808-812
    • Gewirtz, D.A.1
  • 88
    • 64349105425 scopus 로고    scopus 로고
    • Eating to exit: autophagy-enabled senescence revealed
    • White E, Lowe SW. Eating to exit: autophagy-enabled senescence revealed. Genes Dev (2009) 23:784-7. doi:10.1101/gad.1795309
    • (2009) Genes Dev , vol.23 , pp. 784-787
    • White, E.1    Lowe, S.W.2
  • 89
    • 84946567021 scopus 로고    scopus 로고
    • Autophagy mediates degradation of nuclear lamina
    • Dou Z, Xu C, Donahue G, Shimi T, Pan J-A, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature (2015) 527:1-17. doi:10.1038/nature15548
    • (2015) Nature , vol.527 , pp. 1-17
    • Dou, Z.1    Xu, C.2    Donahue, G.3    Shimi, T.4    Pan, J.-A.5    Zhu, J.6
  • 90
    • 84869214214 scopus 로고    scopus 로고
    • The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep?
    • Goehe RW, Di X, Sharma K, Bristol ML, Henderson SC, Valerie K, et al. The autophagy-senescence connection in chemotherapy: must tumor cells (self) eat before they sleep? J Pharmacol Exp Ther (2012) 343:763-78. doi:10.1124/jpet.112.197590
    • (2012) J Pharmacol Exp Ther , vol.343 , pp. 763-778
    • Goehe, R.W.1    Di, X.2    Sharma, K.3    Bristol, M.L.4    Henderson, S.C.5    Valerie, K.6
  • 91
    • 84884693919 scopus 로고    scopus 로고
    • Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma
    • Liu H, He Z, von Rütte T, Yousefi S, Hunger RE, Simon H-U. Down-regulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci Transl Med (2013) 5:202ra123. doi:10.1126/scitranslmed.3005864
    • (2013) Sci Transl Med , vol.5
    • Liu, H.1    He, Z.2    von Rütte, T.3    Yousefi, S.4    Hunger, R.E.5    Simon, H.-U.6
  • 92
    • 84877297444 scopus 로고    scopus 로고
    • Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells
    • Qi M, Fan S, Yao G, Li Z, Zhou H, Tashiro S, et al. Pseudolaric acid B-induced autophagy contributes to senescence via enhancement of ROS generation and mitochondrial dysfunction in murine fibrosarcoma L929 cells. J Pharmacol Sci (2013) 121:200-11. doi:10.1254/jphs.12269FP
    • (2013) J Pharmacol Sci , vol.121 , pp. 200-211
    • Qi, M.1    Fan, S.2    Yao, G.3    Li, Z.4    Zhou, H.5    Tashiro, S.6
  • 95
    • 84907306512 scopus 로고    scopus 로고
    • Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence
    • Horikawa I, Fujita K, Jenkins LMM, Hiyoshi Y, Mondal AM, Vojtesek B, et al. Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence. Nat Commun (2014) 5:4706. doi:10.1038/ncomms5706
    • (2014) Nat Commun , vol.5 , pp. 4706
    • Horikawa, I.1    Fujita, K.2    Jenkins, L.M.M.3    Hiyoshi, Y.4    Mondal, A.M.5    Vojtesek, B.6
  • 97
    • 69949171557 scopus 로고    scopus 로고
    • p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence
    • Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ, et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat Cell Biol (2009) 11:1135-42. doi:10.1038/ncb1928
    • (2009) Nat Cell Biol , vol.11 , pp. 1135-1142
    • Fujita, K.1    Mondal, A.M.2    Horikawa, I.3    Nguyen, G.H.4    Kumamoto, K.5    Sohn, J.J.6
  • 98
    • 84862886876 scopus 로고    scopus 로고
    • Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production
    • Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG, et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production. Cell Cycle (2012) 11:2285-302. doi:10.4161/cc.20718
    • (2012) Cell Cycle , vol.11 , pp. 2285-2302
    • Capparelli, C.1    Guido, C.2    Whitaker-Menezes, D.3    Bonuccelli, G.4    Balliet, R.5    Pestell, T.G.6
  • 99
    • 84859754266 scopus 로고    scopus 로고
    • AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy
    • Astle MV, Hannan KM, Ng PY, Lee RS, George AJ, Hsu AK, et al. AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene (2012) 31:1949-62. doi:10.1038/onc.2011.394
    • (2012) Oncogene , vol.31 , pp. 1949-1962
    • Astle, M.V.1    Hannan, K.M.2    Ng, P.Y.3    Lee, R.S.4    George, A.J.5    Hsu, A.K.6
  • 103
    • 80054005335 scopus 로고    scopus 로고
    • Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin
    • Leontieva OV, Demidenko ZN, Gudkov AV, Blagosklonny MV. Elimination of proliferating cells unmasks the shift from senescence to quiescence caused by rapamycin. PLoS One (2011) 6:e26126. doi:10.1371/journal.pone.0026126
    • (2011) PLoS One , vol.6
    • Leontieva, O.V.1    Demidenko, Z.N.2    Gudkov, A.V.3    Blagosklonny, M.V.4
  • 104
    • 84934441088 scopus 로고    scopus 로고
    • Cell senescence as both a dynamic and a static phenotype
    • Young ARJ, Narita M, Narita M. Cell senescence as both a dynamic and a static phenotype. Methods Mol Biol (2013) 965:1-13. doi:10.1007/978-1-62703-239-1_1
    • (2013) Methods Mol Biol , vol.965 , pp. 1-13
    • Young, A.R.J.1    Narita, M.2    Narita, M.3
  • 105
    • 50549087736 scopus 로고    scopus 로고
    • Growth stimulation leads to cellular senescence when the cell cycle is blocked
    • Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle (2008) 7:3355-61. doi:10.4161/cc.7.21.6919
    • (2008) Cell Cycle , vol.7 , pp. 3355-3361
    • Demidenko, Z.N.1    Blagosklonny, M.V.2
  • 106
    • 84863430906 scopus 로고    scopus 로고
    • Status of mTOR activity may phenotypically differentiate senescence and quiescence
    • Cho S, Hwang ES. Status of mTOR activity may phenotypically differentiate senescence and quiescence. Mol Cells (2012) 33:597-604. doi:10.1007/s10059-012-0042-1
    • (2012) Mol Cells , vol.33 , pp. 597-604
    • Cho, S.1    Hwang, E.S.2
  • 107
  • 108
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell (2010) 141:290-303. doi:10.1016/j.cell.2010.02.024
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3    Markhard, A.L.4    Nada, S.5    Sabatini, D.M.6
  • 109
    • 84884634690 scopus 로고    scopus 로고
    • Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers
    • Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans (2013) 41:1103-30. doi:10.1042/BST20130134
    • (2013) Biochem Soc Trans , vol.41 , pp. 1103-1130
    • Sarkar, S.1
  • 111
    • 79961194820 scopus 로고    scopus 로고
    • Autophagy impairment induces premature senescence in primary human fibroblasts
    • Kang HT, Lee KB, Kim SY, Choi HR, Park SC. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS One (2011) 6:e23367. doi:10.1371/journal.pone.0023367
    • (2011) PLoS One , vol.6
    • Kang, H.T.1    Lee, K.B.2    Kim, S.Y.3    Choi, H.R.4    Park, S.C.5
  • 112
    • 84942456107 scopus 로고    scopus 로고
    • The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4
    • Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science (2015) 349:aaa5612-5612. doi:10.1126/science.aaa5612
    • (2015) Science , vol.349
    • Kang, C.1    Xu, Q.2    Martin, T.D.3    Li, M.Z.4    Demaria, M.5    Aron, L.6
  • 113
    • 84865191462 scopus 로고    scopus 로고
    • Autophagic activity dictates the cellular response to oncogenic RAS
    • Wang Y, Wang XD, Lapi E, Sullivan A, Jia W, He Y-W, et al. Autophagic activity dictates the cellular response to oncogenic RAS. Proc Natl Acad Sci U S A (2012) 109:13325-30. doi:10.1073/pnas.1120193109
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 13325-13330
    • Wang, Y.1    Wang, X.D.2    Lapi, E.3    Sullivan, A.4    Jia, W.5    He, Y.-W.6
  • 114
    • 0033565655 scopus 로고    scopus 로고
    • Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
    • Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J (1999) 18:3888-96. doi:10.1093/emboj/18.14.3888
    • (1999) EMBO J , vol.18 , pp. 3888-3896
    • Mizushima, N.1    Noda, T.2    Ohsumi, Y.3
  • 115
    • 25844475838 scopus 로고    scopus 로고
    • On the road to cancer: aneuploidy and the mitotic checkpoint
    • Kops GJ, Weaver BA, Cleveland DW. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer (2005) 5:773-85. doi:10.1038/nrc1714
    • (2005) Nat Rev Cancer , vol.5 , pp. 773-785
    • Kops, G.J.1    Weaver, B.A.2    Cleveland, D.W.3
  • 116
    • 77949579365 scopus 로고    scopus 로고
    • Mechanisms of chromosomal instability
    • Thompson SL, Bakhoum SF, Compton DA. Mechanisms of chromosomal instability. Curr Biol (2010) 20:R285-95. doi:10.1016/j.cub.2010.01.034
    • (2010) Curr Biol , vol.20 , pp. R285-R295
    • Thompson, S.L.1    Bakhoum, S.F.2    Compton, D.A.3
  • 117
    • 84860514120 scopus 로고    scopus 로고
    • Molecular control of animal cell cytokinesis
    • Fededa JP, Gerlich DW. Molecular control of animal cell cytokinesis. Nat Cell Biol (2012) 14:440-7. doi:10.1038/ncb2482
    • (2012) Nat Cell Biol , vol.14 , pp. 440-447
    • Fededa, J.P.1    Gerlich, D.W.2
  • 118
    • 77950510375 scopus 로고    scopus 로고
    • PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody
    • Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, et al. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol (2010) 12:362-71. doi:10.1038/ncb2036
    • (2010) Nat Cell Biol , vol.12 , pp. 362-371
    • Sagona, A.P.1    Nezis, I.P.2    Pedersen, N.M.3    Liestøl, K.4    Poulton, J.5    Rusten, T.E.6
  • 119
    • 78049271501 scopus 로고    scopus 로고
    • A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic
    • Thoresen SB, Pedersen NM, Liestøl K, Stenmark H. A phosphatidylinositol 3-kinase class III sub-complex containing VPS15, VPS34, Beclin 1, UVRAG and BIF-1 regulates cytokinesis and degradative endocytic traffic. Exp Cell Res (2010) 316:3368-78. doi:10.1016/j.yexcr.2010.07.008
    • (2010) Exp Cell Res , vol.316 , pp. 3368-3378
    • Thoresen, S.B.1    Pedersen, N.M.2    Liestøl, K.3    Stenmark, H.4
  • 120
    • 84975907022 scopus 로고    scopus 로고
    • Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation
    • You SY, Park YS, Jeon H-J, Cho D-H, Jeon HB, Kim SH, et al. Beclin-1 knockdown shows abscission failure but not autophagy defect during oocyte meiotic maturation. Cell Cycle (2016) 15:1611-9. doi:10.1080/15384101.2016.1181235
    • (2016) Cell Cycle , vol.15 , pp. 1611-1619
    • You, S.Y.1    Park, Y.S.2    Jeon, H.-J.3    Cho, D.-H.4    Jeon, H.B.5    Kim, S.H.6
  • 121
    • 79953043624 scopus 로고    scopus 로고
    • A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis
    • Sagona AP, Nezis IP, Bache KG, Haglund K, Bakken AC, Skotheim RI, et al. A tumor-associated mutation of FYVE-CENT prevents its interaction with Beclin 1 and interferes with cytokinesis. PLoS One (2011) 6:e17086. doi:10.1371/journal.pone.0017086
    • (2011) PLoS One , vol.6
    • Sagona, A.P.1    Nezis, I.P.2    Bache, K.G.3    Haglund, K.4    Bakken, A.C.5    Skotheim, R.I.6
  • 122
    • 79960726254 scopus 로고    scopus 로고
    • Phosphatases: providing safe passage through mitotic exit
    • Wurzenberger C, Gerlich DW. Phosphatases: providing safe passage through mitotic exit. Nat Rev Mol Cell Biol (2011) 12:469-82. doi:10.1038/nrm3149
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 469-482
    • Wurzenberger, C.1    Gerlich, D.W.2
  • 123
  • 124
    • 27144507868 scopus 로고    scopus 로고
    • Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells
    • Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D. Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature (2005) 437:1043-7. doi:10.1038/nature04217
    • (2005) Nature , vol.437 , pp. 1043-1047
    • Fujiwara, T.1    Bandi, M.2    Nitta, M.3    Ivanova, E.V.4    Bronson, R.T.5    Pellman, D.6
  • 125
    • 59049101302 scopus 로고    scopus 로고
    • Aurora B-mediated abscission checkpoint protects against tetraploidization
    • Steigemann P, Wurzenberger C, Schmitz MHA, Held M, Guizetti J, Maar S, et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell (2009) 136:473-84. doi:10.1016/j.cell.2008.12.020
    • (2009) Cell , vol.136 , pp. 473-484
    • Steigemann, P.1    Wurzenberger, C.2    Schmitz, M.H.A.3    Held, M.4    Guizetti, J.5    Maar, S.6
  • 126
    • 39749141485 scopus 로고    scopus 로고
    • The regulation and function of Class III PI3Ks: novel roles for Vps34
    • Backer JM. The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J (2008) 410:1-17. doi:10.1042/BJ20071427
    • (2008) Biochem J , vol.410 , pp. 1-17
    • Backer, J.M.1
  • 127
    • 84880863625 scopus 로고    scopus 로고
    • Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability
    • Belaid A, Cerezo M, Chargui A, Corcelle-Termeau E, Pedeutour F, Giuliano S, et al. Autophagy plays a critical role in the degradation of active RHOA, the control of cell cytokinesis, and genomic stability. Cancer Res (2013) 73:4311-22. doi:10.1158/0008-5472.CAN-12-4142
    • (2013) Cancer Res , vol.73 , pp. 4311-4322
    • Belaid, A.1    Cerezo, M.2    Chargui, A.3    Corcelle-Termeau, E.4    Pedeutour, F.5    Giuliano, S.6
  • 128
    • 28244444494 scopus 로고    scopus 로고
    • Cytokinesis: welcome to the Rho zone
    • Piekny A, Werner M, Glotzer M. Cytokinesis: welcome to the Rho zone. Trends Cell Biol (2005) 15:651-8. doi:10.1016/j.tcb.2005.10.006
    • (2005) Trends Cell Biol , vol.15 , pp. 651-658
    • Piekny, A.1    Werner, M.2    Glotzer, M.3
  • 129
    • 23944499922 scopus 로고    scopus 로고
    • An ECT2-centralspindlin complex regulates the localization and function of RhoA
    • Yüce ö, Piekny A, Glotzer M. An ECT2-centralspindlin complex regulates the localization and function of RhoA. J Cell Biol (2005) 170:571-82. doi:10.1083/jcb.200501097
    • (2005) J Cell Biol , vol.170 , pp. 571-582
    • Yüce, Ö.1    Piekny, A.2    Glotzer, M.3
  • 130
    • 84856712951 scopus 로고    scopus 로고
    • A novel function for Cyclin A2: control of cell invasion via RhoA signaling
    • Arsic N, Bendris N, Peter M, Begon-Pescia C, Rebouissou C, Gadéa G, et al. A novel function for Cyclin A2: control of cell invasion via RhoA signaling. J Cell Biol (2012) 196:147-62. doi:10.1083/jcb.201102085
    • (2012) J Cell Biol , vol.196 , pp. 147-162
    • Arsic, N.1    Bendris, N.2    Peter, M.3    Begon-Pescia, C.4    Rebouissou, C.5    Gadéa, G.6
  • 131
    • 0035795414 scopus 로고    scopus 로고
    • Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase
    • den Elzen N, Pines J. Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. J Cell Biol (2001) 153:121-35. doi:10.1083/jcb.153.1.121
    • (2001) J Cell Biol , vol.153 , pp. 121-135
    • den Elzen, N.1    Pines, J.2
  • 132
    • 0035795408 scopus 로고    scopus 로고
    • Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint
    • Geley S, Kramer E, Gieffers C, Gannon J, Peters JM, Hunt T. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J Cell Biol (2001) 153:137-47. doi:10.1083/jcb.153.1.137
    • (2001) J Cell Biol , vol.153 , pp. 137-147
    • Geley, S.1    Kramer, E.2    Gieffers, C.3    Gannon, J.4    Peters, J.M.5    Hunt, T.6
  • 133
    • 0029025606 scopus 로고
    • The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis
    • Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, et al. The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell (1995) 6:185-97. doi:10.1091/mbc.6.2.185
    • (1995) Mol Biol Cell , vol.6 , pp. 185-197
    • Sudakin, V.1    Ganoth, D.2    Dahan, A.3    Heller, H.4    Hershko, J.5    Luca, F.C.6
  • 134
    • 84930631701 scopus 로고    scopus 로고
    • ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins
    • Caballe A, Wenzel DM, Agromayor M, Alam SL, Skalicky JJ, Kloc M, et al. ULK3 regulates cytokinetic abscission by phosphorylating ESCRT-III proteins. Elife (2015) 4:1-70. doi:10.7554/eLife.06547
    • (2015) Elife , vol.4 , pp. 1-70
    • Caballe, A.1    Wenzel, D.M.2    Agromayor, M.3    Alam, S.L.4    Skalicky, J.J.5    Kloc, M.6
  • 135
    • 77954957013 scopus 로고    scopus 로고
    • Membrane budding and scission by the ESCRT machinery: it's all in the neck
    • Hurley JH, Hanson PI. Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nat Rev Mol Cell Biol (2010) 11:556-66. doi:10.1038/nrm2937
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 556-566
    • Hurley, J.H.1    Hanson, P.I.2
  • 136
    • 85005917673 scopus 로고    scopus 로고
    • The abscission checkpoint: making it to the final cut
    • Nähse V, Christ L, Stenmark H, Campsteijn C. The abscission checkpoint: making it to the final cut. Trends Cell Biol (2017) 27:1-11. doi:10.1016/j.tcb.2016.10.001
    • (2017) Trends Cell Biol , vol.27 , pp. 1-11
    • Nähse, V.1    Christ, L.2    Stenmark, H.3    Campsteijn, C.4
  • 137
    • 33847005413 scopus 로고    scopus 로고
    • Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1
    • Dubreuil V, Marzesco AM, Corbeil D, Huttner WB, Wilsch-Bräuninger M. Midbody and primary cilium of neural progenitors release extracellular membrane particles enriched in the stem cell marker prominin-1. J Cell Biol (2007) 176:483-95. doi:10.1083/jcb.200608137
    • (2007) J Cell Biol , vol.176 , pp. 483-495
    • Dubreuil, V.1    Marzesco, A.M.2    Corbeil, D.3    Huttner, W.B.4    Wilsch-Bräuninger, M.5
  • 138
    • 80055064443 scopus 로고    scopus 로고
    • Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour
    • Ettinger AW, Wilsch-Bräuninger M, Marzesco A-M, Bickle M, Lohmann A, Maliga Z, et al. Proliferating versus differentiating stem and cancer cells exhibit distinct midbody-release behaviour. Nat Commun (2011) 2:503. doi:10.1038/ncomms1511
    • (2011) Nat Commun , vol.2 , pp. 503
    • Ettinger, A.W.1    Wilsch-Bräuninger, M.2    Marzesco, A.-M.3    Bickle, M.4    Lohmann, A.5    Maliga, Z.6
  • 139
    • 38349050937 scopus 로고    scopus 로고
    • Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis
    • Kieserman EK, Glotzer M, Wallingford JB. Developmental regulation of central spindle assembly and cytokinesis during vertebrate embryogenesis. Curr Biol (2008) 18:116-23. doi:10.1016/j.cub.2007.12.028
    • (2008) Curr Biol , vol.18 , pp. 116-123
    • Kieserman, E.K.1    Glotzer, M.2    Wallingford, J.B.3
  • 140
    • 84890828812 scopus 로고    scopus 로고
    • TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy
    • Isakson P, Lystad AH, Breen K, Koster G, Stenmark H, Simonsen A. TRAF6 mediates ubiquitination of KIF23/MKLP1 and is required for midbody ring degradation by selective autophagy. Autophagy (2013) 9:1955-64. doi:10.4161/auto.26085
    • (2013) Autophagy , vol.9 , pp. 1955-1964
    • Isakson, P.1    Lystad, A.H.2    Breen, K.3    Koster, G.4    Stenmark, H.5    Simonsen, A.6
  • 141
    • 80053564250 scopus 로고    scopus 로고
    • Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity
    • Kuo T-C, Chen C-T, Baron D, Onder TT, Loewer S, Almeida S, et al. Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol (2011) 13:1467-1467. doi:10.1038/ncb2405
    • (2011) Nat Cell Biol , vol.13 , pp. 1467-1467
    • Kuo, T.-C.1    Chen, C.-T.2    Baron, D.3    Onder, T.T.4    Loewer, S.5    Almeida, S.6
  • 142
    • 58149344946 scopus 로고    scopus 로고
    • Midbody ring disposal by autophagy is a post-abscission event of cytokinesis
    • Pohl C, Jentsch S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol (2009) 11:65-70. doi:10.1038/ncb1813
    • (2009) Nat Cell Biol , vol.11 , pp. 65-70
    • Pohl, C.1    Jentsch, S.2
  • 145
    • 84897543250 scopus 로고    scopus 로고
    • Association of CHMP4B and autophagy with micronuclei: implications for cataract formation
    • Sagona AP, Nezis IP, Stenmark H. Association of CHMP4B and autophagy with micronuclei: implications for cataract formation. Biomed Res Int (2014) 2014:974393. doi:10.1155/2014/974393
    • (2014) Biomed Res Int , vol.2014
    • Sagona, A.P.1    Nezis, I.P.2    Stenmark, H.3
  • 146
    • 84907886531 scopus 로고    scopus 로고
    • Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae
    • An Z, Tassa A, Thomas C, Zhong R, Xiao G, Fotedar R, et al. Autophagy is required for G1/G0 quiescence in response to nitrogen starvation in Saccharomyces cerevisiae. Autophagy (2014) 10:1702-11. doi:10.4161/auto.32122
    • (2014) Autophagy , vol.10 , pp. 1702-1711
    • An, Z.1    Tassa, A.2    Thomas, C.3    Zhong, R.4    Xiao, G.5    Fotedar, R.6
  • 147
    • 84873521661 scopus 로고    scopus 로고
    • The role of autophagy in genome stability through suppression of abnormal mitosis under starvation
    • Matsui A, Kamada Y, Matsuura A. The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genet (2013) 9:e1003245. doi:10.1371/journal.pgen.1003245
    • (2013) PLoS Genet , vol.9
    • Matsui, A.1    Kamada, Y.2    Matsuura, A.3
  • 148
    • 79960957085 scopus 로고    scopus 로고
    • Mitotic catastrophe: a mechanism for avoiding genomic instability
    • Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol (2011) 12:385-92. doi:10.1038/nrm3115
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 385-392
    • Vitale, I.1    Galluzzi, L.2    Castedo, M.3    Kroemer, G.4
  • 149
    • 84901822090 scopus 로고    scopus 로고
    • SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors
    • Inoue T, Nakayama Y, Li Y, Matsumori H, Takahashi H, Kojima H, et al. SIRT2 knockdown increases basal autophagy and prevents postslippage death by abnormally prolonging the mitotic arrest that is induced by microtubule inhibitors. FEBS J (2014) 281:2623-37. doi:10.1111/febs.12810
    • (2014) FEBS J , vol.281 , pp. 2623-2637
    • Inoue, T.1    Nakayama, Y.2    Li, Y.3    Matsumori, H.4    Takahashi, H.5    Kojima, H.6
  • 150
    • 84883130930 scopus 로고    scopus 로고
    • ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy
    • Maskey D, Yousefi S, Schmid I, Zlobec I, Perren A, Friis R, et al. ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy. Nat Commun (2013) 4:2130. doi:10.1038/ncomms3130
    • (2013) Nat Commun , vol.4 , pp. 2130
    • Maskey, D.1    Yousefi, S.2    Schmid, I.3    Zlobec, I.4    Perren, A.5    Friis, R.6
  • 151
    • 84355161919 scopus 로고    scopus 로고
    • Chemical genetic screen for AMPKa2 substrates uncovers a network of proteins involved in mitosis
    • Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, et al. Chemical genetic screen for AMPKa2 substrates uncovers a network of proteins involved in mitosis. Mol Cell (2011) 44:878-92. doi:10.1016/j.molcel.2011.11.005
    • (2011) Mol Cell , vol.44 , pp. 878-892
    • Banko, M.R.1    Allen, J.J.2    Schaffer, B.E.3    Wilker, E.W.4    Tsou, P.5    White, J.L.6
  • 152
    • 19944413010 scopus 로고    scopus 로고
    • Genome-wide survey of protein kinases required for cell cycle progression
    • Bettencourt-Dias M, Giet R, Sinka R, Mazumdar A, Lock WG, Balloux F, et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature (2004) 432:980-7. doi:10.1038/nature03160
    • (2004) Nature , vol.432 , pp. 980-987
    • Bettencourt-Dias, M.1    Giet, R.2    Sinka, R.3    Mazumdar, A.4    Lock, W.G.5    Balloux, F.6
  • 153
    • 84865115634 scopus 로고    scopus 로고
    • AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain
    • Thaiparambil JT, Eggers CM, Marcus AI. AMPK regulates mitotic spindle orientation through phosphorylation of myosin regulatory light chain. Mol Cell Biol (2012) 32:3203-17. doi:10.1128/MCB.00418-12
    • (2012) Mol Cell Biol , vol.32 , pp. 3203-3217
    • Thaiparambil, J.T.1    Eggers, C.M.2    Marcus, A.I.3
  • 154
    • 34250827107 scopus 로고    scopus 로고
    • Energy-dependent regulation of cell structure by AMP-activated protein kinase
    • Lee JH, Koh H, Kim M, Kim Y, Lee SY, Karess RE, et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature (2007) 447:1017-20. doi:10.1038/nature05828
    • (2007) Nature , vol.447 , pp. 1017-1020
    • Lee, J.H.1    Koh, H.2    Kim, M.3    Kim, Y.4    Lee, S.Y.5    Karess, R.E.6
  • 155
    • 68449094064 scopus 로고    scopus 로고
    • The active form of the metabolic sensor AMP-activated protein kinase a (AMPKa) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis
    • Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. The active form of the metabolic sensor AMP-activated protein kinase a (AMPKa) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle (2009) 8:2385-98. doi:10.4161/cc.8.15.9082
    • (2009) Cell Cycle , vol.8 , pp. 2385-2398
    • Vazquez-Martin, A.1    Oliveras-Ferraros, C.2    Menendez, J.A.3
  • 156
    • 21744445075 scopus 로고    scopus 로고
    • Regulation of myosin II during cytokinesis in higher eukaryotes
    • Matsumura F. Regulation of myosin II during cytokinesis in higher eukaryotes. Trends Cell Biol (2005) 15:371-7. doi:10.1016/j.tcb.2005.05.004
    • (2005) Trends Cell Biol , vol.15 , pp. 371-377
    • Matsumura, F.1
  • 157
    • 2042544799 scopus 로고    scopus 로고
    • Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly
    • Rosenblatt J, Cramer LP, Baum B, McGee KM. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell (2004) 117:361-72. doi:10.1016/S0092-8674(04)00341-1
    • (2004) Cell , vol.117 , pp. 361-372
    • Rosenblatt, J.1    Cramer, L.P.2    Baum, B.3    McGee, K.M.4
  • 158
    • 0034677906 scopus 로고    scopus 로고
    • Myosins: a diverse superfamily
    • Sellers JR. Myosins: a diverse superfamily. Biochim Biophys Acta (2000) 1496:3-22. doi:10.1016/S0167-4889(00)00005-7
    • (2000) Biochim Biophys Acta , vol.1496 , pp. 3-22
    • Sellers, J.R.1
  • 160
    • 0032438538 scopus 로고    scopus 로고
    • Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK)
    • Chew T-L, Masaracchia RA, Goeckeler ZM, Wysolmerski RB. Phosphorylation of non-muscle myosin II regulatory light chain by p21-activated kinase (γ-PAK). J Muscle Res Cell Motil (1998) 19:839-54. doi:10.1023/A:1005417926585
    • (1998) J Muscle Res Cell Motil , vol.19 , pp. 839-854
    • Chew, T.-L.1    Masaracchia, R.A.2    Goeckeler, Z.M.3    Wysolmerski, R.B.4
  • 161
    • 1942538405 scopus 로고    scopus 로고
    • Myosin phosphatase: structure, regulation and function
    • Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem (2004) 259:197-209. doi:10.1023/B:MCBI.0000021373.14288.00
    • (2004) Mol Cell Biochem , vol.259 , pp. 197-209
    • Ito, M.1    Nakano, T.2    Erdodi, F.3    Hartshorne, D.J.4
  • 162
    • 40849097955 scopus 로고    scopus 로고
    • Myosin phosphatase target subunit: many roles in cell function
    • Matsumura F, Hartshorne DJ. Myosin phosphatase target subunit: many roles in cell function. Biochem Biophys Res Commun (2008) 369:149-56. doi:10.1016/j.bbrc.2007.12.090
    • (2008) Biochem Biophys Res Commun , vol.369 , pp. 149-156
    • Matsumura, F.1    Hartshorne, D.J.2
  • 163
    • 0021348015 scopus 로고
    • Activation of actin-activated ATPase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I
    • Tuazon PT, Traugh JA. Activation of actin-activated ATPase in smooth muscle by phosphorylation of myosin light chain with protease-activated kinase I. J Biol Chem (1984) 259:541-6
    • (1984) J Biol Chem , vol.259 , pp. 541-546
    • Tuazon, P.T.1    Traugh, J.A.2
  • 164
    • 79951805767 scopus 로고    scopus 로고
    • Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy
    • Tang H-W, Wang Y-B, Wang S-L, Wu M-H, Lin S-Y, Chen G-C. Atg1-mediated myosin II activation regulates autophagosome formation during starvation-induced autophagy. EMBO J (2011) 30:636-51. doi:10.1038/emboj.2010.338
    • (2011) EMBO J , vol.30 , pp. 636-651
    • Tang, H.-W.1    Wang, Y.-B.2    Wang, S.-L.3    Wu, M.-H.4    Lin, S.-Y.5    Chen, G.-C.6
  • 165
    • 84858782079 scopus 로고    scopus 로고
    • AMPK: a nutrient and energy sensor that maintains energy homeostasis
    • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol (2012) 13:251-62. doi:10.1038/nrm3311
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 251-262
    • Hardie, D.G.1    Ross, F.A.2    Hawley, S.A.3
  • 166
    • 0345107247 scopus 로고    scopus 로고
    • Complexes between the LKB1 tumor suppressor, STRADa/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade
    • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Mäkelä TP, et al. Complexes between the LKB1 tumor suppressor, STRADa/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J Biol (2003) 2:28. doi:10.1186/1475-4924-2-28
    • (2003) J Biol , vol.2 , pp. 28
    • Hawley, S.A.1    Boudeau, J.2    Reid, J.L.3    Mustard, K.J.4    Udd, L.5    Mäkelä, T.P.6
  • 167
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A (2004) 101:3329-35. doi:10.1073/pnas.0308061100
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 3329-3335
    • Shaw, R.J.1    Kosmatka, M.2    Bardeesy, N.3    Hurley, R.L.4    Witters, L.A.5    DePinho, R.A.6
  • 168
    • 10744230065 scopus 로고    scopus 로고
    • LKB1 Is the upstream kinase in the AMP-activated protein kinase cascade
    • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LGD, Neumann D, et al. LKB1 Is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol (2003) 13:2004-8. doi:10.1016/j.cub.2003.10.031
    • (2003) Curr Biol , vol.13 , pp. 2004-2008
    • Woods, A.1    Johnstone, S.R.2    Dickerson, K.3    Leiper, F.C.4    Fryer, L.G.D.5    Neumann, D.6
  • 169
    • 23044432463 scopus 로고    scopus 로고
    • Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase
    • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab (2005) 2:9-19. doi:10.1016/j.cmet.2005.05.009
    • (2005) Cell Metab , vol.2 , pp. 9-19
    • Hawley, S.A.1    Pan, D.A.2    Mustard, K.J.3    Ross, L.4    Bain, J.5    Edelman, A.M.6
  • 170
    • 23044437445 scopus 로고    scopus 로고
    • Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
    • Woods A, Dickerson K, Heath R, Hong S, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab (2005) 2:21-33. doi:10.1016/j.cmet.2005.06.005
    • (2005) Cell Metab , vol.2 , pp. 21-33
    • Woods, A.1    Dickerson, K.2    Heath, R.3    Hong, S.4    Momcilovic, M.5    Johnstone, S.R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.