-
1
-
-
0027424777
-
Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
-
Tsukada M, Ohsumi Y, (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333: 169-174.
-
(1993)
FEBS Lett
, vol.333
, pp. 169-174
-
-
Tsukada, M.1
Ohsumi, Y.2
-
2
-
-
0027936092
-
Isolation of autophagocytosis mutants of Saccharomyces cerevisiae
-
Thumm M, Egner R, Koch B, Schlumpberger M, Straub M, et al. (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349: 275-280.
-
(1994)
FEBS Lett
, vol.349
, pp. 275-280
-
-
Thumm, M.1
Egner, R.2
Koch, B.3
Schlumpberger, M.4
Straub, M.5
-
3
-
-
67649467294
-
Dynamics and diversity in autophagy mechanisms: lessons from yeast
-
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y, (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10: 458-467.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 458-467
-
-
Nakatogawa, H.1
Suzuki, K.2
Kamada, Y.3
Ohsumi, Y.4
-
4
-
-
36249025723
-
Autophagy: process and function
-
Mizushima N, (2007) Autophagy: process and function. Genes Dev 21: 2861-2873.
-
(2007)
Genes Dev
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
5
-
-
61949429767
-
Pexophagy in Pichia pastoris
-
Oku M, Sakai Y, (2008) Pexophagy in Pichia pastoris. Methods Enzymol 451: 217-228.
-
(2008)
Methods Enzymol
, vol.451
, pp. 217-228
-
-
Oku, M.1
Sakai, Y.2
-
6
-
-
43049138051
-
Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
-
Kraft C, Deplazes A, Sohrmann M, Peter M, (2008) Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10: 602-610.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 602-610
-
-
Kraft, C.1
Deplazes, A.2
Sohrmann, M.3
Peter, M.4
-
7
-
-
27644493346
-
The pleiotropic role of autophagy: from protein metabolism to bactericide
-
Mizushima N, (2005) The pleiotropic role of autophagy: from protein metabolism to bactericide. Cell Death Differ 12 Suppl 2: 1535-1541.
-
(2005)
Cell Death Differ
, vol.12
, Issue.SUPPL. 2
, pp. 1535-1541
-
-
Mizushima, N.1
-
8
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, et al. (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169: 425-434.
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
-
9
-
-
77952576359
-
Negative regulation of Vps34 by Cdk mediated phosphorylation
-
Furuya T, Kim M, Lipinski M, Li J, Kim D, et al. (2010) Negative regulation of Vps34 by Cdk mediated phosphorylation. Mol Cell 38: 500-511.
-
(2010)
Mol Cell
, vol.38
, pp. 500-511
-
-
Furuya, T.1
Kim, M.2
Lipinski, M.3
Li, J.4
Kim, D.5
-
10
-
-
0036899730
-
Inhibition of autophagy in mitotic animal cells
-
Eskelinen EL, Prescott AR, Cooper J, Brachmann SM, Wang L, et al. (2002) Inhibition of autophagy in mitotic animal cells. Traffic 3: 878-893.
-
(2002)
Traffic
, vol.3
, pp. 878-893
-
-
Eskelinen, E.L.1
Prescott, A.R.2
Cooper, J.3
Brachmann, S.M.4
Wang, L.5
-
11
-
-
46849115787
-
Autophagy is essential for preimplantation development of mouse embryos
-
Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, et al. (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321: 117-120.
-
(2008)
Science
, vol.321
, pp. 117-120
-
-
Tsukamoto, S.1
Kuma, A.2
Murakami, M.3
Kishi, C.4
Yamamoto, A.5
-
12
-
-
0037312507
-
Tor signalling in bugs, brain and brawn
-
Jacinto E, Hall MN, (2003) Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol 4: 117-126.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, pp. 117-126
-
-
Jacinto, E.1
Hall, M.N.2
-
13
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10: 457-468.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
-
14
-
-
0032915417
-
Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae
-
Powers T, Walter P, (1999) Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10: 987-1000.
-
(1999)
Mol Biol Cell
, vol.10
, pp. 987-1000
-
-
Powers, T.1
Walter, P.2
-
15
-
-
11144273952
-
TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1
-
Martin DE, Soulard A, Hall MN, (2004) TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell 119: 969-979.
-
(2004)
Cell
, vol.119
, pp. 969-979
-
-
Martin, D.E.1
Soulard, A.2
Hall, M.N.3
-
16
-
-
33748040778
-
TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients
-
Honma Y, Kitamura A, Shioda R, Maruyama H, Ozaki K, et al. (2006) TOR regulates late steps of ribosome maturation in the nucleoplasm via Nog1 in response to nutrients. EMBO J 25: 3832-3842.
-
(2006)
EMBO J
, vol.25
, pp. 3832-3842
-
-
Honma, Y.1
Kitamura, A.2
Shioda, R.3
Maruyama, H.4
Ozaki, K.5
-
17
-
-
75749090429
-
Tor directly controls the Atg1 kinase complex to regulate autophagy
-
Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, et al. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30: 1049-1058.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 1049-1058
-
-
Kamada, Y.1
Yoshino, K.2
Kondo, C.3
Kawamata, T.4
Oshiro, N.5
-
18
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN, (2006) TOR signaling in growth and metabolism. Cell 124: 471-484.
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
19
-
-
0030021524
-
TOR controls translation initiation and early G1 progression in yeast
-
Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, et al. (1996) TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7: 25-42.
-
(1996)
Mol Biol Cell
, vol.7
, pp. 25-42
-
-
Barbet, N.C.1
Schneider, U.2
Helliwell, S.B.3
Stansfield, I.4
Tuite, M.F.5
-
20
-
-
48249090441
-
The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase
-
doi:10.1371/journal.pone.0002223
-
Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T, et al. (2008) The yeast Tor signaling pathway is involved in G2/M transition via polo-kinase. PLoS ONE 3: e2223 doi:10.1371/journal.pone.0002223.
-
(2008)
PLoS ONE
, vol.3
-
-
Nakashima, A.1
Maruki, Y.2
Imamura, Y.3
Kondo, C.4
Kawamata, T.5
-
21
-
-
41949107421
-
cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner
-
Smith EM, Proud CG, (2008) cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner. EMBO J 27: 1005-1016.
-
(2008)
EMBO J
, vol.27
, pp. 1005-1016
-
-
Smith, E.M.1
Proud, C.G.2
-
22
-
-
68949138037
-
Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress
-
Hartmuth S, Petersen J, (2009) Fission yeast Tor1 functions as part of TORC1 to control mitotic entry through the stress MAPK pathway following nutrient stress. J Cell Sci 122: 1737-1746.
-
(2009)
J Cell Sci
, vol.122
, pp. 1737-1746
-
-
Hartmuth, S.1
Petersen, J.2
-
23
-
-
0033517116
-
Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway
-
Wilkinson MG, Pino TS, Tournier S, Buck V, Martin H, et al. (1999) Sin1: an evolutionarily conserved component of the eukaryotic SAPK pathway. EMBO J 18: 4210-4221.
-
(1999)
EMBO J
, vol.18
, pp. 4210-4221
-
-
Wilkinson, M.G.1
Pino, T.S.2
Tournier, S.3
Buck, V.4
Martin, H.5
-
24
-
-
0017581306
-
Coordination of growth with cell division in the yeast Saccharomyces cerevisiae
-
Johnston GC, Pringle JR, Hartwell LH, (1977) Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Exp Cell Res 105: 79-98.
-
(1977)
Exp Cell Res
, vol.105
, pp. 79-98
-
-
Johnston, G.C.1
Pringle, J.R.2
Hartwell, L.H.3
-
25
-
-
0033540030
-
The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors
-
Beck T, Hall MN, (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689-692.
-
(1999)
Nature
, vol.402
, pp. 689-692
-
-
Beck, T.1
Hall, M.N.2
-
26
-
-
0033573016
-
The TOR signaling cascade regulates gene expression in response to nutrients
-
Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J, (1999) The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13: 3271-3279.
-
(1999)
Genes Dev
, vol.13
, pp. 3271-3279
-
-
Cardenas, M.E.1
Cutler, N.S.2
Lorenz, M.C.3
Di Como, C.J.4
Heitman, J.5
-
27
-
-
24744441497
-
Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation
-
Onodera J, Ohsumi Y, (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280: 31582-31586.
-
(2005)
J Biol Chem
, vol.280
, pp. 31582-31586
-
-
Onodera, J.1
Ohsumi, Y.2
-
28
-
-
33845407202
-
Atg22 recycles amino acids to link the degradative and recycling functions of autophagy
-
Yang Z, Huang J, Geng J, Nair U, Klionsky DJ, (2006) Atg22 recycles amino acids to link the degradative and recycling functions of autophagy. Mol Biol Cell 17: 5094-5104.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 5094-5104
-
-
Yang, Z.1
Huang, J.2
Geng, J.3
Nair, U.4
Klionsky, D.J.5
-
29
-
-
0037076314
-
The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine
-
Crespo JL, Powers T, Fowler B, Hall MN, (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 99: 6784-6789.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 6784-6789
-
-
Crespo, J.L.1
Powers, T.2
Fowler, B.3
Hall, M.N.4
-
30
-
-
84859704385
-
Leucyl-tRNA synthetase controls TORC1 via the EGO complex
-
Bonfils G, Jaquenoud M, Bontron S, Ostrowicz C, Ungermann C, et al. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46: 105-110.
-
(2012)
Mol Cell
, vol.46
, pp. 105-110
-
-
Bonfils, G.1
Jaquenoud, M.2
Bontron, S.3
Ostrowicz, C.4
Ungermann, C.5
-
31
-
-
84862777407
-
Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway
-
Han JM, Jeong SJ, Park MC, Kim G, Kwon NH, et al. (2012) Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway. Cell 149: 410-424.
-
(2012)
Cell
, vol.149
, pp. 410-424
-
-
Han, J.M.1
Jeong, S.J.2
Park, M.C.3
Kim, G.4
Kwon, N.H.5
-
32
-
-
0032555899
-
A morphogenesis checkpoint monitors the actin cytoskeleton in yeast
-
McMillan JN, Sia RA, Lew DJ, (1998) A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J Cell Biol 142: 1487-1499.
-
(1998)
J Cell Biol
, vol.142
, pp. 1487-1499
-
-
McMillan, J.N.1
Sia, R.A.2
Lew, D.J.3
-
33
-
-
0033555685
-
Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast
-
Barral Y, Parra M, Bidlingmaier S, Snyder M, (1999) Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev 13: 176-187.
-
(1999)
Genes Dev
, vol.13
, pp. 176-187
-
-
Barral, Y.1
Parra, M.2
Bidlingmaier, S.3
Snyder, M.4
-
34
-
-
0037452658
-
Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control
-
Harvey SL, Kellogg DR, (2003) Conservation of mechanisms controlling entry into mitosis: budding yeast wee1 delays entry into mitosis and is required for cell size control. Curr Biol 13: 264-275.
-
(2003)
Curr Biol
, vol.13
, pp. 264-275
-
-
Harvey, S.L.1
Kellogg, D.R.2
-
35
-
-
0042970726
-
A monitor for bud emergence in the yeast morphogenesis checkpoint
-
Theesfeld CL, Zyla TR, Bardes EG, Lew DJ, (2003) A monitor for bud emergence in the yeast morphogenesis checkpoint. Mol Biol Cell 14: 3280-3291.
-
(2003)
Mol Biol Cell
, vol.14
, pp. 3280-3291
-
-
Theesfeld, C.L.1
Zyla, T.R.2
Bardes, E.G.3
Lew, D.J.4
-
36
-
-
64049088018
-
Spindle orientation during asymmetric cell division
-
Siller KH, Doe CQ, (2009) Spindle orientation during asymmetric cell division. Nat Cell Biol 11: 365-374.
-
(2009)
Nat Cell Biol
, vol.11
, pp. 365-374
-
-
Siller, K.H.1
Doe, C.Q.2
-
37
-
-
0032538796
-
Control of Swe1p degradation by the morphogenesis checkpoint
-
Sia RA, Bardes ES, Lew DJ, (1998) Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J 17: 6678-6688.
-
(1998)
EMBO J
, vol.17
, pp. 6678-6688
-
-
Sia, R.A.1
Bardes, E.S.2
Lew, D.J.3
-
38
-
-
0026668042
-
Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
-
Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y, (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119: 301-311.
-
(1992)
J Cell Biol
, vol.119
, pp. 301-311
-
-
Takeshige, K.1
Baba, M.2
Tsuboi, S.3
Noda, T.4
Ohsumi, Y.5
-
39
-
-
0027515186
-
Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast
-
Chan CS, Botstein D, (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135: 677-691.
-
(1993)
Genetics
, vol.135
, pp. 677-691
-
-
Chan, C.S.1
Botstein, D.2
-
40
-
-
0025782828
-
Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae
-
Burke DJ, Church D, (1991) Protein synthesis requirements for nuclear division, cytokinesis, and cell separation in Saccharomyces cerevisiae. Mol Cell Biol 11: 3691-3698.
-
(1991)
Mol Cell Biol
, vol.11
, pp. 3691-3698
-
-
Burke, D.J.1
Church, D.2
-
41
-
-
0017177140
-
Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source
-
Watson TG, (1976) Amino-acid pool composition of Saccharomyces cerevisiae as a function of growth rate and amino-acid nitrogen source. J Gen Microbiol 96: 263-268.
-
(1976)
J Gen Microbiol
, vol.96
, pp. 263-268
-
-
Watson, T.G.1
-
42
-
-
0000176333
-
The free amino acid pool of cultured human cells
-
Piez KA, Eagle H, (1958) The free amino acid pool of cultured human cells. J Biol Chem 231: 533-545.
-
(1958)
J Biol Chem
, vol.231
, pp. 533-545
-
-
Piez, K.A.1
Eagle, H.2
-
43
-
-
79961113595
-
Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae
-
Shin CS, Huh WK, (2011) Bidirectional regulation between TORC1 and autophagy in Saccharomyces cerevisiae. Autophagy 7: 854-862.
-
(2011)
Autophagy
, vol.7
, pp. 854-862
-
-
Shin, C.S.1
Huh, W.K.2
-
44
-
-
76649110552
-
Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin
-
Fournier ML, Paulson A, Pavelka N, Mosley AL, Gaudenz K, et al. (2010) Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol Cell Proteomics 9: 271-284.
-
(2010)
Mol Cell Proteomics
, vol.9
, pp. 271-284
-
-
Fournier, M.L.1
Paulson, A.2
Pavelka, N.3
Mosley, A.L.4
Gaudenz, K.5
-
45
-
-
0037178786
-
mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, et al. (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
-
46
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, et al. (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284: 8023-8032.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
-
47
-
-
35748973557
-
TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases
-
Petersen J, Nurse P, (2007) TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nat Cell Biol 9: 1263-1272.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1263-1272
-
-
Petersen, J.1
Nurse, P.2
-
48
-
-
0033592983
-
Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
-
Hardwick JS, Kuruvilla FG, Tong JK, Shamji AF, Schreiber SL, (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96: 14866-14870.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 14866-14870
-
-
Hardwick, J.S.1
Kuruvilla, F.G.2
Tong, J.K.3
Shamji, A.F.4
Schreiber, S.L.5
-
49
-
-
1642266344
-
Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae
-
Cox KH, Kulkarni A, Tate JJ, Cooper TG, (2004) Gln3 phosphorylation and intracellular localization in nutrient limitation and starvation differ from those generated by rapamycin inhibition of Tor1/2 in Saccharomyces cerevisiae. J Biol Chem 279: 10270-10278.
-
(2004)
J Biol Chem
, vol.279
, pp. 10270-10278
-
-
Cox, K.H.1
Kulkarni, A.2
Tate, J.J.3
Cooper, T.G.4
-
50
-
-
67651235863
-
A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex
-
doi:10.1371/journal.pgen.1000515
-
Neklesa TK, Davis RW, (2009) A genome-wide screen for regulators of TORC1 in response to amino acid starvation reveals a conserved Npr2/3 complex. PLoS Genet 5: e1000515 doi:10.1371/journal.pgen.1000515.
-
(2009)
PLoS Genet
, vol.5
-
-
Neklesa, T.K.1
Davis, R.W.2
-
51
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN, (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189: 1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
52
-
-
0034948050
-
Cdc5 interacts with the Wee1 kinase in budding yeast
-
Bartholomew CR, Woo SH, Chung YS, Jones C, Hardy CF, (2001) Cdc5 interacts with the Wee1 kinase in budding yeast. Mol Cell Biol 21: 4949-4959.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 4949-4959
-
-
Bartholomew, C.R.1
Woo, S.H.2
Chung, Y.S.3
Jones, C.4
Hardy, C.F.5
-
53
-
-
0032874877
-
The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p
-
McMillan JN, Longtine MS, Sia RA, Theesfeld CL, Bardes ES, et al. (1999) The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol Cell Biol 19: 6929-6939.
-
(1999)
Mol Cell Biol
, vol.19
, pp. 6929-6939
-
-
McMillan, J.N.1
Longtine, M.S.2
Sia, R.A.3
Theesfeld, C.L.4
Bardes, E.S.5
-
54
-
-
29044443555
-
Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae
-
McNulty JJ, Lew DJ, (2005) Swe1p responds to cytoskeletal perturbation, not bud size, in S. cerevisiae. Curr Biol 15: 2190-2198.
-
(2005)
Curr Biol
, vol.15
, pp. 2190-2198
-
-
McNulty, J.J.1
Lew, D.J.2
-
55
-
-
34249863298
-
Autophagy suppresses tumor progression by limiting chromosomal instability
-
Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, et al. (2007) Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 21: 1367-1381.
-
(2007)
Genes Dev
, vol.21
, pp. 1367-1381
-
-
Mathew, R.1
Kongara, S.2
Beaudoin, B.3
Karp, C.M.4
Bray, K.5
-
56
-
-
0344142468
-
Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21
-
Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, et al. (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59: 59-65.
-
(1999)
Genomics
, vol.59
, pp. 59-65
-
-
Aita, V.M.1
Liang, X.H.2
Murty, V.V.3
Pincus, D.L.4
Yu, W.5
-
57
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, et al. (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112: 1809-1820.
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
-
58
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N, (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100: 15077-15082.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
59
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, et al. (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795-800.
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
-
62
-
-
0035503594
-
The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation
-
Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, et al. (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20: 5971-5981.
-
(2001)
EMBO J
, vol.20
, pp. 5971-5981
-
-
Suzuki, K.1
Kirisako, T.2
Kamada, Y.3
Mizushima, N.4
Noda, T.5
-
63
-
-
33845308211
-
Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae
-
Hood-DeGrenier JK, Boulton CN, Lyo V, (2007) Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Curr Genet 51: 1-18.
-
(2007)
Curr Genet
, vol.51
, pp. 1-18
-
-
Hood-DeGrenier, J.K.1
Boulton, C.N.2
Lyo, V.3
-
65
-
-
3142677196
-
Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway
-
Shintani T, Klionsky DJ, (2004) Cargo proteins facilitate the formation of transport vesicles in the cytoplasm to vacuole targeting pathway. J Biol Chem 279: 29889-29894.
-
(2004)
J Biol Chem
, vol.279
, pp. 29889-29894
-
-
Shintani, T.1
Klionsky, D.J.2
-
66
-
-
0942276368
-
Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae
-
Shitamukai A, Hirata D, Sonobe S, Miyakawa T, (2004) Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. J Biol Chem 279: 3651-3661.
-
(2004)
J Biol Chem
, vol.279
, pp. 3651-3661
-
-
Shitamukai, A.1
Hirata, D.2
Sonobe, S.3
Miyakawa, T.4
|