메뉴 건너뛰기




Volumn 25, Issue 3, 2017, Pages 189-201

Recent advances in targeting mTOR signaling pathway using small molecule inhibitors

Author keywords

mTOR; signaling molecules; small molecule inhibitor; targeted based cancer therapy

Indexed keywords

1 [4 [1 (1,4 DIOXASPIRO[4.5]DEC 8 YL) 4 (8 OXA 3 AZABICYCLO[3.2.1]OCT 3 YL) 1H PYRAZOLO[3,4 D]PYRIMIDIN 6 YL]PHENYL] 3 METHYLUREA; 5 [2 (2,6 DIMETHYLMORPHOLINO) 4 MORPHOLINOPYRIDO[2,3 D]PYRIMIDIN 7 YL] 2 METHOXYBENZENEMETHANOL; ANTINEOPLASTIC AGENT; AZD 8055; EVEROLIMUS; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; MAMMALIAN TARGET OF RAPAMYCIN INHIBITOR; RIDAFOROLIMUS; SAPANISERTIB; SMALL MOLECULE INHIBITOR; TORIN1; TORKINIB; UNCLASSIFIED DRUG; VISTUSERTIB; MTOR PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 85013795282     PISSN: 1061186X     EISSN: 10292330     Source Type: Journal    
DOI: 10.1080/1061186X.2016.1236112     Document Type: Review
Times cited : (18)

References (157)
  • 1
    • 84896102439 scopus 로고    scopus 로고
    • A year in structural signaling: mTOR-the PIKK of the bunch?
    • Smerdon SJ., A year in structural signaling:mTOR-the PIKK of the bunch? Sci Signal 2014;7:pe6.
    • (2014) Sci Signal , vol.7 , pp. pe6
    • Smerdon, S.J.1
  • 2
    • 33746637660 scopus 로고    scopus 로고
    • Current development of mTOR inhibitors as anticancer agents
    • Faivre S, Kroemer G, Raymond E., Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006;5:671–88.
    • (2006) Nat Rev Drug Discov , vol.5 , pp. 671-688
    • Faivre, S.1    Kroemer, G.2    Raymond, E.3
  • 3
    • 84857675728 scopus 로고    scopus 로고
    • The mTOR signalling pathway in human cancer
    • Populo H, Lopes JM, Soares P. The mTOR signalling pathway in human cancer. Int J Mol Sci 2012;13:1886–918.
    • (2012) Int J Mol Sci , vol.13 , pp. 1886-1918
    • Populo, H.1    Lopes, J.M.2    Soares, P.3
  • 4
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • Vander Haar E, Lee SI, Bandhakavi S, et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007;9:316–23.
    • (2007) Nat Cell Biol , vol.9 , pp. 316-323
    • Vander Haar, E.1    Lee, S.I.2    Bandhakavi, S.3
  • 5
    • 33746257209 scopus 로고    scopus 로고
    • The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism
    • Engelman JA, Luo J, Cantley LC., The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606–19.
    • (2006) Nat Rev Genet , vol.7 , pp. 606-619
    • Engelman, J.A.1    Luo, J.2    Cantley, L.C.3
  • 6
    • 84927608950 scopus 로고    scopus 로고
    • The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies
    • Daneshmanesh AH, Hojjat-Farsangi M, Moshfegh A, et al. The PI3K/AKT/mTOR pathway is involved in direct apoptosis of CLL cells induced by ROR1 monoclonal antibodies. Br J Haematol 2015;169:455–8.
    • (2015) Br J Haematol , vol.169 , pp. 455-458
    • Daneshmanesh, A.H.1    Hojjat-Farsangi, M.2    Moshfegh, A.3
  • 7
    • 77952243626 scopus 로고    scopus 로고
    • Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer
    • Sato T, Nakashima A, Guo L, et al. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 2010;29:2746–52.
    • (2010) Oncogene , vol.29 , pp. 2746-2752
    • Sato, T.1    Nakashima, A.2    Guo, L.3
  • 8
    • 84966262764 scopus 로고    scopus 로고
    • Mechanisms of tumor cell resistance to the current targeted-therapy agents
    • Khamisipour G, Jadidi-Niaragh F, Jahromi AS, et al. Mechanisms of tumor cell resistance to the current targeted-therapy agents. Tumor Biol 2016;37:10021–39.
    • (2016) Tumor Biol , vol.37 , pp. 10021-10039
    • Khamisipour, G.1    Jadidi-Niaragh, F.2    Jahromi, A.S.3
  • 9
    • 84907443858 scopus 로고    scopus 로고
    • Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies
    • Hojjat-Farsangi M., Small-molecule inhibitors of the receptor tyrosine kinases:promising tools for targeted cancer therapies. Int J Mol Sci 2014;15:13768–801.
    • (2014) Int J Mol Sci , vol.15 , pp. 13768-13801
    • Hojjat-Farsangi, M.1
  • 10
    • 84955452810 scopus 로고    scopus 로고
    • Targeting non-receptor tyrosine kinases using small molecule inhibitors: an overview of recent advances
    • Hojjat-Farsangi M., Targeting non-receptor tyrosine kinases using small molecule inhibitors:an overview of recent advances. J Drug Target 2016;24:192–211.
    • (2016) Drug Target , vol.24 , pp. 192-211
    • Hojjat-Farsangi, M.1
  • 11
    • 84880731658 scopus 로고    scopus 로고
    • Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment
    • Lv X, Ma X, Hu Y., Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Expert Opin Drug Discov 2013;8:991–1012.
    • (2013) Expert Opin Drug Discov , vol.8 , pp. 991-1012
    • Lv, X.1    Ma, X.2    Hu, Y.3
  • 12
    • 84859778293 scopus 로고    scopus 로고
    • mTOR signaling in growth control and disease
    • Laplante M, Sabatini DM., mTOR signaling in growth control and disease. Cell 2012;149:274–93.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1    Sabatini, D.M.2
  • 13
    • 84861697039 scopus 로고    scopus 로고
    • An evolving role for DEPTOR in tumor development and progression
    • Wang Z, Zhong J, Inuzuka H, et al. An evolving role for DEPTOR in tumor development and progression. Neoplasia 2012;14:368–75.
    • (2012) Neoplasia , vol.14 , pp. 368-375
    • Wang, Z.1    Zhong, J.2    Inuzuka, H.3
  • 14
    • 84957602898 scopus 로고    scopus 로고
    • mTORC2 is a tyrosine kinase
    • Wang X, Proud CG., mTORC2 is a tyrosine kinase. Cell Res 2016;26:266.
    • (2016) Cell Res , vol.26 , pp. 266
    • Wang, X.1    Proud, C.G.2
  • 15
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009;137:873–86.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1    Laplante, M.2    Thoreen, C.C.3
  • 16
    • 0037623417 scopus 로고    scopus 로고
    • GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
    • Kim DH, Sarbassov DD, Ali SM, et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003;11:895–904.
    • (2003) Mol Cell , vol.11 , pp. 895-904
    • Kim, D.H.1    Sarbassov, D.D.2    Ali, S.M.3
  • 17
    • 84929359506 scopus 로고    scopus 로고
    • mLST8 promotes mTOR-mediated tumor progression
    • Kakumoto K, Ikeda J-i, Okada M, et al. mLST8 promotes mTOR-mediated tumor progression. PLoS One 2015;10:e0119015.
    • (2015) PLoS One , vol.10 , pp. e0119015
    • Kakumoto, K.1    Ikeda, J.-I.2    Okada, M.3
  • 18
    • 77953800576 scopus 로고    scopus 로고
    • Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly
    • Kaizuka T, Hara T, Oshiro N, et al. Tti1 and Tel2 are critical factors in mammalian target of rapamycin complex assembly. J Biol Chem 2010;285:20109–16.
    • (2010) Biol Chem , vol.285 , pp. 20109-20116
    • Kaizuka, T.1    Hara, T.2    Oshiro, N.3
  • 19
    • 33947264077 scopus 로고    scopus 로고
    • PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
    • Sancak Y, Thoreen CC, Peterson TR, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007;25:903–15.
    • (2007) Mol Cell , vol.25 , pp. 903-915
    • Sancak, Y.1    Thoreen, C.C.2    Peterson, T.R.3
  • 20
    • 84862524611 scopus 로고    scopus 로고
    • Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol
    • Wiza C, Nascimento EB, Ouwens DM., Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol. Endocrinol Metab 2012;302:E1453–60.
    • (2012) Endocrinol Metab , vol.302 , pp. E1453-E1460
    • Wiza, C.1    Nascimento, E.B.2    Ouwens, D.M.3
  • 21
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K, Maruki Y, Long X, et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002;110:177–89.
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1    Maruki, Y.2    Long, X.3
  • 22
    • 84938293293 scopus 로고    scopus 로고
    • Elevated Rictor expression is associated with tumor progression and poor prognosis in patients with gastric cancer
    • Bian Y, Wang Z, Xu J, et al. Elevated Rictor expression is associated with tumor progression and poor prognosis in patients with gastric cancer. Biochem Biophys Res Commun 2015;464:534–40.
    • (2015) Biochem Biophys Res Commun , vol.464 , pp. 534-540
    • Bian, Y.1    Wang, Z.2    Xu, J.3
  • 23
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim D-H, et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004;14:1296–302.
    • (2004) Curr Biol , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.-H.3
  • 24
    • 33748471980 scopus 로고    scopus 로고
    • mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
    • Frias MA, Thoreen CC, Jaffe JD, et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 2006;16:1865–70.
    • (2006) Curr Biol , vol.16 , pp. 1865-1870
    • Frias, M.A.1    Thoreen, C.C.2    Jaffe, J.D.3
  • 25
    • 84887228819 scopus 로고    scopus 로고
    • Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis
    • Liu P, Gan W, Inuzuka H, et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis. Nat Cell Biol 2013;15:1340–50.
    • (2013) Nat Cell Biol , vol.15 , pp. 1340-1350
    • Liu, P.1    Gan, W.2    Inuzuka, H.3
  • 26
    • 34347210090 scopus 로고    scopus 로고
    • Identification of Protor as a novel Rictor-binding component of mTOR complex-2
    • Pearce LR, Huang X, Boudeau J, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007;405:513–22.
    • (2007) Biochem J , vol.405 , pp. 513-522
    • Pearce, L.R.1    Huang, X.2    Boudeau, J.3
  • 27
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble CC, Elis W, Menon S, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012;47:535–46.
    • (2012) Mol Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1    Elis, W.2    Menon, S.3
  • 28
    • 44449161481 scopus 로고    scopus 로고
    • The TSC1–TSC2 complex: a molecular switchboard controlling cell growth
    • Huang J, Manning BD., The TSC1–TSC2 complex:a molecular switchboard controlling cell growth. Biochem J 2008;412:179–90.
    • (2008) Biochem J , vol.412 , pp. 179-190
    • Huang, J.1    Manning, B.D.2
  • 29
    • 84872797974 scopus 로고    scopus 로고
    • TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity
    • Ohsawa M, Kobayashi T, Okura H, et al. TSC1 controls distribution of actin fibers through its effect on function of Rho family of small GTPases and regulates cell migration and polarity. PLoS One 2013;8:e54503.
    • (2013) PLoS One , vol.8 , pp. e54503
    • Ohsawa, M.1    Kobayashi, T.2    Okura, H.3
  • 30
    • 0036713778 scopus 로고    scopus 로고
    • TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
    • Inoki K, Li Y, Zhu T, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002;4:648–57.
    • (2002) Nat Cell Biol , vol.4 , pp. 648-657
    • Inoki, K.1    Li, Y.2    Zhu, T.3
  • 31
    • 84958873711 scopus 로고    scopus 로고
    • Rheb signaling and tumorigenesis: mTORC1 and new horizons
    • Armijo ME, Campos T, Fuentes‐Villalobos F, et al. Rheb signaling and tumorigenesis:mTORC1 and new horizons. Int J Cancer 2016;138:1815–23.
    • (2016) Int J Cancer , vol.138 , pp. 1815-1823
    • Armijo, M.E.1    Campos, T.2    Fuentes‐Villalobos, F.3
  • 32
    • 84923329025 scopus 로고    scopus 로고
    • Rheb inhibits protein synthesis by activating the PERK-eIF2α signaling cascade
    • Tyagi R, Shahani N, Gorgen L, et al. Rheb inhibits protein synthesis by activating the PERK-eIF2α signaling cascade. Cell Rep 2015;10:684–93.
    • (2015) Cell Rep , vol.10 , pp. 684-693
    • Tyagi, R.1    Shahani, N.2    Gorgen, L.3
  • 33
    • 0031127305 scopus 로고    scopus 로고
    • Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα
    • Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol 1997;7:261–9.
    • (1997) Curr Biol , vol.7 , pp. 261-269
    • Alessi, D.R.1    James, S.R.2    Downes, C.P.3
  • 34
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami A, Zwartkruis FJ, Nobukuni T, et al. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003;11:1457–66.
    • (2003) Mol Cell , vol.11 , pp. 1457-1466
    • Garami, A.1    Zwartkruis, F.J.2    Nobukuni, T.3
  • 35
    • 84940467267 scopus 로고    scopus 로고
    • Regulation of mTORC1 by PI3K signaling
    • Dibble CC, Cantley LC., Regulation of mTORC1 by PI3K signaling. Trends Cell Biol 2015;25:545–55.
    • (2015) Trends Cell Biol , vol.25 , pp. 545-555
    • Dibble, C.C.1    Cantley, L.C.2
  • 37
    • 34648828532 scopus 로고    scopus 로고
    • AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy
    • Hardie DG., AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007;8:774–85.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 774-785
    • Hardie, D.G.1
  • 38
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan K-L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577–90.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.-L.3
  • 39
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30:214–26.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 40
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008;320:1496–501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3
  • 41
    • 3142594193 scopus 로고    scopus 로고
    • The LKB1 tumor suppressor negatively regulates mTOR signaling
    • Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004;6:91–9.
    • (2004) Cancer Cell , vol.6 , pp. 91-99
    • Shaw, R.J.1    Bardeesy, N.2    Manning, B.D.3
  • 42
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ. The LKB1-AMPK pathway:metabolism and growth control in tumour suppression. Nat Rev Cancer 2009;9:563–75.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 43
    • 84931827582 scopus 로고    scopus 로고
    • LKB1 tumor suppressor: therapeutic opportunities knock when LKB1 is inactivated
    • Zhou W, Zhang J, Marcus AI., LKB1 tumor suppressor:therapeutic opportunities knock when LKB1 is inactivated. Genes Dis 2014;1:64–74.
    • (2014) Genes Dis , vol.1 , pp. 64-74
    • Zhou, W.1    Zhang, J.2    Marcus, A.I.3
  • 44
    • 10044276784 scopus 로고    scopus 로고
    • The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila
    • Reiling JH, Hafen E., The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 2004;18:2879–92.
    • (2004) Genes Dev , vol.18 , pp. 2879-2892
    • Reiling, J.H.1    Hafen, E.2
  • 45
    • 0042031047 scopus 로고    scopus 로고
    • A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets
    • Arsham AM, Howell JJ, Simon MC., A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets. J Biol Chem 2003;278:29655–60.
    • (2003) J Biol Chem , vol.278 , pp. 29655-29660
    • Arsham, A.M.1    Howell, J.J.2    Simon, M.C.3
  • 47
    • 84920112762 scopus 로고    scopus 로고
    • The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator
    • Faubert B, Vincent EE, Poffenberger MC, et al. The AMP-activated protein kinase (AMPK) and cancer:Many faces of a metabolic regulator. Cancer Lett 2015;356:165–70.
    • (2015) Cancer Lett , vol.356 , pp. 165-170
    • Faubert, B.1    Vincent, E.E.2    Poffenberger, M.C.3
  • 48
    • 42449150892 scopus 로고    scopus 로고
    • Role of the Akt pathway in mRNA translation of interferon-stimulated genes
    • Kaur S, Sassano A, Dolniak B, et al. Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc Natl Acad Sci USA 2008;105:4808–13.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 4808-4813
    • Kaur, S.1    Sassano, A.2    Dolniak, B.3
  • 49
    • 0033517189 scopus 로고    scopus 로고
    • NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase
    • Ozes ON, Mayo LD, Gustin JA, et al. NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 1999;401:82–5.
    • (1999) Nature , vol.401 , pp. 82-85
    • Ozes, O.N.1    Mayo, L.D.2    Gustin, J.A.3
  • 50
    • 54049142091 scopus 로고    scopus 로고
    • PI3K/Akt mediates expression of TNF-alpha mRNA and activation of NF-kappaB in calyculin A-treated primary osteoblasts
    • Qiu L, Zhang L, Zhu L, et al. PI3K/Akt mediates expression of TNF-alpha mRNA and activation of NF-kappaB in calyculin A-treated primary osteoblasts. Oral Diseases 2008;14:727–33.
    • (2008) Oral Diseases , vol.14 , pp. 727-733
    • Qiu, L.1    Zhang, L.2    Zhu, L.3
  • 51
    • 70349194381 scopus 로고    scopus 로고
    • Growth suppressive cytokines and the AKT/mTOR pathway
    • Kroczynska B, Kaur S, Platanias LC., Growth suppressive cytokines and the AKT/mTOR pathway. Cytokine 2009;48:138–43.
    • (2009) Cytokine , vol.48 , pp. 138-143
    • Kroczynska, B.1    Kaur, S.2    Platanias, L.C.3
  • 53
    • 0035831451 scopus 로고    scopus 로고
    • Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B
    • Sekiguchi T, Hirose E, Nakashima N, et al. Novel G proteins, Rag C and Rag D, interact with GTP-binding proteins, Rag A and Rag B. J Biol Chem 2001;276:7246–57.
    • (2001) J Biol Chem , vol.276 , pp. 7246-7257
    • Sekiguchi, T.1    Hirose, E.2    Nakashima, N.3
  • 54
    • 84952915479 scopus 로고    scopus 로고
    • Sestrin2 is a leucine sensor for the mTORC1 pathway
    • Wolfson RL, Chantranupong L, Saxton RA, et al. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 2016;351:43–8.
    • (2016) Science , vol.351 , pp. 43-48
    • Wolfson, R.L.1    Chantranupong, L.2    Saxton, R.A.3
  • 55
    • 84959880781 scopus 로고    scopus 로고
    • The CASTOR proteins are arginine sensors for the mTORC1 pathway
    • Chantranupong L, Scaria SM, Saxton RA, et al. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell 2016;165:153–64.
    • (2016) Cell , vol.165 , pp. 153-164
    • Chantranupong, L.1    Scaria, S.M.2    Saxton, R.A.3
  • 56
    • 84878357685 scopus 로고    scopus 로고
    • A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1
    • Bar-Peled L, Chantranupong L, Cherniack AD, et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 2013;340:1100–6.
    • (2013) Science , vol.340 , pp. 1100-1106
    • Bar-Peled, L.1    Chantranupong, L.2    Cherniack, A.D.3
  • 57
    • 0035312747 scopus 로고    scopus 로고
    • Regulation of translation initiation by FRAP/mTOR
    • Gingras A-C, Raught B, Sonenberg N., Regulation of translation initiation by FRAP/mTOR. Genes Dev 2001;15:807–26.
    • (2001) Genes Dev , vol.15 , pp. 807-826
    • Gingras, A.-C.1    Raught, B.2    Sonenberg, N.3
  • 58
    • 0036385637 scopus 로고    scopus 로고
    • Coordinate regulation of translation by the PI 3-kinase and mTOR pathways
    • Martin KA, Blenis J., Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv Cancer Res 2002;86:1–39.
    • (2002) Adv Cancer Res , vol.86 , pp. 1-39
    • Martin, K.A.1    Blenis, J.2
  • 59
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J., Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009;10:307–18.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 60
    • 84925493526 scopus 로고    scopus 로고
    • Novel and emerging targeted-based cancer therapy agents and methods
    • Hojjat-Farsangi M., Novel and emerging targeted-based cancer therapy agents and methods. Tumour Biol 2015;36:543–56.
    • (2015) Tumour Biol , vol.36 , pp. 543-556
    • Hojjat-Farsangi, M.1
  • 61
    • 34250864795 scopus 로고    scopus 로고
    • Protein turnover via autophagy: implications for metabolism
    • Mizushima N, Klionsky DJ., Protein turnover via autophagy:implications for metabolism. Annu Rev Nutr 2007;27:19–40.
    • (2007) Annu Rev Nutr , vol.27 , pp. 19-40
    • Mizushima, N.1    Klionsky, D.J.2
  • 62
    • 79960014848 scopus 로고    scopus 로고
    • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
    • Dunlop EA, Hunt DK, Acosta-Jaquez HA, et al. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy 2011;7:737–47.
    • (2011) Autophagy , vol.7 , pp. 737-747
    • Dunlop, E.A.1    Hunt, D.K.2    Acosta-Jaquez, H.A.3
  • 63
    • 80053430528 scopus 로고    scopus 로고
    • ULK1 inhibits the kinase activity of mTORC1 and cell proliferation
    • Jung CH, Seo M, Otto NM, et al. ULK1 inhibits the kinase activity of mTORC1 and cell proliferation. Autophagy 2011;7:1212–21.
    • (2011) Autophagy , vol.7 , pp. 1212-1221
    • Jung, C.H.1    Seo, M.2    Otto, N.M.3
  • 64
    • 79958696336 scopus 로고    scopus 로고
    • Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
    • Yu Y, Yoon S-O, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011;332:1322–6.
    • (2011) Science , vol.332 , pp. 1322-1326
    • Yu, Y.1    Yoon, S.-O.2    Poulogiannis, G.3
  • 65
    • 84907521807 scopus 로고    scopus 로고
    • Feedback regulation of mTORC1 by Grb10 in metabolism and beyond
    • Liu B, Liu F., Feedback regulation of mTORC1 by Grb10 in metabolism and beyond. Cell Cycle 2014;13:2643–4.
    • (2014) Cell Cycle , vol.13 , pp. 2643-2644
    • Liu, B.1    Liu, F.2
  • 66
    • 79961165137 scopus 로고    scopus 로고
    • mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
    • Peterson TR, Sengupta SS, Harris TE, et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011;146:408–20.
    • (2011) Cell , vol.146 , pp. 408-420
    • Peterson, T.R.1    Sengupta, S.S.2    Harris, T.E.3
  • 67
    • 84861043736 scopus 로고    scopus 로고
    • Connecting mTORC1 signaling to SREBP-1 activation
    • Bakan I, Laplante M., Connecting mTORC1 signaling to SREBP-1 activation. Curr Opin Lipidol 2012;23:226–34.
    • (2012) Curr Opin Lipidol , vol.23 , pp. 226-234
    • Bakan, I.1    Laplante, M.2
  • 68
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, et al. Activation of mTORC2 by association with the ribosome. Cell 2011;144:757–68.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3
  • 69
    • 79953211540 scopus 로고    scopus 로고
    • Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling
    • Tato I, Bartrons R, Ventura F, et al. Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 2011;286:6128–42.
    • (2011) J Biol Chem , vol.286 , pp. 6128-6142
    • Tato, I.1    Bartrons, R.2    Ventura, F.3
  • 70
    • 84904751608 scopus 로고    scopus 로고
    • Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2
    • Liu H, Liu R, Xiong Y, et al. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells:involving mTORC1 and mTORC2. Amino Acids 2014;46:1971–9.
    • (2014) Amino Acids , vol.46 , pp. 1971-1979
    • Liu, H.1    Liu, R.2    Xiong, Y.3
  • 72
    • 79954516239 scopus 로고    scopus 로고
    • Role of mTOR signaling in tumor cell motility, invasion and metastasis
    • Zhou H, Huang S., Role of mTOR signaling in tumor cell motility, invasion and metastasis. Curr Protein Pept Sci 2011;12:30.
    • (2011) Curr Protein Pept Sci , vol.12 , pp. 30
    • Zhou, H.1    Huang, S.2
  • 73
    • 58649092475 scopus 로고    scopus 로고
    • mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1)
    • García-Martínez JM, Alessi DR., mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008;416:375–85.
    • (2008) Biochem J , vol.416 , pp. 375-385
    • García-Martínez, J.M.1    Alessi, D.R.2
  • 74
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
    • Sarbassov DD, Guertin DA, Ali SM, et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 2005;307:1098–101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1    Guertin, D.A.2    Ali, S.M.3
  • 75
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling
    • Ikenoue T, Inoki K, Yang Q, et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signaling. EMBO J 2008;27:1919–31.
    • (2008) EMBO J , vol.27 , pp. 1919-1931
    • Ikenoue, T.1    Inoki, K.2    Yang, Q.3
  • 76
    • 84947023702 scopus 로고    scopus 로고
    • A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation
    • Yang G, Murashige DS, Humphrey SJ, et al. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 2015;12:937–43.
    • (2015) Cell Rep , vol.12 , pp. 937-943
    • Yang, G.1    Murashige, D.S.2    Humphrey, S.J.3
  • 77
    • 79959435204 scopus 로고    scopus 로고
    • Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors: a patent review
    • Zask A, Verheijen JC, Richard DJ., Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors:a patent review. Expert Opin Ther Pat 2011;21:1109–27.
    • (2011) Expert Opin Ther Pat , vol.21 , pp. 1109-1127
    • Zask, A.1    Verheijen, J.C.2    Richard, D.J.3
  • 78
    • 84862540273 scopus 로고    scopus 로고
    • Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin
    • Wahdan-Alaswad RS, Bane KL, Song K, et al. Inhibition of mTORC1 kinase activates Smads 1 and 5 but not Smad8 in human prostate cancer cells, mediating cytostatic response to rapamycin. Mol Cancer Res 2012;10:821–33.
    • (2012) Mol Cancer Res , vol.10 , pp. 821-833
    • Wahdan-Alaswad, R.S.1    Bane, K.L.2    Song, K.3
  • 79
    • 84874310577 scopus 로고    scopus 로고
    • Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells
    • Soares HP, Ni Y, Kisfalvi K, et al. Different patterns of Akt and ERK feedback activation in response to rapamycin, active-site mTOR inhibitors and metformin in pancreatic cancer cells. PLoS One 2013;8:e57289.
    • (2013) PLoS One , vol.8 , pp. e57289
    • Soares, H.P.1    Ni, Y.2    Kisfalvi, K.3
  • 80
    • 84879221780 scopus 로고    scopus 로고
    • Functional role of mTORC2 versus integrin-linked kinase in mediating Ser473-Akt phosphorylation in PTEN-negative prostate and breast cancer cell lines
    • Lee SL, Chou CC, Chuang HC, et al. Functional role of mTORC2 versus integrin-linked kinase in mediating Ser473-Akt phosphorylation in PTEN-negative prostate and breast cancer cell lines. PLoS One 2013;8:e67149.
    • (2013) PLoS One , vol.8 , pp. e67149
    • Lee, S.L.1    Chou, C.C.2    Chuang, H.C.3
  • 81
    • 84928596564 scopus 로고    scopus 로고
    • PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer
    • Li H, Zeng J, Shen K., PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet 2014;290:1067–78.
    • (2014) Arch Gynecol Obstet , vol.290 , pp. 1067-1078
    • Li, H.1    Zeng, J.2    Shen, K.3
  • 82
    • 84880489175 scopus 로고    scopus 로고
    • Targeting mTOR to overcome epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer cells
    • Fei SJ, Zhang XC, Dong S, et al. Targeting mTOR to overcome epidermal growth factor receptor tyrosine kinase inhibitor resistance in non-small cell lung cancer cells. PLoS One 2013;8:e69104.
    • (2013) PLoS One , vol.8 , pp. e69104
    • Fei, S.J.1    Zhang, X.C.2    Dong, S.3
  • 83
    • 84940847966 scopus 로고    scopus 로고
    • Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo
    • Yongxi T, Haijun H, Jiaping Z, et al. Autophagy inhibition sensitizes KU-0063794-mediated anti-HepG2 hepatocellular carcinoma cell activity in vitro and in vivo. Biochem Biophys Res Commun 2015;465:494–500.
    • (2015) Biochem Biophys Res Commun , vol.465 , pp. 494-500
    • Yongxi, T.1    Haijun, H.2    Jiaping, Z.3
  • 84
    • 84938570135 scopus 로고    scopus 로고
    • Point mutations of the mTOR-RHEB pathway in renal cell carcinoma
    • Ghosh AP, Marshall CB, Coric T, et al. Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget 2015;6:17895–910.
    • (2015) Oncotarget , vol.6 , pp. 17895-17910
    • Ghosh, A.P.1    Marshall, C.B.2    Coric, T.3
  • 85
    • 84939149349 scopus 로고    scopus 로고
    • Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia
    • Schwarzer A, Holtmann H, Brugman M, et al. Hyperactivation of mTORC1 and mTORC2 by multiple oncogenic events causes addiction to eIF4E-dependent mRNA translation in T-cell leukemia. Oncogene 2015;34:3593–604.
    • (2015) Oncogene , vol.34 , pp. 3593-3604
    • Schwarzer, A.1    Holtmann, H.2    Brugman, M.3
  • 86
    • 79955785100 scopus 로고    scopus 로고
    • Pushing the envelope in the mTOR pathway: the second generation of inhibitors
    • Vilar E, Perez-Garcia J, Tabernero J., Pushing the envelope in the mTOR pathway:the second generation of inhibitors. Mol Cancer Ther 2011;10:395–403.
    • (2011) Mol Cancer Ther , vol.10 , pp. 395-403
    • Vilar, E.1    Perez-Garcia, J.2    Tabernero, J.3
  • 87
    • 0346362997 scopus 로고    scopus 로고
    • Rapamycins: mechanism of action and cellular resistance
    • Huang S, Bjornsti MA, Houghton PJ., Rapamycins:mechanism of action and cellular resistance. Cancer Biol Ther 2003;2:222–32.
    • (2003) Cancer Biol Ther , vol.2 , pp. 222-232
    • Huang, S.1    Bjornsti, M.A.2    Houghton, P.J.3
  • 88
    • 1942487890 scopus 로고    scopus 로고
    • Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function
    • Oshiro N, Yoshino K, Hidayat S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 2004;9:359–66.
    • (2004) Genes Cells , vol.9 , pp. 359-366
    • Oshiro, N.1    Yoshino, K.2    Hidayat, S.3
  • 89
    • 79959926021 scopus 로고    scopus 로고
    • ATP-competitive inhibitors of mTOR: an update
    • Schenone S, Brullo C, Musumeci F, et al. ATP-competitive inhibitors of mTOR:an update. Curr Med Chem 2011;18:2995–3014.
    • (2011) Curr Med Chem , vol.18 , pp. 2995-3014
    • Schenone, S.1    Brullo, C.2    Musumeci, F.3
  • 90
    • 42349113247 scopus 로고    scopus 로고
    • A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis
    • Shor B, Zhang WG, Toral-Barza L, et al. A new pharmacologic action of CCI-779 involves FKBP12-independent inhibition of mTOR kinase activity and profound repression of global protein synthesis. Cancer Res 2008;68:2934–43.
    • (2008) Cancer Res , vol.68 , pp. 2934-2943
    • Shor, B.1    Zhang, W.G.2    Toral-Barza, L.3
  • 91
    • 84943270672 scopus 로고    scopus 로고
    • Toward rapamycin analog (rapalog)-based precision cancer therapy
    • Meng LH, Zheng XF., Toward rapamycin analog (rapalog)-based precision cancer therapy. Acta Pharmacol Sin 2015;36:1163–9.
    • (2015) Acta Pharmacol Sin , vol.36 , pp. 1163-1169
    • Meng, L.H.1    Zheng, X.F.2
  • 92
    • 85000692373 scopus 로고    scopus 로고
    • Oral mucosal injury caused by mammalian target of rapamycin inhibitors: emerging perspectives on pathobiology and impact on clinical practice
    • Peterson DE, O'Shaughnessy JA, Rugo HS, et al. Oral mucosal injury caused by mammalian target of rapamycin inhibitors:emerging perspectives on pathobiology and impact on clinical practice. Cancer Med 2016;5:1897–907.
    • (2016) Cancer Med , vol.5 , pp. 1897-1907
    • Peterson, D.E.1    O'Shaughnessy, J.A.2    Rugo, H.S.3
  • 93
    • 84919651080 scopus 로고    scopus 로고
    • Incidence and risk of rash to mTOR inhibitors in cancer patients-a meta-analysis of randomized controlled trials
    • Shameem R, Lacouture M, Wu S. Incidence and risk of rash to mTOR inhibitors in cancer patients-a meta-analysis of randomized controlled trials. Acta Oncol 2015;54:124–32.
    • (2015) Acta Oncol , vol.54 , pp. 124-132
    • Shameem, R.1    Lacouture, M.2    Wu, S.3
  • 94
    • 79958698108 scopus 로고    scopus 로고
    • Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens
    • Rivera VM, Squillace RM, Miller D, et al. Ridaforolimus (AP23573; MK-8669), a potent mTOR inhibitor, has broad antitumor activity and can be optimally administered using intermittent dosing regimens. Mol Cancer Ther 2011;10:1059–71.
    • (2011) Mol Cancer Ther , vol.10 , pp. 1059-1071
    • Rivera, V.M.1    Squillace, R.M.2    Miller, D.3
  • 95
    • 37049010979 scopus 로고    scopus 로고
    • Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression
    • Legrier ME, Yang CP, Yan HG, et al. Targeting protein translation in human non small cell lung cancer via combined MEK and mammalian target of rapamycin suppression. Cancer Res 2007;67:11300–8.
    • (2007) Cancer Res , vol.67 , pp. 11300-11308
    • Legrier, M.E.1    Yang, C.P.2    Yan, H.G.3
  • 96
    • 84939571931 scopus 로고    scopus 로고
    • Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours
    • Piha-Paul SA, Munster PN, Hollebecque A, et al. Results of a phase 1 trial combining ridaforolimus and MK-0752 in patients with advanced solid tumours. Eur J Cancer 2015;51:1865–73.
    • (2015) Eur J Cancer , vol.51 , pp. 1865-1873
    • Piha-Paul, S.A.1    Munster, P.N.2    Hollebecque, A.3
  • 97
    • 63149129641 scopus 로고    scopus 로고
    • A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies
    • Hartford CM, Desai AA, Janisch L, et al. A phase I trial to determine the safety, tolerability, and maximum tolerated dose of deforolimus in patients with advanced malignancies. Clin Cancer Res 2009;15:1428–34.
    • (2009) Clin Cancer Res , vol.15 , pp. 1428-1434
    • Hartford, C.M.1    Desai, A.A.2    Janisch, L.3
  • 98
    • 84947346287 scopus 로고    scopus 로고
    • Cellular and molecular effects of the mTOR inhibitor everolimus
    • Saran U, Foti M, Dufour JF., Cellular and molecular effects of the mTOR inhibitor everolimus. Clin Sci (Lond) 2015;129:895–914.
    • (2015) Clin Sci (Lond) , vol.129 , pp. 895-914
    • Saran, U.1    Foti, M.2    Dufour, J.F.3
  • 99
    • 85002236608 scopus 로고    scopus 로고
    • Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation
    • Baroja-Mazo A, Revilla-Nuin B, Ramirez P, et al. Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World J Transplant 2016;6:183–92.
    • (2016) World J Transplant , vol.6 , pp. 183-192
    • Baroja-Mazo, A.1    Revilla-Nuin, B.2    Ramirez, P.3
  • 100
    • 77951635629 scopus 로고    scopus 로고
    • Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer
    • Doi T, Muro K, Boku N, et al. Multicenter phase II study of everolimus in patients with previously treated metastatic gastric cancer. J Clin Oncol 2010;28:1904–10.
    • (2010) Clin Oncol , vol.28 , pp. 1904-1910
    • Doi, T.1    Muro, K.2    Boku, N.3
  • 101
    • 84925851377 scopus 로고    scopus 로고
    • Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors: a subgroup analysis of the phase III RADIANT-3 trial
    • Lombard-Bohas C, Yao JC, Hobday T, et al. Impact of prior chemotherapy use on the efficacy of everolimus in patients with advanced pancreatic neuroendocrine tumors:a subgroup analysis of the phase III RADIANT-3 trial. Pancreas 2015;44:181–9.
    • (2015) Pancreas , vol.44 , pp. 181-189
    • Lombard-Bohas, C.1    Yao, J.C.2    Hobday, T.3
  • 102
    • 84960112967 scopus 로고    scopus 로고
    • Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study
    • Yao JC, Fazio N, Singh S, et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4):a randomised, placebo-controlled, phase 3 study. Lancet 2016;387:968–77.
    • (2016) Lancet , vol.387 , pp. 968-977
    • Yao, J.C.1    Fazio, N.2    Singh, S.3
  • 103
    • 84929493881 scopus 로고    scopus 로고
    • The changes of lipid metabolism in advanced renal cell carcinoma patients treated with everolimus: a new pharmacodynamic marker?
    • Pantano F, Santoni M, Procopio G, et al. The changes of lipid metabolism in advanced renal cell carcinoma patients treated with everolimus:a new pharmacodynamic marker? PLoS One 2015;10:e0120427.
    • (2015) PLoS One , vol.10 , pp. e0120427
    • Pantano, F.1    Santoni, M.2    Procopio, G.3
  • 104
    • 1542751639 scopus 로고    scopus 로고
    • The molecular target of rapamycin (mTOR) as a therapeutic target against cancer
    • Mita MM, Mita A, Rowinsky EK., The molecular target of rapamycin (mTOR) as a therapeutic target against cancer. Cancer Biol Ther 2003;2:S169–77.
    • (2003) Cancer Biol Ther , vol.2 , pp. S169-S177
    • Mita, M.M.1    Mita, A.2    Rowinsky, E.K.3
  • 105
    • 18144399578 scopus 로고    scopus 로고
    • mTOR-targeted therapy of cancer with rapamycin derivatives
    • Vignot S, Faivre S, Aguirre D, et al. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 2005;16:525–37.
    • (2005) Ann Oncol , vol.16 , pp. 525-537
    • Vignot, S.1    Faivre, S.2    Aguirre, D.3
  • 106
    • 57449111076 scopus 로고    scopus 로고
    • mTOR pathway and mTOR inhibitors as agents for cancer therapy
    • Baldo P, Cecco S, Giacomin E, et al. mTOR pathway and mTOR inhibitors as agents for cancer therapy. Curr Cancer Drug Targets 2008;8:647–65.
    • (2008) Curr Cancer Drug Targets , vol.8 , pp. 647-665
    • Baldo, P.1    Cecco, S.2    Giacomin, E.3
  • 107
    • 84862528335 scopus 로고    scopus 로고
    • Targeting mTOR pathways in human malignancies
    • Fasolo A, Sessa C., Targeting mTOR pathways in human malignancies. Curr Pharm Des 2012;18:2766–77.
    • (2012) Curr Pharm Des , vol.18 , pp. 2766-2777
    • Fasolo, A.1    Sessa, C.2
  • 108
    • 79953709986 scopus 로고    scopus 로고
    • Targeting the mTOR kinase domain: the second generation of mTOR inhibitors
    • Zhang YJ, Duan Y, Zheng XF., Targeting the mTOR kinase domain:the second generation of mTOR inhibitors. Drug Discov Today 2011;16:325–31.
    • (2011) Drug Discov Today , vol.16 , pp. 325-331
    • Zhang, Y.J.1    Duan, Y.2    Zheng, X.F.3
  • 109
    • 84875706023 scopus 로고    scopus 로고
    • Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR)
    • Takeuchi CS, Kim BG, Blazey CM, et al. Discovery of a novel class of highly potent, selective, ATP-competitive, and orally bioavailable inhibitors of the mammalian target of rapamycin (mTOR). J Med Chem 2013;56:2218–34.
    • (2013) Med Chem , vol.56 , pp. 2218-2234
    • Takeuchi, C.S.1    Kim, B.G.2    Blazey, C.M.3
  • 110
    • 67650312583 scopus 로고    scopus 로고
    • Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR)
    • Garcia-Martinez JM, Moran J, Clarke RG, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J 2009;421:29–42.
    • (2009) Biochem J , vol.421 , pp. 29-42
    • Garcia-Martinez, J.M.1    Moran, J.2    Clarke, R.G.3
  • 111
    • 61349141302 scopus 로고    scopus 로고
    • Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
    • Feldman ME, Apsel B, Uotila A, et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009;7:e38.
    • (2009) PLoS Biol , vol.7 , pp. e38
    • Feldman, M.E.1    Apsel, B.2    Uotila, A.3
  • 112
    • 84930858062 scopus 로고    scopus 로고
    • mTOR complex 2 stabilizes Mcl-1 protein by suppressing its glycogen synthase kinase 3-dependent and SCF-FBXW7-mediated degradation
    • Koo J, Yue P, Deng X, et al. mTOR complex 2 stabilizes Mcl-1 protein by suppressing its glycogen synthase kinase 3-dependent and SCF-FBXW7-mediated degradation. Mol Cell Biol 2015;35:2344–55.
    • (2015) Mol Cell Biol , vol.35 , pp. 2344-2355
    • Koo, J.1    Yue, P.2    Deng, X.3
  • 113
    • 84953408060 scopus 로고    scopus 로고
    • mTOR kinase inhibitor pp242 causes mitophagy terminated by apoptotic cell death in E1A-Ras transformed cells
    • Gordeev SA, Bykova TV, Zubova SG, et al. mTOR kinase inhibitor pp242 causes mitophagy terminated by apoptotic cell death in E1A-Ras transformed cells. Oncotarget 2015;6:44905–26.
    • (2015) Oncotarget , vol.6 , pp. 44905-44926
    • Gordeev, S.A.1    Bykova, T.V.2    Zubova, S.G.3
  • 114
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009;284:8023–32.
    • (2009) Biol Chem , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3
  • 115
    • 84885714633 scopus 로고    scopus 로고
    • The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer: a retrospective study including patients from the randomized Stockholm tamoxifen trials
    • Karlsson E, Pérez-Tenorio G, Amin R, et al. The mTOR effectors 4EBP1 and S6K2 are frequently coexpressed, and associated with a poor prognosis and endocrine resistance in breast cancer:a retrospective study including patients from the randomized Stockholm tamoxifen trials. Breast Cancer Res 2013;15:1–14.
    • (2013) Breast Cancer Res , vol.15 , pp. 1-14
    • Karlsson, E.1    Pérez-Tenorio, G.2    Amin, R.3
  • 116
    • 84949604289 scopus 로고    scopus 로고
    • Abrogation of autophagy by chloroquine alone or in combination with mTOR inhibitors induces apoptosis in neuroendocrine tumor cells
    • Avniel-Polak S, Leibowitz G, Riahi Y, et al. Abrogation of autophagy by chloroquine alone or in combination with mTOR inhibitors induces apoptosis in neuroendocrine tumor cells. Neuroendocrinology 2015;103. [Epub ahead of print]. doi:10.1159/000442589.
    • (2015) Neuroendocrinology , pp. 103
    • Avniel-Polak, S.1    Leibowitz, G.2    Riahi, Y.3
  • 117
    • 84946763391 scopus 로고    scopus 로고
    • Combination of mTOR inhibitors augments potency while activating PI3K signaling in pituitary tumors
    • Rubinfeld H, Cohen O, Kammer A, et al. Combination of mTOR inhibitors augments potency while activating PI3K signaling in pituitary tumors. Neuroendocrinology 2016;103:592–604.
    • (2016) Neuroendocrinology , vol.103 , pp. 592-604
    • Rubinfeld, H.1    Cohen, O.2    Kammer, A.3
  • 118
    • 84860532107 scopus 로고    scopus 로고
    • Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy
    • Garcia-Garcia C, Ibrahim YH, Serra V, et al. Dual mTORC1/2 and HER2 blockade results in antitumor activity in preclinical models of breast cancer resistant to anti-HER2 therapy. Clin Cancer Res 2012;18:2603–12.
    • (2012) Clin Cancer Res , vol.18 , pp. 2603-2612
    • Garcia-Garcia, C.1    Ibrahim, Y.H.2    Serra, V.3
  • 119
    • 84905119809 scopus 로고    scopus 로고
    • The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells
    • Lou HZ, Weng XC, Pan HM, et al. The novel mTORC1/2 dual inhibitor INK-128 suppresses survival and proliferation of primary and transformed human pancreatic cancer cells. Biochem Biophys Res Commun 2014;450:973–8.
    • (2014) Biochem Biophys Res Commun , vol.450 , pp. 973-978
    • Lou, H.Z.1    Weng, X.C.2    Pan, H.M.3
  • 120
    • 84936890657 scopus 로고    scopus 로고
    • The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent
    • Li C, Cui JF, Chen MB, et al. The preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent. Cancer Biol Ther 2015;16:34–42.
    • (2015) Cancer Biol Ther , vol.16 , pp. 34-42
    • Li, C.1    Cui, J.F.2    Chen, M.B.3
  • 121
    • 84944280278 scopus 로고    scopus 로고
    • Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo
    • Jiang SJ, Wang S., Dual targeting of mTORC1 and mTORC2 by INK-128 potently inhibits human prostate cancer cell growth in vitro and in vivo. Tumour Biol 2015;36:8177–84.
    • (2015) Tumour Biol , vol.36 , pp. 8177-8184
    • Jiang, S.J.1    Wang, S.2
  • 122
    • 84943455286 scopus 로고    scopus 로고
    • Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells
    • Altman MK, Alshamrani AA, Jia W, et al. Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Cancer Lett 2015;369:175–83.
    • (2015) Cancer Lett , vol.369 , pp. 175-183
    • Altman, M.K.1    Alshamrani, A.A.2    Jia, W.3
  • 123
    • 84947704479 scopus 로고    scopus 로고
    • Dual mTORC1/2 inhibition by INK-128 results in antitumor activity in preclinical models of osteosarcoma
    • Jiang H, Zeng Z., Dual mTORC1/2 inhibition by INK-128 results in antitumor activity in preclinical models of osteosarcoma. Biochem Biophys Res Commun 2015;468:255–61.
    • (2015) Biochem Biophys Res Commun , vol.468 , pp. 255-261
    • Jiang, H.1    Zeng, Z.2
  • 124
    • 76549107351 scopus 로고    scopus 로고
    • Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2
    • Yu K, Shi C, Toral-Barza L, et al. Beyond rapalog therapy:preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010;70:621–31.
    • (2010) Cancer Res , vol.70 , pp. 621-631
    • Yu, K.1    Shi, C.2    Toral-Barza, L.3
  • 125
    • 84939613511 scopus 로고    scopus 로고
    • The anti-ovarian cancer activity by WYE-132, a mTORC1/2 dual inhibitor
    • Zhang D, Xia H, Zhang W, et al. The anti-ovarian cancer activity by WYE-132, a mTORC1/2 dual inhibitor. Tumour Biol 2016;37:1327–36.
    • (2016) Tumour Biol , vol.37 , pp. 1327-1336
    • Zhang, D.1    Xia, H.2    Zhang, W.3
  • 126
    • 84888326401 scopus 로고    scopus 로고
    • Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways
    • Rastogi R, Jiang Z, Ahmad N, et al. Rapamycin induces mitogen-activated protein (MAP) kinase phosphatase-1 (MKP-1) expression through activation of protein kinase B and mitogen-activated protein kinase kinase pathways. J Biol Chem 2013;288:33966–77.
    • (2013) Biol Chem , vol.288 , pp. 33966-33977
    • Rastogi, R.1    Jiang, Z.2    Ahmad, N.3
  • 127
    • 84891513783 scopus 로고    scopus 로고
    • The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells
    • Kahn J, Hayman TJ, Jamal M, et al. The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells. Neuro-oncology 2014;16:29–37.
    • (2014) Neuro-oncology , vol.16 , pp. 29-37
    • Kahn, J.1    Hayman, T.J.2    Jamal, M.3
  • 128
    • 84958231284 scopus 로고    scopus 로고
    • AZD2014, an inhibitor of mTORC1 and mTORC2, is highly effective in ER + breast cancer when administered using intermittent or continuous schedules
    • Guichard SM, Curwen J, Bihani T, et al. AZD2014, an inhibitor of mTORC1 and mTORC2, is highly effective in ER + breast cancer when administered using intermittent or continuous schedules. Mol Cancer Ther 2015;14:2508–18.
    • (2015) Mol Cancer Ther , vol.14 , pp. 2508-2518
    • Guichard, S.M.1    Curwen, J.2    Bihani, T.3
  • 129
    • 84920747249 scopus 로고    scopus 로고
    • Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma
    • Zheng B, Mao JH, Qian L, et al. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma. Cancer Lett 2015;357:468–75.
    • (2015) Cancer Lett , vol.357 , pp. 468-475
    • Zheng, B.1    Mao, J.H.2    Qian, L.3
  • 130
    • 84995413066 scopus 로고    scopus 로고
    • Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma
    • Liao H, Huang Y, Guo B, et al. Dramatic antitumor effects of the dual mTORC1 and mTORC2 inhibitor AZD2014 in hepatocellular carcinoma. Am J Cancer Res 2015;5:125–39.
    • (2015) Am J Cancer Res , vol.5 , pp. 125-139
    • Liao, H.1    Huang, Y.2    Guo, B.3
  • 131
    • 84937815039 scopus 로고    scopus 로고
    • First-in-Human Pharmacokinetic and Pharmacodynamic Study of the Dual m-TORC 1/2 Inhibitor AZD2014
    • Basu B, Dean E, Puglisi M, et al. First-in-Human Pharmacokinetic and Pharmacodynamic Study of the Dual m-TORC 1/2 Inhibitor AZD2014. Clin Cancer Res 2015;21:3412–19.
    • (2015) Clin Cancer Res , vol.21 , pp. 3412-3419
    • Basu, B.1    Dean, E.2    Puglisi, M.3
  • 132
    • 84938230839 scopus 로고    scopus 로고
    • A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas
    • Beauchamp RL, James MF, DeSouza PA, et al. A high-throughput kinome screen reveals serum/glucocorticoid-regulated kinase 1 as a therapeutic target for NF2-deficient meningiomas. Oncotarget 2015;6:16981–97.
    • (2015) Oncotarget , vol.6 , pp. 16981-16997
    • Beauchamp, R.L.1    James, M.F.2    DeSouza, P.A.3
  • 133
    • 84866540757 scopus 로고    scopus 로고
    • Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression
    • Hall BA, Kim TY, Skor MN, et al. Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer:requirement for mTORC1 activity associates with ER-alpha expression. Breast Cancer Res Treat 2012;135:469–79.
    • (2012) Breast Cancer Res Treat , vol.135 , pp. 469-479
    • Hall, B.A.1    Kim, T.Y.2    Skor, M.N.3
  • 134
    • 84945556079 scopus 로고    scopus 로고
    • Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC
    • Singleton KR, Hinz TK, Kleczko EK, et al. Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC. Cancer Res 2015;75:4398–406.
    • (2015) Cancer Res , vol.75 , pp. 4398-4406
    • Singleton, K.R.1    Hinz, T.K.2    Kleczko, E.K.3
  • 135
    • 84941236891 scopus 로고    scopus 로고
    • A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer
    • Powles T, Wheater M, Din O, et al. A randomised phase 2 study of AZD2014 versus everolimus in patients with VEGF-refractory metastatic clear cell renal cancer. Eur Urol 2016;69:450–6.
    • (2016) Eur Urol , vol.69 , pp. 450-456
    • Powles, T.1    Wheater, M.2    Din, O.3
  • 136
    • 84905013797 scopus 로고    scopus 로고
    • Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma
    • Ezell SA, Mayo M, Bihani T, et al. Synergistic induction of apoptosis by combination of BTK and dual mTORC1/2 inhibitors in diffuse large B cell lymphoma. Oncotarget 2014;5:4990–5001.
    • (2014) Oncotarget , vol.5 , pp. 4990-5001
    • Ezell, S.A.1    Mayo, M.2    Bihani, T.3
  • 137
    • 84947716438 scopus 로고    scopus 로고
    • The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression
    • Harada M, Benito J, Yamamoto S, et al. The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget 2015;6:37930–47.
    • (2015) Oncotarget , vol.6 , pp. 37930-37947
    • Harada, M.1    Benito, J.2    Yamamoto, S.3
  • 138
    • 84941254454 scopus 로고    scopus 로고
    • Ibrutinib-A double-edge sword in cancer and autoimmune disorders
    • Kokhaei P, Jadidi-Niaragh F, Sotoodeh Jahromi A, et al. Ibrutinib-A double-edge sword in cancer and autoimmune disorders. J Drug Target 2016;24:373–85.
    • (2016) Drug Target , vol.24 , pp. 373-385
    • Kokhaei, P.1    Jadidi-Niaragh, F.2    Sotoodeh Jahromi, A.3
  • 139
    • 63749129788 scopus 로고    scopus 로고
    • PI3K and mTOR inhibitors: a new generation of targeted anticancer agents
    • Brachmann S, Fritsch C, Maira SM, et al. PI3K and mTOR inhibitors:a new generation of targeted anticancer agents. Curr Opin Cell Biol 2009;21:194–8.
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 194-198
    • Brachmann, S.1    Fritsch, C.2    Maira, S.M.3
  • 140
    • 68249093818 scopus 로고    scopus 로고
    • Targeting the phosphoinositide 3-kinase pathway in cancer
    • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009;8:627–44.
    • (2009) Nat Rev Drug Discov , vol.8 , pp. 627-644
    • Liu, P.1    Cheng, H.2    Roberts, T.M.3
  • 141
    • 39649122377 scopus 로고    scopus 로고
    • Class IA phosphatidylinositol 3-kinase: from their biologic implication in human cancers to drug discovery
    • Maira SM, Voliva C, Garcia-Echeverria C., Class IA phosphatidylinositol 3-kinase:from their biologic implication in human cancers to drug discovery. Expert Opin Ther Targets 2008;12:223–38.
    • (2008) Expert Opin Ther Targets , vol.12 , pp. 223-238
    • Maira, S.M.1    Voliva, C.2    Garcia-Echeverria, C.3
  • 142
    • 84927597696 scopus 로고    scopus 로고
    • Higher risk of infections with PI3K-AKT-mTOR pathway inhibitors in patients with advanced solid tumors on phase I clinical trials. Clin
    • Rafii S, Roda D, Geuna E, et al. Higher risk of infections with PI3K-AKT-mTOR pathway inhibitors in patients with advanced solid tumors on phase I clinical trials. Clin Cancer Res 2015;21:1869–76.
    • (2015) Cancer Res , vol.21 , pp. 1869-1876
    • Rafii, S.1    Roda, D.2    Geuna, E.3
  • 143
    • 84949321820 scopus 로고    scopus 로고
    • Complications of hyperglycaemia with PI3K-AKT-mTOR inhibitors in patients with advanced solid tumours on Phase I clinical trials
    • Geuna E, Roda D, Rafii S, et al. Complications of hyperglycaemia with PI3K-AKT-mTOR inhibitors in patients with advanced solid tumours on Phase I clinical trials. Br J Cancer 2015;113:1541–7.
    • (2015) Br J Cancer , vol.113 , pp. 1541-1547
    • Geuna, E.1    Roda, D.2    Rafii, S.3
  • 144
    • 68049137608 scopus 로고    scopus 로고
    • Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
    • Yu K, Toral-Barza L, Shi C, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009;69:6232–40.
    • (2009) Cancer Res , vol.69 , pp. 6232-6240
    • Yu, K.1    Toral-Barza, L.2    Shi, C.3
  • 145
    • 84920811657 scopus 로고    scopus 로고
    • Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes
    • Jhanwar-Uniyal M, Gillick JL, Neil J, et al. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme:a tale of two complexes. Adv Biol Regul 2015;57:64–74.
    • (2015) Adv Biol Regul , vol.57 , pp. 64-74
    • Jhanwar-Uniyal, M.1    Gillick, J.L.2    Neil, J.3
  • 146
    • 84945566438 scopus 로고    scopus 로고
    • Rapamycin and WYE-354 suppress human gallbladder cancer xenografts in mice
    • Weber H, Leal P, Stein S, et al. Rapamycin and WYE-354 suppress human gallbladder cancer xenografts in mice. Oncotarget 2015;6:31877–88.
    • (2015) Oncotarget , vol.6 , pp. 31877-31888
    • Weber, H.1    Leal, P.2    Stein, S.3
  • 147
    • 84952638987 scopus 로고    scopus 로고
    • DNA-PKcs interference sensitizes colorectal cancer cells to a mTOR kinase inhibitor WAY-600
    • Wu L, Zhang J, Wu H, et al. DNA-PKcs interference sensitizes colorectal cancer cells to a mTOR kinase inhibitor WAY-600. Biochem Biophys Res Commun 2015;466:547–53.
    • (2015) Biochem Biophys Res Commun , vol.466 , pp. 547-553
    • Wu, L.1    Zhang, J.2    Wu, H.3
  • 148
    • 84956581640 scopus 로고    scopus 로고
    • Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent
    • Cheng F, Wang L, Shen Y, et al. Preclinical evaluation of WYE-687, a mTOR kinase inhibitor, as a potential anti-acute myeloid leukemia agent. Biochem Biophys Res Commun 2016;470:324–30.
    • (2016) Biochem Biophys Res Commun , vol.470 , pp. 324-330
    • Cheng, F.1    Wang, L.2    Shen, Y.3
  • 149
    • 0038364056 scopus 로고    scopus 로고
    • Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy
    • Ravikumar B, Stewart A, Kita H, et al. Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Hum Mol Genet 2003;12:985–94.
    • (2003) Hum Mol Genet , vol.12 , pp. 985-994
    • Ravikumar, B.1    Stewart, A.2    Kita, H.3
  • 150
    • 84866928171 scopus 로고    scopus 로고
    • Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma
    • Naing A, Aghajanian C, Raymond E, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br J Cancer 2012;107:1093–9.
    • (2012) Br J Cancer , vol.107 , pp. 1093-1099
    • Naing, A.1    Aghajanian, C.2    Raymond, E.3
  • 151
    • 51049109033 scopus 로고    scopus 로고
    • Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity
    • Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 2008;7:1851–63.
    • (2008) Mol Cancer Ther , vol.7 , pp. 1851-1863
    • Maira, S.M.1    Stauffer, F.2    Brueggen, J.3
  • 152
    • 33646382364 scopus 로고    scopus 로고
    • A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma
    • Fan QW, Knight ZA, Goldenberg DD, et al. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006;9:341–9.
    • (2006) Cancer Cell , vol.9 , pp. 341-349
    • Fan, Q.W.1    Knight, Z.A.2    Goldenberg, D.D.3
  • 153
    • 84932147143 scopus 로고    scopus 로고
    • Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: a phase 1 expansion cohort in patients with relapsed or refractory lymphoma
    • Papadopoulos KP, Egile C, Ruiz-Soto R, et al. Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor:a phase 1 expansion cohort in patients with relapsed or refractory lymphoma. Leuk Lymphoma 2015;56:1763–70.
    • (2015) Leuk Lymphoma , vol.56 , pp. 1763-1770
    • Papadopoulos, K.P.1    Egile, C.2    Ruiz-Soto, R.3
  • 154
    • 80051590039 scopus 로고    scopus 로고
    • Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin
    • Bhagwat SV, Gokhale PC, Crew AP, et al. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2:distinct from rapamycin. Mol Cancer Ther 2011;10:1394–406.
    • (2011) Mol Cancer Ther , vol.10 , pp. 1394-1406
    • Bhagwat, S.V.1    Gokhale, P.C.2    Crew, A.P.3
  • 155
    • 56449087509 scopus 로고    scopus 로고
    • Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability
    • Xue Q, Hopkins B, Perruzzi C, et al. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res 2008;68:9551–7.
    • (2008) Cancer Res , vol.68 , pp. 9551-9557
    • Xue, Q.1    Hopkins, B.2    Perruzzi, C.3
  • 156
    • 77949785193 scopus 로고    scopus 로고
    • Bis(morpholino-1,3,5-triazine) derivatives: potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors: discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor
    • Venkatesan AM, Dehnhardt CM, Delos Santos E, et al. Bis(morpholino-1,3,5-triazine) derivatives:potent adenosine 5′-triphosphate competitive phosphatidylinositol-3-kinase/mammalian target of rapamycin inhibitors:discovery of compound 26 (PKI-587), a highly efficacious dual inhibitor. J Med Chem 2010;53:2636–45.
    • (2010) Med Chem , vol.53 , pp. 2636-2645
    • Venkatesan, A.M.1    Dehnhardt, C.M.2    Delos Santos, E.3
  • 157
    • 84969872786 scopus 로고    scopus 로고
    • Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor
    • Rodrik-Outmezguine VS, Okaniwa M, Yao Z, et al. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature 2016;534:272–6.
    • (2016) Nature , vol.534 , pp. 272-276
    • Rodrik-Outmezguine, V.S.1    Okaniwa, M.2    Yao, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.