-
1
-
-
84872527628
-
mTOR is a key modulator of ageing and age-related disease
-
Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013; 493:338-345.
-
(2013)
Nature.
, vol.493
, pp. 338-345
-
-
Johnson, S.C.1
Rabinovitch, P.S.2
Kaeberlein, M.3
-
2
-
-
67649347537
-
Growth and aging: a common molecular mechanism
-
Blagosklonny MV, Hall MN. Growth and aging: a common molecular mechanism. Aging (Albany NY). 2009; 1:357-362.
-
(2009)
Aging (Albany NY).
, vol.1
, pp. 357-362
-
-
Blagosklonny, M.V.1
Hall, M.N.2
-
3
-
-
78650510609
-
mTOR: from growth signal integration to cancer, diabetes and ageing
-
Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature reviews Molecular cell biology. 2011; 12:21-35.
-
(2011)
Nature reviews Molecular cell biology.
, vol.12
, pp. 21-35
-
-
Sabatini, D.M.1
-
4
-
-
84881085507
-
Multifaceted aging and rapamycin
-
Anisimov VN. Multifaceted aging and rapamycin. Aging (Albany NY). 2013; 5:487.
-
(2013)
Aging (Albany NY).
, vol.5
, pp. 487
-
-
Anisimov, V.N.1
-
5
-
-
77955891991
-
Quality and quantity control of protein in senescence
-
Narita M. Quality and quantity control of protein in senescence. Aging. 2010; 5:311-314.
-
(2010)
Aging.
, vol.5
, pp. 311-314
-
-
Narita, M.1
-
6
-
-
84862891914
-
Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging
-
Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY). 2012; 4:159-165.
-
(2012)
Aging (Albany NY).
, vol.4
, pp. 159-165
-
-
Blagosklonny, M.V.1
-
7
-
-
84894523716
-
Making new contacts: the mTOR network in metabolism and signalling crosstalk
-
Shimobayashi M, Hall MN. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nature reviews Molecular cell biology. 2014; 15:155-162.
-
(2014)
Nature reviews Molecular cell biology.
, vol.15
, pp. 155-162
-
-
Shimobayashi, M.1
Hall, M.N.2
-
8
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer cell. 2007; 12:9-22.
-
(2007)
Cancer cell.
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
9
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nature reviews Molecular cell biology. 2009; 10:307-318.
-
(2009)
Nature reviews Molecular cell biology.
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
10
-
-
77955287244
-
mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1
-
Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ. mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proceedings of the National Academy of Sciences. 2010; 107:11823-11828.
-
(2010)
Proceedings of the National Academy of Sciences.
, vol.107
, pp. 11823-11828
-
-
Kantidakis, T.1
Ramsbottom, B.A.2
Birch, J.L.3
Dowding, S.N.4
White, R.J.5
-
13
-
-
84857997408
-
A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB
-
Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S, Erdin S, Huynh T, Ferron M, Karsenty G, Vellard MC, Facchinetti V, Sabatini DM, Ballabio A. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 2012; 31:1095-108.
-
(2012)
EMBO J.
, vol.31
, pp. 1095-1108
-
-
Settembre, C.1
Zoncu, R.2
Medina, D.L.3
Vetrini, F.4
Erdin, S.5
Erdin, S.6
Huynh, T.7
Ferron, M.8
Karsenty, G.9
Vellard, M.C.10
Facchinetti, V.11
Sabatini, D.M.12
Ballabio, A.13
-
14
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol. 2009; 19: R1046-52.
-
(2009)
Curr Biol.
, vol.19
, pp. R1046-R1052
-
-
Laplante, M.1
Sabatini, D.M.2
-
15
-
-
74549205329
-
Validation of anti-aging drugs by treating age-related diseases
-
Blagosklonny MV. Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY). 2009; 1:281-288.
-
(2009)
Aging (Albany NY).
, vol.1
, pp. 281-288
-
-
Blagosklonny, M.V.1
-
16
-
-
84907809596
-
Rapamycin-induced metabolic defects are reversible in both lean and obese mice
-
Liu Y, Diaz V, Fernandez E, Strong R, Ye L, Baur JA, Lamming DW, Richardson A, Salmon AB. Rapamycin-induced metabolic defects are reversible in both lean and obese mice. Aging (Albany NY). 2014; 9:742-754.
-
(2014)
Aging (Albany NY).
, vol.9
, pp. 742-754
-
-
Liu, Y.1
Diaz, V.2
Fernandez, E.3
Strong, R.4
Ye, L.5
Baur, J.A.6
Lamming, D.W.7
Richardson, A.8
Salmon, A.B.9
-
17
-
-
80655140442
-
Progeria, rapamycin and normal aging: recent breakthrough
-
Blagosklonny MV. Progeria, rapamycin and normal aging: recent breakthrough. Aging (Albany NY). 2011; 3:685-691.
-
(2011)
Aging (Albany NY).
, vol.3
, pp. 685-691
-
-
Blagosklonny, M.V.1
-
18
-
-
79952216582
-
Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors
-
Falcon BL, Barr S, Gokhale PC, Chou J, Fogarty J, Depeille P, Miglarese M, Epstein DM, McDonald DM. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. Cancer Res. 2011; 71:1573-583.
-
(2011)
Cancer Res.
, vol.71
, pp. 1573-1583
-
-
Falcon, B.L.1
Barr, S.2
Gokhale, P.C.3
Chou, J.4
Fogarty, J.5
Depeille, P.6
Miglarese, M.7
Epstein, D.M.8
McDonald, D.M.9
-
19
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 2009; 7: e38.
-
(2009)
PLoS Biol.
, vol.7
, pp. e38
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
Loewith, R.4
Knight, Z.A.5
Ruggero, D.6
Shokat, K.M.7
-
21
-
-
76349104427
-
Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
-
Janes MR, Limon JJ, So L, Chen J, Lim RJ, Chavez MA, Vu C, Lilly MB, Mallya S, Ong ST, Konopleva M, Martin MB, Ren P, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010; 16:205-13.
-
(2010)
Nat Med.
, vol.16
, pp. 205-213
-
-
Janes, M.R.1
Limon, J.J.2
So, L.3
Chen, J.4
Lim, R.J.5
Chavez, M.A.6
Vu, C.7
Lilly, M.B.8
Mallya, S.9
Ong, S.T.10
Konopleva, M.11
Martin, M.B.12
Ren, P.13
-
22
-
-
67650228579
-
Rapamycin inhibits mTORC1, but not completely
-
Thoreen CC, Sabatini DM. Rapamycin inhibits mTORC1, but not completely. Autophagy. 2009; 5:725-6.
-
(2009)
Autophagy.
, vol.5
, pp. 725-726
-
-
Thoreen, C.C.1
Sabatini, D.M.2
-
23
-
-
77953699711
-
Termination of autophagy and reformation of lysosomes regulated by mTOR
-
Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J, Mi N, Zhao Y, Liu Z, Wan F, Hailey DW, Oorschot V, Klumperman J, et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010; 465:942-6.
-
(2010)
Nature.
, vol.465
, pp. 942-946
-
-
Yu, L.1
McPhee, C.K.2
Zheng, L.3
Mardones, G.A.4
Rong, Y.5
Peng, J.6
Mi, N.7
Zhao, Y.8
Liu, Z.9
Wan, F.10
Hailey, D.W.11
Oorschot, V.12
Klumperman, J.13
-
24
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem. 2009; 284:8023-32.
-
(2009)
J Biol Chem.
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
Liu, Q.4
Zhang, J.5
Gao, Y.6
Reichling, L.J.7
Sim, T.8
Sabatini, D.M.9
Gray, N.S.10
-
25
-
-
56449087509
-
Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability
-
Xue Q, Hopkins B, Perruzzi C, Udayakumar D, Sherris D, Benjamin LE. Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability. Cancer Res. 2008; 68:9551-9557.
-
(2008)
Cancer Res.
, vol.68
, pp. 9551-9557
-
-
Xue, Q.1
Hopkins, B.2
Perruzzi, C.3
Udayakumar, D.4
Sherris, D.5
Benjamin, L.E.6
-
26
-
-
75149112670
-
AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity
-
Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 2010; 70:288-298.
-
(2010)
Cancer Res.
, vol.70
, pp. 288-298
-
-
Chresta, C.M.1
Davies, B.R.2
Hickson, I.3
Harding, T.4
Cosulich, S.5
Critchlow, S.E.6
Vincent, J.P.7
Ellston, R.8
Jones, D.9
Sini, P.10
James, D.11
Howard, Z.12
Dudley, P.13
-
27
-
-
84941205929
-
4E-BP1 as an oncotarget
-
She QB. 4E-BP1 as an oncotarget. Aging (Albany NY). 2015; 8:517-518.
-
(2015)
Aging (Albany NY).
, vol.8
, pp. 517-518
-
-
She, Q.B.1
-
28
-
-
68049137608
-
Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
-
Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res. 2009; 69:6232-6240.
-
(2009)
Cancer Res.
, vol.69
, pp. 6232-6240
-
-
Yu, K.1
Toral-Barza, L.2
Shi, C.3
Zhang, W.G.4
Lucas, J.5
Shor, B.6
Kim, J.7
Verheijen, J.8
Curran, K.9
Malwitz, D.J.10
Cole, D.C.11
Ellingboe, J.12
Ayral-Kaloustian, S.13
-
29
-
-
79955785100
-
Pushing the envelope in the mTOR pathway: the second generation of inhibitors
-
Vilar E, Perez-Garcia J, Tabernero J. Pushing the envelope in the mTOR pathway: the second generation of inhibitors. Mol Cancer Ther. 2011; 10:395-403.
-
(2011)
Mol Cancer Ther.
, vol.10
, pp. 395-403
-
-
Vilar, E.1
Perez-Garcia, J.2
Tabernero, J.3
-
30
-
-
77951214016
-
Mammalian autophagy: core molecular machinery and signaling regulation
-
Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010; 22:124-131.
-
(2010)
Curr Opin Cell Biol.
, vol.22
, pp. 124-131
-
-
Yang, Z.1
Klionsky, D.J.2
-
31
-
-
84939986310
-
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
-
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, Baehrecke EH, Bazan NG, Bertrand MJ, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015; 22:58-73.
-
(2015)
Cell Death Differ.
, vol.22
, pp. 58-73
-
-
Galluzzi, L.1
Bravo-San Pedro, J.M.2
Vitale, I.3
Aaronson, S.A.4
Abrams, J.M.5
Adam, D.6
Alnemri, E.S.7
Altucci, L.8
Andrews, D.9
Annicchiarico-Petruzzelli, M.10
Baehrecke, E.H.11
Bazan, N.G.12
Bertrand, M.J.13
-
32
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi RK, Lippincott-Schwartz J, Yin X-MM, Weiss WA, Takebe N, Timmer W, DiPaola RS, Lotze MT, White E. Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res. 2011; 17:654-666.
-
(2011)
Clin Cancer Res.
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
Lippincott-Schwartz, J.2
Yin, X.-M.M.3
Weiss, W.A.4
Takebe, N.5
Timmer, W.6
DiPaola, R.S.7
Lotze, M.T.8
White, E.9
-
34
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex
-
Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005; 307:1098-1101.
-
(2005)
Science.
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
Guertin, D.A.2
Ali, S.M.3
Sabatini, D.M.4
-
35
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A, Lin S, Rüegg MA, Hall A, Hall MN. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol. 2004; 6:1122-1128.
-
(2004)
Nat Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
Lin, S.4
Rüegg, M.A.5
Hall, A.6
Hall, M.N.7
-
36
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim D-HH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004; 14:1296-1302.
-
(2004)
Curr Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.-H.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
Tempst, P.7
Sabatini, D.M.8
-
37
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, Lam DH u H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009; 284:12297-12305.
-
(2009)
J Biol Chem.
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
Lam, D.H.H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
38
-
-
75549090275
-
mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells
-
Chen C, Liu Y, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal. 2009; 2: ra75.
-
(2009)
Sci Signal.
, vol.2
, pp. ra75
-
-
Chen, C.1
Liu, Y.2
Liu, Y.3
Zheng, P.4
-
39
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung CH, Jun CB, Ro S-HH, Kim Y-MM, Otto NM, Cao J, Kundu M, Kim D-HH. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009; 20:1992-2003.
-
(2009)
Mol Biol Cell.
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
Jun, C.B.2
Ro, S.-H.H.3
Kim, Y.-M.M.4
Otto, N.M.5
Cao, J.6
Kundu, M.7
Kim, D.-H.H.8
-
40
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009; 460:392-395.
-
(2009)
Nature.
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
Strong, R.2
Sharp, Z.D.3
Nelson, J.F.4
Astle, C.M.5
Flurkey, K.6
Nadon, N.L.7
Wilkinson, J.E.8
Frenkel, K.9
Carter, C.S.10
Pahor, M.11
Javors, M.A.12
Fernandez, E.13
-
41
-
-
84880426391
-
Metformin and rapamycin-are master-keys for understanding the relationship between cell senescent, aging and cancer
-
Anisimov VN. Metformin and rapamycin-are master-keys for understanding the relationship between cell senescent, aging and cancer. Aging (Albany NY). 2013; 5:537-538.
-
(2013)
Aging (Albany NY).
, vol.5
, pp. 537-538
-
-
Anisimov, V.N.1
-
42
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JJ, Chen G, Lemons JM, Karantza V, Coller HA, Dipaola RS, Gelinas C, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011; 25:460-470.
-
(2011)
Genes Dev.
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
Kamphorst, J.J.7
Chen, G.8
Lemons, J.M.9
Karantza, V.10
Coller, H.A.11
Dipaola, R.S.12
Gelinas, C.13
-
43
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, Debnath J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2011; 22:165-178.
-
(2011)
Mol Biol Cell.
, vol.22
, pp. 165-178
-
-
Lock, R.1
Roy, S.2
Kenific, C.M.3
Su, J.S.4
Salas, E.5
Ronen, S.M.6
Debnath, J.7
-
44
-
-
27944504351
-
p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
-
Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005; 171:603-614
-
(2005)
J Cell Biol.
, vol.171
, pp. 603-614
-
-
Bjørkøy, G.1
Lamark, T.2
Brech, A.3
Outzen, H.4
Perander, M.5
Overvatn, A.6
Stenmark, H.7
Johansen, T.8
-
45
-
-
79952355107
-
Selective autophagy mediated by autophagic adapter proteins
-
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011; 7:279-296.
-
(2011)
Autophagy.
, vol.7
, pp. 279-296
-
-
Johansen, T.1
Lamark, T.2
-
46
-
-
79959415069
-
Biogenesis and cargo selectivity of autophagosomes
-
Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011; 80:125-156.
-
(2011)
Annu Rev Biochem.
, vol.80
, pp. 125-156
-
-
Weidberg, H.1
Shvets, E.2
Elazar, Z.3
-
47
-
-
79957916551
-
p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects
-
Bartlett BJ, Isakson P, Lewerenz J, Sanchez H, Kotzebue RW, Cumming RC, Harris GL, Nezis IP, Schubert DR, Simonsen A, Finley KD. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy. 2011; 7:572-583.
-
(2011)
Autophagy.
, vol.7
, pp. 572-583
-
-
Bartlett, B.J.1
Isakson, P.2
Lewerenz, J.3
Sanchez, H.4
Kotzebue, R.W.5
Cumming, R.C.6
Harris, G.L.7
Nezis, I.P.8
Schubert, D.R.9
Simonsen, A.10
Finley, K.D.11
-
48
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K, Agholme L, Agnello M, Agostinis P, Aguirre-Ghiso JA, Ahn HJ, Ait-Mohamed O, Ait-Si-Ali S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012; 8:445-544
-
(2012)
Autophagy.
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
Ahn, H.J.11
Ait-Mohamed, O.12
Ait-Si-Ali, S.13
-
50
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci USA. 2011; 108:4788-4793.
-
(2011)
Proc Natl Acad Sci USA.
, vol.108
, pp. 4788-4793
-
-
Shang, L.1
Chen, S.2
Du, F.3
Li, S.4
Zhao, L.5
Wang, X.6
-
51
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, Guan JL, Oshiro N, Mizushima N. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009; 20:1981-1991.
-
(2009)
Mol Biol Cell.
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
Kishi, C.4
Takamura, A.5
Miura, Y.6
Iemura, S.7
Natsume, T.8
Takehana, K.9
Yamada, N.10
Guan, J.L.11
Oshiro, N.12
Mizushima, N.13
-
52
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005; 122:927-939.
-
(2005)
Cell.
, vol.122
, pp. 927-939
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
Garuti, R.4
Liang, X.H.5
Mizushima, N.6
Packer, M.7
Schneider, M.D.8
Levine, B.9
-
53
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012; 149:274-293.
-
(2012)
Cell.
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
54
-
-
84859498294
-
Recent progress in targeting cancer
-
Demidenko ZN, McCubrey JA. Recent progress in targeting cancer. (Albany NY). 2011; 3:1154-1162.
-
(2011)
(Albany NY).
, vol.3
, pp. 1154-1162
-
-
Demidenko, Z.N.1
McCubrey, J.A.2
-
55
-
-
77953577017
-
mTOR's role in ageing: protein synthesis or autophagy?
-
Hands SL, Proud CG, Wyttenbach A. mTOR's role in ageing: protein synthesis or autophagy? Aging (Albany NY). 2009; 1:586-597.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 586-597
-
-
Hands, S.L.1
Proud, C.G.2
Wyttenbach, A.3
-
56
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo AY, Yoon S-OO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA. 2008; 105:17414-17419.
-
(2008)
Proc Natl Acad Sci USA.
, vol.105
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.-O.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
57
-
-
61449235398
-
Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy
-
Choo AY, Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle. 2009; 8:567-572.
-
(2009)
Cell Cycle.
, vol.8
, pp. 567-572
-
-
Choo, A.Y.1
Blenis, J.2
-
58
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S, Sheen J-HH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell. 2006; 22:159-168.
-
(2006)
Mol Cell.
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
Sheen, J.-H.H.4
Hsu, P.P.5
Bagley, A.F.6
Markhard, A.L.7
Sabatini, D.M.8
-
59
-
-
84896629473
-
Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program
-
Chauvin C, Koka V, Nouschi A, Mieulet V, Hoareau-Aveilla C, Dreazen A, Cagnard N, Carpentier W, Kiss T, Meyuhas O, Pende M. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014; 33:474-483.
-
(2014)
Oncogene.
, vol.33
, pp. 474-483
-
-
Chauvin, C.1
Koka, V.2
Nouschi, A.3
Mieulet, V.4
Hoareau-Aveilla, C.5
Dreazen, A.6
Cagnard, N.7
Carpentier, W.8
Kiss, T.9
Meyuhas, O.10
Pende, M.11
-
60
-
-
34547801661
-
S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover
-
Mieulet V, Roceri M, Espeillac C, Sotiropoulos A, Ohanna M, Oorschot V, Klumperman J, Sandri M, Pende M. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am J Physiol, Cell Physiol. 2007; 293: C712-22.
-
(2007)
Am J Physiol, Cell Physiol.
, vol.293
, pp. C712-C722
-
-
Mieulet, V.1
Roceri, M.2
Espeillac, C.3
Sotiropoulos, A.4
Ohanna, M.5
Oorschot, V.6
Klumperman, J.7
Sandri, M.8
Pende, M.9
-
61
-
-
84860527756
-
A unifying model for mTORC1-mediated regulation of mRNA translation
-
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature. 2012; 485:109-13
-
(2012)
Nature.
, vol.485
, pp. 109-113
-
-
Thoreen, C.C.1
Chantranupong, L.2
Keys, H.R.3
Wang, T.4
Gray, N.S.5
Sabatini, D.M.6
-
62
-
-
84946225526
-
Systematic Problems: Perspective on stem cell aging and rejuvenation
-
Conboy IM, Conboy MJ, Rebo J. Systematic Problems: Perspective on stem cell aging and rejuvenation, Aging (Albany NY). 2015, 10:754-765.
-
(2015)
Aging (Albany NY)
, vol.10
, pp. 754-765
-
-
Conboy, I.M.1
Conboy, M.J.2
Rebo, J.3
-
63
-
-
84943379464
-
Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program)
-
Leontieva OV, Demidenko ZN, Blagosklonny MV. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget. 2015; 6:23238-48
-
(2015)
Oncotarget.
, vol.6
, pp. 23238-23248
-
-
Leontieva, O.V.1
Demidenko, Z.N.2
Blagosklonny, M.V.3
-
65
-
-
84871233832
-
eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies
-
Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, Zammit D, Marcus V, Metrakos P, Voyer LA, Gandin V, Liu Y, Topisirovic I, et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res. 2012; 72:6468-76.
-
(2012)
Cancer Res.
, vol.72
, pp. 6468-6476
-
-
Alain, T.1
Morita, M.2
Fonseca, B.D.3
Yanagiya, A.4
Siddiqui, N.5
Bhat, M.6
Zammit, D.7
Marcus, V.8
Metrakos, P.9
Voyer, L.A.10
Gandin, V.11
Liu, Y.12
Topisirovic, I.13
-
66
-
-
84896401907
-
Pancreatic tumours escape from translational control through 4E-BP1 loss
-
Martineau Y, Azar R, Müller D, Lasfargues C, El Khawand S, Anesia R, Pelletier J, Bousquet C, Pyronnet S. Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene. 2014; 33:1367-1374.
-
(2014)
Oncogene.
, vol.33
, pp. 1367-1374
-
-
Martineau, Y.1
Azar, R.2
Müller, D.3
Lasfargues, C.4
El Khawand, S.5
Anesia, R.6
Pelletier, J.7
Bousquet, C.8
Pyronnet, S.9
-
67
-
-
80053070033
-
PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis
-
Ilic N, Utermark T, Widlund HR, Roberts TM. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA. 2011; 108: E699-708.
-
(2011)
Proc Natl Acad Sci USA.
, vol.108
, pp. E699-E708
-
-
Ilic, N.1
Utermark, T.2
Widlund, H.R.3
Roberts, T.M.4
-
68
-
-
81855224569
-
High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1
-
Yellen P, Saqcena M, Salloum D, Feng J, Preda A, Xu L, Rodrik-Outmezguine V, Foster DA. High-dose rapamycin induces apoptosis in human cancer cells by dissociating mTOR complex 1 and suppressing phosphorylation of 4E-BP1. Cell Cycle. 2011; 10:3948-3956.
-
(2011)
Cell Cycle.
, vol.10
, pp. 3948-3956
-
-
Yellen, P.1
Saqcena, M.2
Salloum, D.3
Feng, J.4
Preda, A.5
Xu, L.6
Rodrik-Outmezguine, V.7
Foster, D.A.8
-
69
-
-
77956095537
-
Mitochondria and cell death: outer membrane permeabilization and beyond
-
Tait SW, Green DR. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010; 11:621-632.
-
(2010)
Nat Rev Mol Cell Biol.
, vol.11
, pp. 621-632
-
-
Tait, S.W.1
Green, D.R.2
-
71
-
-
84870206960
-
Mitochondria: master regulators of danger signalling
-
Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012; 13:780-788.
-
(2012)
Nat Rev Mol Cell Biol.
, vol.13
, pp. 780-788
-
-
Galluzzi, L.1
Kepp, O.2
Kroemer, G.3
-
72
-
-
74249109983
-
Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL
-
Luo S, Rubinsztein DC. Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ. 2010; 17:268-277.
-
(2010)
Cell Death Differ.
, vol.17
, pp. 268-277
-
-
Luo, S.1
Rubinsztein, D.C.2
-
73
-
-
78649636176
-
Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria
-
Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, et al. Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis. 2010; 1: e18.
-
(2010)
Cell Death Dis.
, vol.1
, pp. e18
-
-
Wirawan, E.1
Vande Walle, L.2
Kersse, K.3
Cornelis, S.4
Claerhout, S.5
Vanoverberghe, I.6
Roelandt, R.7
De Rycke, R.8
Verspurten, J.9
Declercq, W.10
Agostinis, P.11
Vanden Berghe, T.12
Lippens, S.13
-
74
-
-
84859480341
-
Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis
-
Young MM, Takahashi Y, Khan O, Park S, Hori T, Yun J, Sharma AK, Amin S, Hu CD, Zhang J, Kester M, Wang HG. Autophagosomal membrane serves as platform for intracellular death-inducing signaling complex (iDISC)-mediated caspase-8 activation and apoptosis. J Biol Chem. 2012; 287:12455-12468.
-
(2012)
J Biol Chem.
, vol.287
, pp. 12455-12468
-
-
Young, M.M.1
Takahashi, Y.2
Khan, O.3
Park, S.4
Hori, T.5
Yun, J.6
Sharma, A.K.7
Amin, S.8
Hu, C.D.9
Zhang, J.10
Kester, M.11
Wang, H.G.12
-
75
-
-
84865155931
-
Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response
-
Pagliarini V, Wirawan E, Romagnoli A, Ciccosanti F, Lisi G, Lippens S, Cecconi F, Fimia GM, Vandenabeele P, Corazzari M, Piacentini M. Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response. Cell Death and Differentiation. 2012; 19:1495-1504.
-
(2012)
Cell Death and Differentiation.
, vol.19
, pp. 1495-1504
-
-
Pagliarini, V.1
Wirawan, E.2
Romagnoli, A.3
Ciccosanti, F.4
Lisi, G.5
Lippens, S.6
Cecconi, F.7
Fimia, G.M.8
Vandenabeele, P.9
Corazzari, M.10
Piacentini, M.11
-
76
-
-
77955903343
-
Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis
-
Nezis IP, Shravage BV, Sagona AP, Lamark T, Bjørkøy G, Johansen T, Rusten TE, Brech A, Baehrecke EH, Stenmark H. Autophagic degradation of dBruce controls DNA fragmentation in nurse cells during late Drosophila melanogaster oogenesis. J Cell Biol. 2010; 190:523-531.
-
(2010)
J Cell Biol.
, vol.190
, pp. 523-531
-
-
Nezis, I.P.1
Shravage, B.V.2
Sagona, A.P.3
Lamark, T.4
Bjørkøy, G.5
Johansen, T.6
Rusten, T.E.7
Brech, A.8
Baehrecke, E.H.9
Stenmark, H.10
|