-
1
-
-
0029560416
-
A novel approach for expression cloning of small GTPases: Identification, tissue distribution and chromosome mapping of the human homolog of rheb
-
Gromov PS, Madsen P, Tomerup N, et al., A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett 1995; 377: 221-6.
-
(1995)
FEBS Lett
, vol.377
, pp. 221-226
-
-
Gromov, P.S.1
Madsen, P.2
Tomerup, N.3
-
2
-
-
0034646618
-
The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake
-
Urano J, Tabancay AP, Yang W, et al., The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 2000; 275: 11198-206.
-
(2000)
J Biol Chem
, vol.275
, pp. 11198-11206
-
-
Urano, J.1
Tabancay, A.P.2
Yang, W.3
-
3
-
-
0028237671
-
Rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein
-
Yamagata K, Sanders LK, Kaufmann WE, et al., rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994; 269: 16333-9.
-
(1994)
J Biol Chem
, vol.269
, pp. 16333-16339
-
-
Yamagata, K.1
Sanders, L.K.2
Kaufmann, W.E.3
-
4
-
-
3142546236
-
The Rheb family of GTP-binding proteins
-
Aspuria P-J, Tamanoi F., The Rheb family of GTP-binding proteins. Cell Signal 2004; 16: 1105-12.
-
(2004)
Cell Signal
, vol.16
, pp. 1105-1112
-
-
Aspuria, P.-J.1
Tamanoi, F.2
-
5
-
-
0030888163
-
The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
-
Clark GJ, Kinch MS, Rogers-Graham K, et al., The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 1997; 272: 10608-15.
-
(1997)
J Biol Chem
, vol.272
, pp. 10608-10615
-
-
Clark, G.J.1
Kinch, M.S.2
Rogers-Graham, K.3
-
6
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X, Lin Y, Ortiz-Vega S, et al., Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15: 702-13.
-
(2005)
Curr Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
-
7
-
-
0034051278
-
Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation
-
Mach KE, Furge KA, Albright CF., Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 2000; 155: 611-22.
-
(2000)
Genetics
, vol.155
, pp. 611-622
-
-
MacH, K.E.1
Furge, K.A.2
Albright, C.F.3
-
8
-
-
0036343149
-
Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation
-
Panepinto JC, Oliver BG, Amlung TW, et al., Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genet Biol 2002; 36: 207-14.
-
(2002)
Fungal Genet Biol
, vol.36
, pp. 207-214
-
-
Panepinto, J.C.1
Oliver, B.G.2
Amlung, T.W.3
-
9
-
-
0038643484
-
Rheb promotes cell growth as a component of the insulin/TOR signalling network
-
Saucedo LJ, Gao X, Chiarelli DA, et al., Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5: 566-71.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 566-571
-
-
Saucedo, L.J.1
Gao, X.2
Chiarelli, D.A.3
-
11
-
-
0041827366
-
Drosophila Rheb GTPase is required for cell cycle progression and cell growth
-
Patel PH, Thapar N, Guo L, et al., Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci 2003; 116: 3601-10.
-
(2003)
J Cell Sci
, vol.116
, pp. 3601-3610
-
-
Patel, P.H.1
Thapar, N.2
Guo, L.3
-
12
-
-
0038304516
-
Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
-
Stocker H, Radimerski T, Schindelholz B, et al., Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5: 559-65.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 559-565
-
-
Stocker, H.1
Radimerski, T.2
Schindelholz, B.3
-
13
-
-
0041356888
-
Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner
-
Castro AF, Rebhun JF, Clark GJ, et al., Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 2003; 278: 32493-6.
-
(2003)
J Biol Chem
, vol.278
, pp. 32493-32496
-
-
Castro, A.F.1
Rebhun, J.F.2
Clark, G.J.3
-
14
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
Garami A, Zwartkruis FJT, Nobukuni T, et al., Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11: 1457-66.
-
(2003)
Mol Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
Zwartkruis, F.J.T.2
Nobukuni, T.3
-
15
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, et al., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-34.
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
-
16
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee AR, Manning BD, Roux PP, et al., Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13: 1259-68.
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
-
17
-
-
0038141979
-
Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
-
Zhang Y, Gao X, Saucedo LJ, et al., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5: 578-81.
-
(2003)
Nat Cell Biol
, vol.5
, pp. 578-581
-
-
Zhang, Y.1
Gao, X.2
Saucedo, L.J.3
-
18
-
-
14844363721
-
Signaling by target of rapamycin proteins in cell growth control
-
Inoki K, Ouyang H, Li Y, et al., Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69: 79-100.
-
(2005)
Microbiol Mol Biol Rev
, vol.69
, pp. 79-100
-
-
Inoki, K.1
Ouyang, H.2
Li, Y.3
-
19
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D-H, Sarbassov DD, Ali SM, et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-75.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
Sarbassov, D.D.2
Ali, S.M.3
-
20
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R, Jacinto E, Wullschleger S, et al., Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10: 457-68.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
-
21
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim D-H, et al., Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-302.
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.-H.3
-
22
-
-
33646485688
-
TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity
-
Yang Q, Inoki K, Kim E, et al., TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 2006; 103: 6811-1 6.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 6811-6816
-
-
Yang, Q.1
Inoki, K.2
Kim, E.3
-
23
-
-
78651284554
-
The complexes of mammalian target of rapamycin
-
Zhou H, Huang S., The complexes of mammalian target of rapamycin. Curr Protein Pept Sci 2010; 11: 409-24.
-
(2010)
Curr Protein Pept Sci
, vol.11
, pp. 409-424
-
-
Zhou, H.1
Huang, S.2
-
24
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J., Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307-18.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
25
-
-
65549145048
-
An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
-
Thoreen CC, Kang SA, Chang JW, et al., An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284: 8023-32.
-
(2009)
J Biol Chem
, vol.284
, pp. 8023-8032
-
-
Thoreen, C.C.1
Kang, S.A.2
Chang, J.W.3
-
26
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S, Dibble CC, Talbott G, et al., Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156: 771-85.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
-
27
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
-
28
-
-
84885105969
-
A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
-
Zhang J, Kim J, Alexander A, et al., A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15: 1186-96.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 1186-1196
-
-
Zhang, J.1
Kim, J.2
Alexander, A.3
-
29
-
-
37248999267
-
Bnip3 mediates the hypoxia-induced inhibition on mammalian Target of Rapamycin by interacting with Rheb
-
Li Y, Wang Y, Kim E, et al., Bnip3 mediates the hypoxia-induced inhibition on mammalian Target of Rapamycin by interacting with Rheb. J Biol Chem 2007; 282: 35803-13.
-
(2007)
J Biol Chem
, vol.282
, pp. 35803-35813
-
-
Li, Y.1
Wang, Y.2
Kim, E.3
-
30
-
-
67650076833
-
Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb
-
Lee MN, Ha SH, Kim J, et al., Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29: 3991-4001.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 3991-4001
-
-
Lee, M.N.1
Ha, S.H.2
Kim, J.3
-
31
-
-
36049043184
-
Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
-
Bai X, Ma D, Liu A, et al., Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977-80.
-
(2007)
Science
, vol.318
, pp. 977-980
-
-
Bai, X.1
Ma, D.2
Liu, A.3
-
32
-
-
54449097914
-
The switch i region of Rheb is critical for its interaction with FKBP38
-
Ma D, Bai X, Guo S, et al., The switch I region of Rheb is critical for its interaction with FKBP38. J Biol Chem 2008; 283: 25963-70.
-
(2008)
J Biol Chem
, vol.283
, pp. 25963-25970
-
-
Ma, D.1
Bai, X.2
Guo, S.3
-
33
-
-
61749084493
-
Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway
-
Uhlenbrock K, Weiwad M, Wetzker R, et al., Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 2009; 583: 965-70.
-
(2009)
FEBS Lett
, vol.583
, pp. 965-970
-
-
Uhlenbrock, K.1
Weiwad, M.2
Wetzker, R.3
-
34
-
-
57649165557
-
Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling
-
Wang X, Fonseca BD, Tang H, et al., Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 2008; 283: 30482-92.
-
(2008)
J Biol Chem
, vol.283
, pp. 30482-30492
-
-
Wang, X.1
Fonseca, B.D.2
Tang, H.3
-
35
-
-
46149098447
-
Phospholipase D1 is an effector of Rheb in the mTOR pathway
-
Sun Y, Fang Y, Yoon M-S, et al., Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 2008; 105: 8286-91.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 8286-8291
-
-
Sun, Y.1
Fang, Y.2
Yoon, M.-S.3
-
36
-
-
0344663973
-
PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1
-
Fang Y, Park I-H, Wu A-L, et al., PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol 2003; 13: 2037-44.
-
(2003)
Curr Biol
, vol.13
, pp. 2037-2044
-
-
Fang, Y.1
Park, I.-H.2
Wu, A.-L.3
-
37
-
-
33847174115
-
Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase
-
Hsu Y-C, Chern JJ, Cai Y, et al., Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007; 445: 785-8.
-
(2007)
Nature
, vol.445
, pp. 785-788
-
-
Hsu, Y.-C.1
Chern, J.J.2
Cai, Y.3
-
38
-
-
49649086599
-
Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb
-
Rehmann H, Brüning M, Berghaus C, et al., Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 2008; 582: 3005-10.
-
(2008)
FEBS Lett
, vol.582
, pp. 3005-3010
-
-
Rehmann, H.1
Brüning, M.2
Berghaus, C.3
-
39
-
-
0033544919
-
Characterization of the cytosolic tuberin-hamartin complex
-
Nellist M, van Slegtenhorst MA, Goedbloed M, et al., Characterization of the cytosolic tuberin-hamartin complex. J Biol Chem 1999; 274: 35647-52.
-
(1999)
J Biol Chem
, vol.274
, pp. 35647-35652
-
-
Nellist, M.1
Van Slegtenhorst, M.A.2
Goedbloed, M.3
-
40
-
-
0032213545
-
Hamartin, the product of the Tuberous Sclerosis 1 (TSC1) gene, interacts with Tuberin and appears to be localized to cytoplasmic vesicles
-
Plank TL, Yeung RS, Henske EP., Hamartin, the product of the Tuberous Sclerosis 1 (TSC1) gene, interacts with Tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 1998; 58: 4766-70.
-
(1998)
Cancer Res
, vol.58
, pp. 4766-4770
-
-
Plank, T.L.1
Yeung, R.S.2
Henske, E.P.3
-
41
-
-
7144255533
-
Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products
-
Van Slegtenhorst M, Nellist M, Nagelkerken B, et al., Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998; 7: 1053-7.
-
(1998)
Hum Mol Genet
, vol.7
, pp. 1053-1057
-
-
Van Slegtenhorst, M.1
Nellist, M.2
Nagelkerken, B.3
-
42
-
-
0035805162
-
Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
-
Potter CJ, Huang H, Xu T., Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001; 105: 357-68.
-
(2001)
Cell
, vol.105
, pp. 357-368
-
-
Potter, C.J.1
Huang, H.2
Xu, T.3
-
43
-
-
0035805180
-
The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
-
Tapon N, Ito N, Dickson BJ, et al., The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001; 105: 345-55.
-
(2001)
Cell
, vol.105
, pp. 345-355
-
-
Tapon, N.1
Ito, N.2
Dickson, B.J.3
-
44
-
-
84865371057
-
TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
-
Dibble CC, Elis W, Menon S, et al., TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535-46.
-
(2012)
Mol Cell
, vol.47
, pp. 535-546
-
-
Dibble, C.C.1
Elis, W.2
Menon, S.3
-
45
-
-
33646143793
-
Localization of Rheb to the endomembrane is critical for its signaling function
-
Buerger C, DeVries B, Stambolic V., Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 2006; 344: 869-80.
-
(2006)
Biochem Biophys Res Commun
, vol.344
, pp. 869-880
-
-
Buerger, C.1
DeVries, B.2
Stambolic, V.3
-
46
-
-
75149142796
-
Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling
-
Hanker AB, Mitin N, Wilder RS, et al., Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 2010; 29: 380-91.
-
(2010)
Oncogene
, vol.29
, pp. 380-391
-
-
Hanker, A.B.1
Mitin, N.2
Wilder, R.S.3
-
47
-
-
25444450400
-
Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway
-
Takahashi K, Nakagawa M, Young SG, et al., Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 2005; 280: 32768-74.
-
(2005)
J Biol Chem
, vol.280
, pp. 32768-32774
-
-
Takahashi, K.1
Nakagawa, M.2
Young, S.G.3
-
48
-
-
0034797345
-
Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant
-
Yang W, Tabancay AP, Urano J, et al., Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 2001; 41: 1339-47.
-
(2001)
Mol Microbiol
, vol.41
, pp. 1339-1347
-
-
Yang, W.1
Tabancay, A.P.2
Urano, J.3
-
49
-
-
24744465206
-
The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity
-
Basso AD, Mirza A, Liu G, et al., The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 2005; 280: 31101-8.
-
(2005)
J Biol Chem
, vol.280
, pp. 31101-31108
-
-
Basso, A.D.1
Mirza, A.2
Liu, G.3
-
50
-
-
84926418992
-
MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
-
Fawal M-A, Brandt M, Djouder N., MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33: 67-81.
-
(2015)
Dev Cell
, vol.33
, pp. 67-81
-
-
Fawal, M.-A.1
Brandt, M.2
Djouder, N.3
-
51
-
-
0034062812
-
Hras but not K-ras traffics to the plasma membrane through the exocytic pathway
-
Apolloni A, Prior IA, Lindsay M, et al., Hras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 2000; 20: 2475-87.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 2475-2487
-
-
Apolloni, A.1
Prior, I.A.2
Lindsay, M.3
-
52
-
-
49849090082
-
The mTOR pathway and its role in human genetic diseases
-
Rosner M, Hanneder M, Siegel N, et al., The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659: 284-92.
-
(2008)
Mutat Res
, vol.659
, pp. 284-292
-
-
Rosner, M.1
Hanneder, M.2
Siegel, N.3
-
54
-
-
84896692038
-
Rapamycin: One drug, many effects
-
Li J, Kim SG, Blenis J., Rapamycin: one drug, many effects. Cell Metab 2014; 19: 373-9.
-
(2014)
Cell Metab
, vol.19
, pp. 373-379
-
-
Li, J.1
Kim, S.G.2
Blenis, J.3
-
55
-
-
38049169559
-
Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis
-
Bissler JJ, McCormack FX, Young LR, et al., Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358: 140-51.
-
(2008)
N Engl J Med
, vol.358
, pp. 140-151
-
-
Bissler, J.J.1
McCormack, F.X.2
Young, L.R.3
-
56
-
-
84874746597
-
Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): A multicentre, randomised, double-blind, placebo-controlled trial
-
Bissler JJ, Kingswood JC, Radzikowska E, et al., Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2013; 381: 817-24.
-
(2013)
Lancet
, vol.381
, pp. 817-824
-
-
Bissler, J.J.1
Kingswood, J.C.2
Radzikowska, E.3
-
57
-
-
79955510505
-
Efficacy and safety of sirolimus in lymphangioleiomyomatosis
-
McCormack FX, Inoue Y, Moss J, et al., Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364: 1595-606.
-
(2011)
N Engl J Med
, vol.364
, pp. 1595-1606
-
-
McCormack, F.X.1
Inoue, Y.2
Moss, J.3
-
58
-
-
80155142474
-
Rapamycin passes the torch: A new generation of mTOR inhibitors
-
Benjamin D, Colombi M, Moroni C, et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868-80.
-
(2011)
Nat Rev Drug Discov
, vol.10
, pp. 868-880
-
-
Benjamin, D.1
Colombi, M.2
Moroni, C.3
-
59
-
-
78650174233
-
The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
-
Kang YJ, Lu M-K, Guan K-L., The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 2011; 18: 133-44.
-
(2011)
Cell Death Differ
, vol.18
, pp. 133-144
-
-
Kang, Y.J.1
Lu, M.-K.2
Guan, K.-L.3
-
60
-
-
77958529748
-
Ras homolog enriched in brain (Rheb) enhances apoptotic signaling
-
Karassek S, Berghaus C, Schwarten M, et al., Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J Biol Chem 2010; 285: 33979-91.
-
(2010)
J Biol Chem
, vol.285
, pp. 33979-33991
-
-
Karassek, S.1
Berghaus, C.2
Schwarten, M.3
-
61
-
-
67049158203
-
Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy
-
Zhou X, Ikenoue T, Chen X, et al., Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 2009; 106: 8923-8.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 8923-8928
-
-
Zhou, X.1
Ikenoue, T.2
Chen, X.3
-
62
-
-
0032576605
-
Aggresomes: A cellular response to misfolded proteins
-
Johnston JA, Ward CL, Kopito RR., Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998; 143: 1883-98.
-
(1998)
J Cell Biol
, vol.143
, pp. 1883-1898
-
-
Johnston, J.A.1
Ward, C.L.2
Kopito, R.R.3
-
63
-
-
78650305038
-
Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: Implications for cell proliferation and tumorigenesis
-
Lacher MD, Pincheira R, Zhu Z, et al., Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 2010; 29: 6543-56.
-
(2010)
Oncogene
, vol.29
, pp. 6543-6556
-
-
Lacher, M.D.1
Pincheira, R.2
Zhu, Z.3
-
64
-
-
77951026717
-
Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis
-
Lu ZH, Shvartsman MB, Lee AY, et al., Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 2010; 70: 3287-98.
-
(2010)
Cancer Res
, vol.70
, pp. 3287-3298
-
-
Lu, Z.H.1
Shvartsman, M.B.2
Lee, A.Y.3
-
65
-
-
27744506881
-
Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: Tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01
-
Lassman AB, Rossi MR, Raizer JJ, et al., Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res 2005; 11: 7841-50.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 7841-7850
-
-
Lassman, A.B.1
Rossi, M.R.2
Raizer, J.J.3
-
66
-
-
50049125036
-
Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events
-
Nardella C, Chen Z, Salmena L, et al., Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 2008; 22: 2172-7.
-
(2008)
Genes Dev
, vol.22
, pp. 2172-2177
-
-
Nardella, C.1
Chen, Z.2
Salmena, L.3
-
67
-
-
50049123842
-
Tumorigenic activity and therapeutic inhibition of Rheb GTPase
-
Mavrakis KJ, Zhu H, Silva RLA, et al., Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22: 2178-88.
-
(2008)
Genes Dev
, vol.22
, pp. 2178-2188
-
-
Mavrakis, K.J.1
Zhu, H.2
Silva, R.L.A.3
-
68
-
-
84892833777
-
Discovery and saturation analysis of cancer genes across 21 tumour types
-
Lawrence MS, Stojanov P, Mermel CH, et al., Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495-501.
-
(2014)
Nature
, vol.505
, pp. 495-501
-
-
Lawrence, M.S.1
Stojanov, P.2
Mermel, C.H.3
-
69
-
-
84899678098
-
A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity
-
Grabiner BC, Nardi V, Birsoy K, et al., A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014; 4: 554-63.
-
(2014)
Cancer Discov
, vol.4
, pp. 554-563
-
-
Grabiner, B.C.1
Nardi, V.2
Birsoy, K.3
-
70
-
-
77956229501
-
Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells
-
Zheng H, Liu A, Liu B, et al., Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett 2010; 297: 117-25.
-
(2010)
Cancer Lett
, vol.297
, pp. 117-125
-
-
Zheng, H.1
Liu, A.2
Liu, B.3
-
71
-
-
84892603452
-
Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells
-
Ding H, McDonald JS, Yun S, et al., Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 2014; 99: 60-9.
-
(2014)
Haematologica
, vol.99
, pp. 60-69
-
-
Ding, H.1
McDonald, J.S.2
Yun, S.3
-
72
-
-
0037068783
-
Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells
-
Im E, von Lintig FC, Chen J, et al., Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 2002; 21: 6356-65.
-
(2002)
Oncogene
, vol.21
, pp. 6356-6365
-
-
Im, E.1
Von Lintig, F.C.2
Chen, J.3
-
73
-
-
0031039427
-
Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals
-
Yee WM, Worley PF., Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 1997; 17: 921-33.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 921-933
-
-
Yee, W.M.1
Worley, P.F.2
-
74
-
-
3142757865
-
Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent
-
Karbowniczek M, Cash T, Cheung M, et al., Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 2004; 279: 29930-7.
-
(2004)
J Biol Chem
, vol.279
, pp. 29930-29937
-
-
Karbowniczek, M.1
Cash, T.2
Cheung, M.3
-
75
-
-
33747822482
-
Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization
-
Karbowniczek M, Robertson GP, Henske EP., Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 2006; 281: 25447-56.
-
(2006)
J Biol Chem
, vol.281
, pp. 25447-25456
-
-
Karbowniczek, M.1
Robertson, G.P.2
Henske, E.P.3
-
76
-
-
84877578621
-
Rheb regulates mitophagy induced by mitochondrial energetic status
-
Melser S, Chatelain EH, Lavie J, et al., Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17: 719-30.
-
(2013)
Cell Metab
, vol.17
, pp. 719-730
-
-
Melser, S.1
Chatelain, E.H.2
Lavie, J.3
-
77
-
-
84955184800
-
Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy
-
Campos T, Ziehe J, Palma M, et al., Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog 2015; doi: 10.1002/mc.22272.
-
(2015)
Mol Carcinog
-
-
Campos, T.1
Ziehe, J.2
Palma, M.3
-
78
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon S-M, Chandel NS, Hay N., AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661-5.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.-M.1
Chandel, N.S.2
Hay, N.3
-
79
-
-
84867773087
-
Mitophagy: Mechanisms, pathophysiological roles, and analysis
-
Ding W-X, Yin X-M., Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 2012; 393: 547-64.
-
(2012)
Biol Chem
, vol.393
, pp. 547-564
-
-
Ding, W.-X.1
Yin, X.-M.2
-
80
-
-
61849135453
-
Tumor suppressors and cell metabolism: A recipe for cancer growth
-
Jones RG, Thompson CB., Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009; 23: 537-48.
-
(2009)
Genes Dev
, vol.23
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
81
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
82
-
-
67749111502
-
The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
-
Shackelford DB, Shaw RJ., The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563-75.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 563-575
-
-
Shackelford, D.B.1
Shaw, R.J.2
-
83
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan K-L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-90.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.-L.3
-
84
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-26.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
85
-
-
79952281400
-
Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1
-
Zheng M, Wang Y-H, Wu X-N, et al., Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 2011; 13: 263-72.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 263-272
-
-
Zheng, M.1
Wang, Y.-H.2
Wu, X.-N.3
-
86
-
-
66449117931
-
AMP-activated protein kinase promotes human prostate cancer cell growth and survival
-
Park HU, Suy S, Danner M, et al., AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8: 733-41.
-
(2009)
Mol Cancer Ther
, vol.8
, pp. 733-741
-
-
Park, H.U.1
Suy, S.2
Danner, M.3
-
87
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw RJ, Kosmatka M, Bardeesy N, et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329-35.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
-
88
-
-
1942466518
-
P27Kip1 modulates cell migration through the regulation of RhoA activation
-
Besson A, Gurian-West M, Schmidt A, et al., p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004; 18: 862-76.
-
(2004)
Genes Dev
, vol.18
, pp. 862-876
-
-
Besson, A.1
Gurian-West, M.2
Schmidt, A.3
-
89
-
-
34447544650
-
Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype
-
Besson A, Hwang HC, Cicero S, et al., Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21: 1731-46.
-
(2007)
Genes Dev
, vol.21
, pp. 1731-1746
-
-
Besson, A.1
Hwang, H.C.2
Cicero, S.3
-
90
-
-
33644509197
-
Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity
-
Wu FY, Wang SE, Sanders ME, et al., Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res 2006; 66: 2162-72.
-
(2006)
Cancer Res
, vol.66
, pp. 2162-2172
-
-
Wu, F.Y.1
Wang, S.E.2
Sanders, M.E.3
-
91
-
-
34248208651
-
P27Kip1 metabolism: A fascinating labyrinth
-
Borriello A, Cucciolla V, Oliva A, et al., p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 2007; 6: 1053-61.
-
(2007)
Cell Cycle
, vol.6
, pp. 1053-1061
-
-
Borriello, A.1
Cucciolla, V.2
Oliva, A.3
-
92
-
-
53049083680
-
AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27
-
Short JD, Houston KD, Dere R, et al., AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27. Cancer Res 2008; 68: 6496-506.
-
(2008)
Cancer Res
, vol.68
, pp. 6496-6506
-
-
Short, J.D.1
Houston, K.D.2
Dere, R.3
-
93
-
-
33947250696
-
The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
-
Liang J, Shao SH, Xu Z-X, et al., The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218-24.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 218-224
-
-
Liang, J.1
Shao, S.H.2
Xu, Z.-X.3
-
94
-
-
79961059959
-
Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent
-
Parkhitko A, Myachina F, Morrison TA, et al., Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 2011; 108: 12455-60.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 12455-12460
-
-
Parkhitko, A.1
Myachina, F.2
Morrison, T.A.3
-
95
-
-
84885056560
-
Increased cytoplasmic localization of p27kip1 and its modulation of RhoA activity during progression of chronic myeloid leukemia
-
doi: 10.1371/journal.pone.00 7
-
Roy A, Lahiry L, Banerjee D, et al., Increased cytoplasmic localization of p27kip1 and its modulation of RhoA activity during progression of chronic myeloid leukemia. PLoS One 2013; 8: e76527. doi: 10.1371/journal.pone.00 7.
-
(2013)
PLoS One
, vol.8
, pp. e76527
-
-
Roy, A.1
Lahiry, L.2
Banerjee, D.3
-
96
-
-
78751505998
-
P27: A barometer of signaling deregulation and potential predictor of response to targeted therapies
-
Wander SA, Zhao D, Slingerland JM., p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2010; 17: 12-1 8.
-
(2010)
Clin Cancer Res
, vol.17
, pp. 12-18
-
-
Wander, S.A.1
Zhao, D.2
Slingerland, J.M.3
-
97
-
-
74949090816
-
The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development
-
Karbowniczek M, Zitserman D, Khabibullin D, et al., The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010; 120: 93-102.
-
(2010)
J Clin Invest
, vol.120
, pp. 93-102
-
-
Karbowniczek, M.1
Zitserman, D.2
Khabibullin, D.3
-
98
-
-
84920903544
-
Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity
-
Sato T, Akasu H, Shimono W, et al., Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem 2015; 290: 1096-105.
-
(2015)
J Biol Chem
, vol.290
, pp. 1096-1105
-
-
Sato, T.1
Akasu, H.2
Shimono, W.3
-
100
-
-
84938209433
-
Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update
-
Takebe N, Miele L, Harris PJ, et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12: 445-64.
-
(2015)
Nat Rev Clin Oncol
, vol.12
, pp. 445-464
-
-
Takebe, N.1
Miele, L.2
Harris, P.J.3
-
101
-
-
78649466892
-
Targeting Notch signaling pathway to overcome drug resistance for cancer therapy
-
Wang Z, Li Y, Ahmad A, et al., Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta 2010; 1806: 258-67.
-
(2010)
Biochim Biophys Acta
, vol.1806
, pp. 258-267
-
-
Wang, Z.1
Li, Y.2
Ahmad, A.3
|