메뉴 건너뛰기




Volumn 138, Issue 8, 2016, Pages 1815-1823

Rheb signaling and tumorigenesis: MTORC1 and new horizons

Author keywords

mTORC1; mTORC1 independent Rheb functions; rapamycin resistance; Rheb

Indexed keywords

CASPASE ACTIVATED DEOXYRIBONUCLEASE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; RHEB PROTEIN; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MONOMERIC GUANINE NUCLEOTIDE BINDING PROTEIN; MULTIPROTEIN COMPLEX; NEUROPEPTIDE; RHEB PROTEIN, HUMAN; TARGET OF RAPAMYCIN KINASE;

EID: 84958873711     PISSN: 00207136     EISSN: 10970215     Source Type: Journal    
DOI: 10.1002/ijc.29707     Document Type: Review
Times cited : (26)

References (101)
  • 1
    • 0029560416 scopus 로고
    • A novel approach for expression cloning of small GTPases: Identification, tissue distribution and chromosome mapping of the human homolog of rheb
    • Gromov PS, Madsen P, Tomerup N, et al., A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett 1995; 377: 221-6.
    • (1995) FEBS Lett , vol.377 , pp. 221-226
    • Gromov, P.S.1    Madsen, P.2    Tomerup, N.3
  • 2
    • 0034646618 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake
    • Urano J, Tabancay AP, Yang W, et al., The Saccharomyces cerevisiae Rheb G-protein is involved in regulating canavanine resistance and arginine uptake. J Biol Chem 2000; 275: 11198-206.
    • (2000) J Biol Chem , vol.275 , pp. 11198-11206
    • Urano, J.1    Tabancay, A.P.2    Yang, W.3
  • 3
    • 0028237671 scopus 로고
    • Rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein
    • Yamagata K, Sanders LK, Kaufmann WE, et al., rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994; 269: 16333-9.
    • (1994) J Biol Chem , vol.269 , pp. 16333-16339
    • Yamagata, K.1    Sanders, L.K.2    Kaufmann, W.E.3
  • 4
    • 3142546236 scopus 로고    scopus 로고
    • The Rheb family of GTP-binding proteins
    • Aspuria P-J, Tamanoi F., The Rheb family of GTP-binding proteins. Cell Signal 2004; 16: 1105-12.
    • (2004) Cell Signal , vol.16 , pp. 1105-1112
    • Aspuria, P.-J.1    Tamanoi, F.2
  • 5
    • 0030888163 scopus 로고    scopus 로고
    • The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation
    • Clark GJ, Kinch MS, Rogers-Graham K, et al., The Ras-related protein Rheb is farnesylated and antagonizes Ras signaling and transformation. J Biol Chem 1997; 272: 10608-15.
    • (1997) J Biol Chem , vol.272 , pp. 10608-10615
    • Clark, G.J.1    Kinch, M.S.2    Rogers-Graham, K.3
  • 6
    • 18044381192 scopus 로고    scopus 로고
    • Rheb binds and regulates the mTOR kinase
    • Long X, Lin Y, Ortiz-Vega S, et al., Rheb binds and regulates the mTOR kinase. Curr Biol 2005; 15: 702-13.
    • (2005) Curr Biol , vol.15 , pp. 702-713
    • Long, X.1    Lin, Y.2    Ortiz-Vega, S.3
  • 7
    • 0034051278 scopus 로고    scopus 로고
    • Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation
    • Mach KE, Furge KA, Albright CF., Loss of Rhb1, a Rheb-related GTPase in fission yeast, causes growth arrest with a terminal phenotype similar to that caused by nitrogen starvation. Genetics 2000; 155: 611-22.
    • (2000) Genetics , vol.155 , pp. 611-622
    • MacH, K.E.1    Furge, K.A.2    Albright, C.F.3
  • 8
    • 0036343149 scopus 로고    scopus 로고
    • Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation
    • Panepinto JC, Oliver BG, Amlung TW, et al., Expression of the Aspergillus fumigatus rheb homologue, rhbA, is induced by nitrogen starvation. Fungal Genet Biol 2002; 36: 207-14.
    • (2002) Fungal Genet Biol , vol.36 , pp. 207-214
    • Panepinto, J.C.1    Oliver, B.G.2    Amlung, T.W.3
  • 9
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo LJ, Gao X, Chiarelli DA, et al., Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5: 566-71.
    • (2003) Nat Cell Biol , vol.5 , pp. 566-571
    • Saucedo, L.J.1    Gao, X.2    Chiarelli, D.A.3
  • 11
    • 0041827366 scopus 로고    scopus 로고
    • Drosophila Rheb GTPase is required for cell cycle progression and cell growth
    • Patel PH, Thapar N, Guo L, et al., Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci 2003; 116: 3601-10.
    • (2003) J Cell Sci , vol.116 , pp. 3601-3610
    • Patel, P.H.1    Thapar, N.2    Guo, L.3
  • 12
    • 0038304516 scopus 로고    scopus 로고
    • Rheb is an essential regulator of S6K in controlling cell growth in Drosophila
    • Stocker H, Radimerski T, Schindelholz B, et al., Rheb is an essential regulator of S6K in controlling cell growth in Drosophila. Nat Cell Biol 2003; 5: 559-65.
    • (2003) Nat Cell Biol , vol.5 , pp. 559-565
    • Stocker, H.1    Radimerski, T.2    Schindelholz, B.3
  • 13
    • 0041356888 scopus 로고    scopus 로고
    • Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner
    • Castro AF, Rebhun JF, Clark GJ, et al., Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 2003; 278: 32493-6.
    • (2003) J Biol Chem , vol.278 , pp. 32493-32496
    • Castro, A.F.1    Rebhun, J.F.2    Clark, G.J.3
  • 14
    • 0038433304 scopus 로고    scopus 로고
    • Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
    • Garami A, Zwartkruis FJT, Nobukuni T, et al., Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 2003; 11: 1457-66.
    • (2003) Mol Cell , vol.11 , pp. 1457-1466
    • Garami, A.1    Zwartkruis, F.J.T.2    Nobukuni, T.3
  • 15
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki K, Li Y, Xu T, et al., Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-34.
    • (2003) Genes Dev , vol.17 , pp. 1829-1834
    • Inoki, K.1    Li, Y.2    Xu, T.3
  • 16
    • 0042701991 scopus 로고    scopus 로고
    • Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
    • Tee AR, Manning BD, Roux PP, et al., Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13: 1259-68.
    • (2003) Curr Biol , vol.13 , pp. 1259-1268
    • Tee, A.R.1    Manning, B.D.2    Roux, P.P.3
  • 17
    • 0038141979 scopus 로고    scopus 로고
    • Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins
    • Zhang Y, Gao X, Saucedo LJ, et al., Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 2003; 5: 578-81.
    • (2003) Nat Cell Biol , vol.5 , pp. 578-581
    • Zhang, Y.1    Gao, X.2    Saucedo, L.J.3
  • 18
    • 14844363721 scopus 로고    scopus 로고
    • Signaling by target of rapamycin proteins in cell growth control
    • Inoki K, Ouyang H, Li Y, et al., Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005; 69: 79-100.
    • (2005) Microbiol Mol Biol Rev , vol.69 , pp. 79-100
    • Inoki, K.1    Ouyang, H.2    Li, Y.3
  • 19
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D-H, Sarbassov DD, Ali SM, et al., mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002; 110: 163-75.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.-H.1    Sarbassov, D.D.2    Ali, S.M.3
  • 20
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R, Jacinto E, Wullschleger S, et al., Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10: 457-68.
    • (2002) Mol Cell , vol.10 , pp. 457-468
    • Loewith, R.1    Jacinto, E.2    Wullschleger, S.3
  • 21
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim D-H, et al., Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-302.
    • (2004) Curr Biol , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.-H.3
  • 22
    • 33646485688 scopus 로고    scopus 로고
    • TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity
    • Yang Q, Inoki K, Kim E, et al., TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. Proc Natl Acad Sci USA 2006; 103: 6811-1 6.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 6811-6816
    • Yang, Q.1    Inoki, K.2    Kim, E.3
  • 23
    • 78651284554 scopus 로고    scopus 로고
    • The complexes of mammalian target of rapamycin
    • Zhou H, Huang S., The complexes of mammalian target of rapamycin. Curr Protein Pept Sci 2010; 11: 409-24.
    • (2010) Curr Protein Pept Sci , vol.11 , pp. 409-424
    • Zhou, H.1    Huang, S.2
  • 24
    • 67349217986 scopus 로고    scopus 로고
    • Molecular mechanisms of mTOR-mediated translational control
    • Ma XM, Blenis J., Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307-18.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 307-318
    • Ma, X.M.1    Blenis, J.2
  • 25
    • 65549145048 scopus 로고    scopus 로고
    • An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1
    • Thoreen CC, Kang SA, Chang JW, et al., An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284: 8023-32.
    • (2009) J Biol Chem , vol.284 , pp. 8023-8032
    • Thoreen, C.C.1    Kang, S.A.2    Chang, J.W.3
  • 26
    • 84894114029 scopus 로고    scopus 로고
    • Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
    • Menon S, Dibble CC, Talbott G, et al., Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014; 156: 771-85.
    • (2014) Cell , vol.156 , pp. 771-785
    • Menon, S.1    Dibble, C.C.2    Talbott, G.3
  • 27
    • 77951768486 scopus 로고    scopus 로고
    • Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
    • Sancak Y, Bar-Peled L, Zoncu R, et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
    • (2010) Cell , vol.141 , pp. 290-303
    • Sancak, Y.1    Bar-Peled, L.2    Zoncu, R.3
  • 28
    • 84885105969 scopus 로고    scopus 로고
    • A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS
    • Zhang J, Kim J, Alexander A, et al., A tuberous sclerosis complex signalling node at the peroxisome regulates mTORC1 and autophagy in response to ROS. Nat Cell Biol 2013; 15: 1186-96.
    • (2013) Nat Cell Biol , vol.15 , pp. 1186-1196
    • Zhang, J.1    Kim, J.2    Alexander, A.3
  • 29
    • 37248999267 scopus 로고    scopus 로고
    • Bnip3 mediates the hypoxia-induced inhibition on mammalian Target of Rapamycin by interacting with Rheb
    • Li Y, Wang Y, Kim E, et al., Bnip3 mediates the hypoxia-induced inhibition on mammalian Target of Rapamycin by interacting with Rheb. J Biol Chem 2007; 282: 35803-13.
    • (2007) J Biol Chem , vol.282 , pp. 35803-35813
    • Li, Y.1    Wang, Y.2    Kim, E.3
  • 30
    • 67650076833 scopus 로고    scopus 로고
    • Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb
    • Lee MN, Ha SH, Kim J, et al., Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 2009; 29: 3991-4001.
    • (2009) Mol Cell Biol , vol.29 , pp. 3991-4001
    • Lee, M.N.1    Ha, S.H.2    Kim, J.3
  • 31
    • 36049043184 scopus 로고    scopus 로고
    • Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
    • Bai X, Ma D, Liu A, et al., Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318: 977-80.
    • (2007) Science , vol.318 , pp. 977-980
    • Bai, X.1    Ma, D.2    Liu, A.3
  • 32
    • 54449097914 scopus 로고    scopus 로고
    • The switch i region of Rheb is critical for its interaction with FKBP38
    • Ma D, Bai X, Guo S, et al., The switch I region of Rheb is critical for its interaction with FKBP38. J Biol Chem 2008; 283: 25963-70.
    • (2008) J Biol Chem , vol.283 , pp. 25963-25970
    • Ma, D.1    Bai, X.2    Guo, S.3
  • 33
    • 61749084493 scopus 로고    scopus 로고
    • Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway
    • Uhlenbrock K, Weiwad M, Wetzker R, et al., Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 2009; 583: 965-70.
    • (2009) FEBS Lett , vol.583 , pp. 965-970
    • Uhlenbrock, K.1    Weiwad, M.2    Wetzker, R.3
  • 34
    • 57649165557 scopus 로고    scopus 로고
    • Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling
    • Wang X, Fonseca BD, Tang H, et al., Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 2008; 283: 30482-92.
    • (2008) J Biol Chem , vol.283 , pp. 30482-30492
    • Wang, X.1    Fonseca, B.D.2    Tang, H.3
  • 35
    • 46149098447 scopus 로고    scopus 로고
    • Phospholipase D1 is an effector of Rheb in the mTOR pathway
    • Sun Y, Fang Y, Yoon M-S, et al., Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci USA 2008; 105: 8286-91.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 8286-8291
    • Sun, Y.1    Fang, Y.2    Yoon, M.-S.3
  • 36
    • 0344663973 scopus 로고    scopus 로고
    • PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1
    • Fang Y, Park I-H, Wu A-L, et al., PLD1 regulates mTOR signaling and mediates Cdc42 activation of S6K1. Curr Biol 2003; 13: 2037-44.
    • (2003) Curr Biol , vol.13 , pp. 2037-2044
    • Fang, Y.1    Park, I.-H.2    Wu, A.-L.3
  • 37
    • 33847174115 scopus 로고    scopus 로고
    • Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase
    • Hsu Y-C, Chern JJ, Cai Y, et al., Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 2007; 445: 785-8.
    • (2007) Nature , vol.445 , pp. 785-788
    • Hsu, Y.-C.1    Chern, J.J.2    Cai, Y.3
  • 38
    • 49649086599 scopus 로고    scopus 로고
    • Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb
    • Rehmann H, Brüning M, Berghaus C, et al., Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 2008; 582: 3005-10.
    • (2008) FEBS Lett , vol.582 , pp. 3005-3010
    • Rehmann, H.1    Brüning, M.2    Berghaus, C.3
  • 39
    • 0033544919 scopus 로고    scopus 로고
    • Characterization of the cytosolic tuberin-hamartin complex
    • Nellist M, van Slegtenhorst MA, Goedbloed M, et al., Characterization of the cytosolic tuberin-hamartin complex. J Biol Chem 1999; 274: 35647-52.
    • (1999) J Biol Chem , vol.274 , pp. 35647-35652
    • Nellist, M.1    Van Slegtenhorst, M.A.2    Goedbloed, M.3
  • 40
    • 0032213545 scopus 로고    scopus 로고
    • Hamartin, the product of the Tuberous Sclerosis 1 (TSC1) gene, interacts with Tuberin and appears to be localized to cytoplasmic vesicles
    • Plank TL, Yeung RS, Henske EP., Hamartin, the product of the Tuberous Sclerosis 1 (TSC1) gene, interacts with Tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 1998; 58: 4766-70.
    • (1998) Cancer Res , vol.58 , pp. 4766-4770
    • Plank, T.L.1    Yeung, R.S.2    Henske, E.P.3
  • 41
    • 7144255533 scopus 로고    scopus 로고
    • Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products
    • Van Slegtenhorst M, Nellist M, Nagelkerken B, et al., Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 1998; 7: 1053-7.
    • (1998) Hum Mol Genet , vol.7 , pp. 1053-1057
    • Van Slegtenhorst, M.1    Nellist, M.2    Nagelkerken, B.3
  • 42
    • 0035805162 scopus 로고    scopus 로고
    • Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size
    • Potter CJ, Huang H, Xu T., Drosophila Tsc1 functions with Tsc2 to antagonize insulin signaling in regulating cell growth, cell proliferation, and organ size. Cell 2001; 105: 357-68.
    • (2001) Cell , vol.105 , pp. 357-368
    • Potter, C.J.1    Huang, H.2    Xu, T.3
  • 43
    • 0035805180 scopus 로고    scopus 로고
    • The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation
    • Tapon N, Ito N, Dickson BJ, et al., The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 2001; 105: 345-55.
    • (2001) Cell , vol.105 , pp. 345-355
    • Tapon, N.1    Ito, N.2    Dickson, B.J.3
  • 44
    • 84865371057 scopus 로고    scopus 로고
    • TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1
    • Dibble CC, Elis W, Menon S, et al., TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol Cell 2012; 47: 535-46.
    • (2012) Mol Cell , vol.47 , pp. 535-546
    • Dibble, C.C.1    Elis, W.2    Menon, S.3
  • 45
    • 33646143793 scopus 로고    scopus 로고
    • Localization of Rheb to the endomembrane is critical for its signaling function
    • Buerger C, DeVries B, Stambolic V., Localization of Rheb to the endomembrane is critical for its signaling function. Biochem Biophys Res Commun 2006; 344: 869-80.
    • (2006) Biochem Biophys Res Commun , vol.344 , pp. 869-880
    • Buerger, C.1    DeVries, B.2    Stambolic, V.3
  • 46
    • 75149142796 scopus 로고    scopus 로고
    • Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling
    • Hanker AB, Mitin N, Wilder RS, et al., Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. Oncogene 2010; 29: 380-91.
    • (2010) Oncogene , vol.29 , pp. 380-391
    • Hanker, A.B.1    Mitin, N.2    Wilder, R.S.3
  • 47
    • 25444450400 scopus 로고    scopus 로고
    • Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway
    • Takahashi K, Nakagawa M, Young SG, et al., Differential membrane localization of ERas and Rheb, two Ras-related proteins involved in the phosphatidylinositol 3-kinase/mTOR pathway. J Biol Chem 2005; 280: 32768-74.
    • (2005) J Biol Chem , vol.280 , pp. 32768-32774
    • Takahashi, K.1    Nakagawa, M.2    Young, S.G.3
  • 48
    • 0034797345 scopus 로고    scopus 로고
    • Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant
    • Yang W, Tabancay AP, Urano J, et al., Failure to farnesylate Rheb protein contributes to the enrichment of G0/G1 phase cells in the Schizosaccharomyces pombe farnesyltransferase mutant. Mol Microbiol 2001; 41: 1339-47.
    • (2001) Mol Microbiol , vol.41 , pp. 1339-1347
    • Yang, W.1    Tabancay, A.P.2    Urano, J.3
  • 49
    • 24744465206 scopus 로고    scopus 로고
    • The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity
    • Basso AD, Mirza A, Liu G, et al., The farnesyl transferase inhibitor (FTI) SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR signaling. Role in FTI enhancement of taxane and tamoxifen anti-tumor activity. J Biol Chem 2005; 280: 31101-8.
    • (2005) J Biol Chem , vol.280 , pp. 31101-31108
    • Basso, A.D.1    Mirza, A.2    Liu, G.3
  • 50
    • 84926418992 scopus 로고    scopus 로고
    • MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation
    • Fawal M-A, Brandt M, Djouder N., MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation. Dev Cell 2015; 33: 67-81.
    • (2015) Dev Cell , vol.33 , pp. 67-81
    • Fawal, M.-A.1    Brandt, M.2    Djouder, N.3
  • 51
    • 0034062812 scopus 로고    scopus 로고
    • Hras but not K-ras traffics to the plasma membrane through the exocytic pathway
    • Apolloni A, Prior IA, Lindsay M, et al., Hras but not K-ras traffics to the plasma membrane through the exocytic pathway. Mol Cell Biol 2000; 20: 2475-87.
    • (2000) Mol Cell Biol , vol.20 , pp. 2475-2487
    • Apolloni, A.1    Prior, I.A.2    Lindsay, M.3
  • 52
    • 49849090082 scopus 로고    scopus 로고
    • The mTOR pathway and its role in human genetic diseases
    • Rosner M, Hanneder M, Siegel N, et al., The mTOR pathway and its role in human genetic diseases. Mutat Res 2008; 659: 284-92.
    • (2008) Mutat Res , vol.659 , pp. 284-292
    • Rosner, M.1    Hanneder, M.2    Siegel, N.3
  • 54
    • 84896692038 scopus 로고    scopus 로고
    • Rapamycin: One drug, many effects
    • Li J, Kim SG, Blenis J., Rapamycin: one drug, many effects. Cell Metab 2014; 19: 373-9.
    • (2014) Cell Metab , vol.19 , pp. 373-379
    • Li, J.1    Kim, S.G.2    Blenis, J.3
  • 55
    • 38049169559 scopus 로고    scopus 로고
    • Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis
    • Bissler JJ, McCormack FX, Young LR, et al., Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 2008; 358: 140-51.
    • (2008) N Engl J Med , vol.358 , pp. 140-151
    • Bissler, J.J.1    McCormack, F.X.2    Young, L.R.3
  • 56
    • 84874746597 scopus 로고    scopus 로고
    • Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): A multicentre, randomised, double-blind, placebo-controlled trial
    • Bissler JJ, Kingswood JC, Radzikowska E, et al., Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2013; 381: 817-24.
    • (2013) Lancet , vol.381 , pp. 817-824
    • Bissler, J.J.1    Kingswood, J.C.2    Radzikowska, E.3
  • 57
    • 79955510505 scopus 로고    scopus 로고
    • Efficacy and safety of sirolimus in lymphangioleiomyomatosis
    • McCormack FX, Inoue Y, Moss J, et al., Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364: 1595-606.
    • (2011) N Engl J Med , vol.364 , pp. 1595-1606
    • McCormack, F.X.1    Inoue, Y.2    Moss, J.3
  • 58
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: A new generation of mTOR inhibitors
    • Benjamin D, Colombi M, Moroni C, et al., Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10: 868-80.
    • (2011) Nat Rev Drug Discov , vol.10 , pp. 868-880
    • Benjamin, D.1    Colombi, M.2    Moroni, C.3
  • 59
    • 78650174233 scopus 로고    scopus 로고
    • The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis
    • Kang YJ, Lu M-K, Guan K-L., The TSC1 and TSC2 tumor suppressors are required for proper ER stress response and protect cells from ER stress-induced apoptosis. Cell Death Differ 2011; 18: 133-44.
    • (2011) Cell Death Differ , vol.18 , pp. 133-144
    • Kang, Y.J.1    Lu, M.-K.2    Guan, K.-L.3
  • 60
    • 77958529748 scopus 로고    scopus 로고
    • Ras homolog enriched in brain (Rheb) enhances apoptotic signaling
    • Karassek S, Berghaus C, Schwarten M, et al., Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. J Biol Chem 2010; 285: 33979-91.
    • (2010) J Biol Chem , vol.285 , pp. 33979-33991
    • Karassek, S.1    Berghaus, C.2    Schwarten, M.3
  • 61
    • 67049158203 scopus 로고    scopus 로고
    • Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy
    • Zhou X, Ikenoue T, Chen X, et al., Rheb controls misfolded protein metabolism by inhibiting aggresome formation and autophagy. Proc Natl Acad Sci USA 2009; 106: 8923-8.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 8923-8928
    • Zhou, X.1    Ikenoue, T.2    Chen, X.3
  • 62
    • 0032576605 scopus 로고    scopus 로고
    • Aggresomes: A cellular response to misfolded proteins
    • Johnston JA, Ward CL, Kopito RR., Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998; 143: 1883-98.
    • (1998) J Cell Biol , vol.143 , pp. 1883-1898
    • Johnston, J.A.1    Ward, C.L.2    Kopito, R.R.3
  • 63
    • 78650305038 scopus 로고    scopus 로고
    • Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: Implications for cell proliferation and tumorigenesis
    • Lacher MD, Pincheira R, Zhu Z, et al., Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene 2010; 29: 6543-56.
    • (2010) Oncogene , vol.29 , pp. 6543-6556
    • Lacher, M.D.1    Pincheira, R.2    Zhu, Z.3
  • 64
    • 77951026717 scopus 로고    scopus 로고
    • Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis
    • Lu ZH, Shvartsman MB, Lee AY, et al., Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis. Cancer Res 2010; 70: 3287-98.
    • (2010) Cancer Res , vol.70 , pp. 3287-3298
    • Lu, Z.H.1    Shvartsman, M.B.2    Lee, A.Y.3
  • 65
    • 27744506881 scopus 로고    scopus 로고
    • Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: Tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01
    • Lassman AB, Rossi MR, Raizer JJ, et al., Molecular study of malignant gliomas treated with epidermal growth factor receptor inhibitors: tissue analysis from North American Brain Tumor Consortium Trials 01-03 and 00-01. Clin Cancer Res 2005; 11: 7841-50.
    • (2005) Clin Cancer Res , vol.11 , pp. 7841-7850
    • Lassman, A.B.1    Rossi, M.R.2    Raizer, J.J.3
  • 66
    • 50049125036 scopus 로고    scopus 로고
    • Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events
    • Nardella C, Chen Z, Salmena L, et al., Aberrant Rheb-mediated mTORC1 activation and Pten haploinsufficiency are cooperative oncogenic events. Genes Dev 2008; 22: 2172-7.
    • (2008) Genes Dev , vol.22 , pp. 2172-2177
    • Nardella, C.1    Chen, Z.2    Salmena, L.3
  • 67
    • 50049123842 scopus 로고    scopus 로고
    • Tumorigenic activity and therapeutic inhibition of Rheb GTPase
    • Mavrakis KJ, Zhu H, Silva RLA, et al., Tumorigenic activity and therapeutic inhibition of Rheb GTPase. Genes Dev 2008; 22: 2178-88.
    • (2008) Genes Dev , vol.22 , pp. 2178-2188
    • Mavrakis, K.J.1    Zhu, H.2    Silva, R.L.A.3
  • 68
    • 84892833777 scopus 로고    scopus 로고
    • Discovery and saturation analysis of cancer genes across 21 tumour types
    • Lawrence MS, Stojanov P, Mermel CH, et al., Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495-501.
    • (2014) Nature , vol.505 , pp. 495-501
    • Lawrence, M.S.1    Stojanov, P.2    Mermel, C.H.3
  • 69
    • 84899678098 scopus 로고    scopus 로고
    • A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity
    • Grabiner BC, Nardi V, Birsoy K, et al., A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014; 4: 554-63.
    • (2014) Cancer Discov , vol.4 , pp. 554-563
    • Grabiner, B.C.1    Nardi, V.2    Birsoy, K.3
  • 70
    • 77956229501 scopus 로고    scopus 로고
    • Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells
    • Zheng H, Liu A, Liu B, et al., Ras homologue enriched in brain is a critical target of farnesyltransferase inhibitors in non-small cell lung cancer cells. Cancer Lett 2010; 297: 117-25.
    • (2010) Cancer Lett , vol.297 , pp. 117-125
    • Zheng, H.1    Liu, A.2    Liu, B.3
  • 71
    • 84892603452 scopus 로고    scopus 로고
    • Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells
    • Ding H, McDonald JS, Yun S, et al., Farnesyltransferase inhibitor tipifarnib inhibits Rheb prenylation and stabilizes Bax in acute myelogenous leukemia cells. Haematologica 2014; 99: 60-9.
    • (2014) Haematologica , vol.99 , pp. 60-69
    • Ding, H.1    McDonald, J.S.2    Yun, S.3
  • 72
    • 0037068783 scopus 로고    scopus 로고
    • Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells
    • Im E, von Lintig FC, Chen J, et al., Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 2002; 21: 6356-65.
    • (2002) Oncogene , vol.21 , pp. 6356-6365
    • Im, E.1    Von Lintig, F.C.2    Chen, J.3
  • 73
    • 0031039427 scopus 로고    scopus 로고
    • Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals
    • Yee WM, Worley PF., Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol 1997; 17: 921-33.
    • (1997) Mol Cell Biol , vol.17 , pp. 921-933
    • Yee, W.M.1    Worley, P.F.2
  • 74
    • 3142757865 scopus 로고    scopus 로고
    • Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent
    • Karbowniczek M, Cash T, Cheung M, et al., Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem 2004; 279: 29930-7.
    • (2004) J Biol Chem , vol.279 , pp. 29930-29937
    • Karbowniczek, M.1    Cash, T.2    Cheung, M.3
  • 75
    • 33747822482 scopus 로고    scopus 로고
    • Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization
    • Karbowniczek M, Robertson GP, Henske EP., Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem 2006; 281: 25447-56.
    • (2006) J Biol Chem , vol.281 , pp. 25447-25456
    • Karbowniczek, M.1    Robertson, G.P.2    Henske, E.P.3
  • 76
    • 84877578621 scopus 로고    scopus 로고
    • Rheb regulates mitophagy induced by mitochondrial energetic status
    • Melser S, Chatelain EH, Lavie J, et al., Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab 2013; 17: 719-30.
    • (2013) Cell Metab , vol.17 , pp. 719-730
    • Melser, S.1    Chatelain, E.H.2    Lavie, J.3
  • 77
    • 84955184800 scopus 로고    scopus 로고
    • Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy
    • Campos T, Ziehe J, Palma M, et al., Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy. Mol Carcinog 2015; doi: 10.1002/mc.22272.
    • (2015) Mol Carcinog
    • Campos, T.1    Ziehe, J.2    Palma, M.3
  • 78
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon S-M, Chandel NS, Hay N., AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485: 661-5.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.-M.1    Chandel, N.S.2    Hay, N.3
  • 79
    • 84867773087 scopus 로고    scopus 로고
    • Mitophagy: Mechanisms, pathophysiological roles, and analysis
    • Ding W-X, Yin X-M., Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 2012; 393: 547-64.
    • (2012) Biol Chem , vol.393 , pp. 547-564
    • Ding, W.-X.1    Yin, X.-M.2
  • 80
    • 61849135453 scopus 로고    scopus 로고
    • Tumor suppressors and cell metabolism: A recipe for cancer growth
    • Jones RG, Thompson CB., Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 2009; 23: 537-48.
    • (2009) Genes Dev , vol.23 , pp. 537-548
    • Jones, R.G.1    Thompson, C.B.2
  • 81
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden MG, Cantley LC, Thompson CB., Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029-33.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1    Cantley, L.C.2    Thompson, C.B.3
  • 82
    • 67749111502 scopus 로고    scopus 로고
    • The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression
    • Shackelford DB, Shaw RJ., The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563-75.
    • (2009) Nat Rev Cancer , vol.9 , pp. 563-575
    • Shackelford, D.B.1    Shaw, R.J.2
  • 83
    • 0345167800 scopus 로고    scopus 로고
    • TSC2 mediates cellular energy response to control cell growth and survival
    • Inoki K, Zhu T, Guan K-L., TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-90.
    • (2003) Cell , vol.115 , pp. 577-590
    • Inoki, K.1    Zhu, T.2    Guan, K.-L.3
  • 84
    • 42949139481 scopus 로고    scopus 로고
    • AMPK phosphorylation of raptor mediates a metabolic checkpoint
    • Gwinn DM, Shackelford DB, Egan DF, et al., AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-26.
    • (2008) Mol Cell , vol.30 , pp. 214-226
    • Gwinn, D.M.1    Shackelford, D.B.2    Egan, D.F.3
  • 85
    • 79952281400 scopus 로고    scopus 로고
    • Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1
    • Zheng M, Wang Y-H, Wu X-N, et al., Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol 2011; 13: 263-72.
    • (2011) Nat Cell Biol , vol.13 , pp. 263-272
    • Zheng, M.1    Wang, Y.-H.2    Wu, X.-N.3
  • 86
    • 66449117931 scopus 로고    scopus 로고
    • AMP-activated protein kinase promotes human prostate cancer cell growth and survival
    • Park HU, Suy S, Danner M, et al., AMP-activated protein kinase promotes human prostate cancer cell growth and survival. Mol Cancer Ther 2009; 8: 733-41.
    • (2009) Mol Cancer Ther , vol.8 , pp. 733-741
    • Park, H.U.1    Suy, S.2    Danner, M.3
  • 87
    • 1542618348 scopus 로고    scopus 로고
    • The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
    • Shaw RJ, Kosmatka M, Bardeesy N, et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 2004; 101: 3329-35.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 3329-3335
    • Shaw, R.J.1    Kosmatka, M.2    Bardeesy, N.3
  • 88
    • 1942466518 scopus 로고    scopus 로고
    • P27Kip1 modulates cell migration through the regulation of RhoA activation
    • Besson A, Gurian-West M, Schmidt A, et al., p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004; 18: 862-76.
    • (2004) Genes Dev , vol.18 , pp. 862-876
    • Besson, A.1    Gurian-West, M.2    Schmidt, A.3
  • 89
    • 34447544650 scopus 로고    scopus 로고
    • Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype
    • Besson A, Hwang HC, Cicero S, et al., Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007; 21: 1731-46.
    • (2007) Genes Dev , vol.21 , pp. 1731-1746
    • Besson, A.1    Hwang, H.C.2    Cicero, S.3
  • 90
    • 33644509197 scopus 로고    scopus 로고
    • Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity
    • Wu FY, Wang SE, Sanders ME, et al., Reduction of cytosolic p27(Kip1) inhibits cancer cell motility, survival, and tumorigenicity. Cancer Res 2006; 66: 2162-72.
    • (2006) Cancer Res , vol.66 , pp. 2162-2172
    • Wu, F.Y.1    Wang, S.E.2    Sanders, M.E.3
  • 91
    • 34248208651 scopus 로고    scopus 로고
    • P27Kip1 metabolism: A fascinating labyrinth
    • Borriello A, Cucciolla V, Oliva A, et al., p27Kip1 metabolism: a fascinating labyrinth. Cell Cycle 2007; 6: 1053-61.
    • (2007) Cell Cycle , vol.6 , pp. 1053-1061
    • Borriello, A.1    Cucciolla, V.2    Oliva, A.3
  • 92
    • 53049083680 scopus 로고    scopus 로고
    • AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27
    • Short JD, Houston KD, Dere R, et al., AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27. Cancer Res 2008; 68: 6496-506.
    • (2008) Cancer Res , vol.68 , pp. 6496-6506
    • Short, J.D.1    Houston, K.D.2    Dere, R.3
  • 93
    • 33947250696 scopus 로고    scopus 로고
    • The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis
    • Liang J, Shao SH, Xu Z-X, et al., The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 2007; 9: 218-24.
    • (2007) Nat Cell Biol , vol.9 , pp. 218-224
    • Liang, J.1    Shao, S.H.2    Xu, Z.-X.3
  • 94
    • 79961059959 scopus 로고    scopus 로고
    • Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent
    • Parkhitko A, Myachina F, Morrison TA, et al., Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci USA 2011; 108: 12455-60.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 12455-12460
    • Parkhitko, A.1    Myachina, F.2    Morrison, T.A.3
  • 95
    • 84885056560 scopus 로고    scopus 로고
    • Increased cytoplasmic localization of p27kip1 and its modulation of RhoA activity during progression of chronic myeloid leukemia
    • doi: 10.1371/journal.pone.00 7
    • Roy A, Lahiry L, Banerjee D, et al., Increased cytoplasmic localization of p27kip1 and its modulation of RhoA activity during progression of chronic myeloid leukemia. PLoS One 2013; 8: e76527. doi: 10.1371/journal.pone.00 7.
    • (2013) PLoS One , vol.8 , pp. e76527
    • Roy, A.1    Lahiry, L.2    Banerjee, D.3
  • 96
    • 78751505998 scopus 로고    scopus 로고
    • P27: A barometer of signaling deregulation and potential predictor of response to targeted therapies
    • Wander SA, Zhao D, Slingerland JM., p27: a barometer of signaling deregulation and potential predictor of response to targeted therapies. Clin Cancer Res 2010; 17: 12-1 8.
    • (2010) Clin Cancer Res , vol.17 , pp. 12-18
    • Wander, S.A.1    Zhao, D.2    Slingerland, J.M.3
  • 97
    • 74949090816 scopus 로고    scopus 로고
    • The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development
    • Karbowniczek M, Zitserman D, Khabibullin D, et al., The evolutionarily conserved TSC/Rheb pathway activates Notch in tuberous sclerosis complex and Drosophila external sensory organ development. J Clin Invest 2010; 120: 93-102.
    • (2010) J Clin Invest , vol.120 , pp. 93-102
    • Karbowniczek, M.1    Zitserman, D.2    Khabibullin, D.3
  • 98
    • 84920903544 scopus 로고    scopus 로고
    • Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity
    • Sato T, Akasu H, Shimono W, et al., Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem 2015; 290: 1096-105.
    • (2015) J Biol Chem , vol.290 , pp. 1096-1105
    • Sato, T.1    Akasu, H.2    Shimono, W.3
  • 99
  • 100
    • 84938209433 scopus 로고    scopus 로고
    • Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update
    • Takebe N, Miele L, Harris PJ, et al., Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 2015; 12: 445-64.
    • (2015) Nat Rev Clin Oncol , vol.12 , pp. 445-464
    • Takebe, N.1    Miele, L.2    Harris, P.J.3
  • 101
    • 78649466892 scopus 로고    scopus 로고
    • Targeting Notch signaling pathway to overcome drug resistance for cancer therapy
    • Wang Z, Li Y, Ahmad A, et al., Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta 2010; 1806: 258-67.
    • (2010) Biochim Biophys Acta , vol.1806 , pp. 258-267
    • Wang, Z.1    Li, Y.2    Ahmad, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.