메뉴 건너뛰기




Volumn 41, Issue 6, 2016, Pages 532-545

TORC2 Structure and Function

Author keywords

Cancer; Conditional knockout mouse model; Cryo electron microscopy; Membrane tension homeostasis; Metabolism; Subunit conservation; Subunit topology; Target of rapamycin complex 2 (TORC2); Therapeutic potential

Indexed keywords

AVO1 PROTEIN; AVO2 PROTEIN; AVO3 PROTEIN; BIT61 PROTEIN; DEPTOR PROTEIN; GUANINE NUCLEOTIDE EXCHANGE FACTOR; GUANOSINE TRIPHOSPHATASE; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PRR5 PROTEIN; RAC1 PROTEIN; RYH1 PROTEIN; TARGET OF RAPAMYCIN KINASE; TORC1 PROTEIN; TORC2 PROTEIN; UNCLASSIFIED DRUG; ANTINEOPLASTIC ANTIBIOTIC; MECHANISTIC TARGET OF RAPAMYCIN COMPLEX 1; MULTIPROTEIN COMPLEX; PROTEIN BINDING; PROTEIN SUBUNIT; RAPAMYCIN; TOR COMPLEX 2;

EID: 84964997376     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.04.001     Document Type: Review
Times cited : (145)

References (122)
  • 1
    • 0016713286 scopus 로고
    • Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization
    • Sehgal S.N., et al. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo) 1975, 28:727-732.
    • (1975) J. Antibiot. (Tokyo) , vol.28 , pp. 727-732
    • Sehgal, S.N.1
  • 2
    • 0016724057 scopus 로고
    • Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
    • Vezina C., et al. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 1975, 28:721-726.
    • (1975) J. Antibiot. (Tokyo) , vol.28 , pp. 721-726
    • Vezina, C.1
  • 3
    • 80155142474 scopus 로고    scopus 로고
    • Rapamycin passes the torch: a new generation of mTOR inhibitors
    • Benjamin D., et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10:868-880.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 868-880
    • Benjamin, D.1
  • 4
    • 0020523643 scopus 로고
    • Human brain tumor xenografts in nude mice as a chemotherapy model
    • Houchens D.P., et al. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 1983, 19:799-805.
    • (1983) Eur. J. Cancer Clin. Oncol. , vol.19 , pp. 799-805
    • Houchens, D.P.1
  • 5
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J., et al. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253:905-909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1
  • 6
    • 0036753494 scopus 로고    scopus 로고
    • Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
    • Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10:457-468.
    • (2002) Mol. Cell , vol.10 , pp. 457-468
    • Loewith, R.1
  • 7
    • 0037345059 scopus 로고    scopus 로고
    • Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae
    • Wedaman K.P., et al. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 2003, 14:1204-1220.
    • (2003) Mol. Biol. Cell , vol.14 , pp. 1204-1220
    • Wedaman, K.P.1
  • 8
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110:177-189.
    • (2002) Cell , vol.110 , pp. 177-189
    • Hara, K.1
  • 9
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6:1122-1128.
    • (2004) Nat. Cell Biol. , vol.6 , pp. 1122-1128
    • Jacinto, E.1
  • 10
    • 0037178786 scopus 로고    scopus 로고
    • MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
    • Kim D-H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
    • (2002) Cell , vol.110 , pp. 163-175
    • Kim, D.-H.1
  • 11
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
    • (2004) Curr. Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1
  • 12
    • 84856351274 scopus 로고    scopus 로고
    • Evolution of the TOR Pathway
    • van Dam T.J.P., et al. Evolution of the TOR Pathway. J. Mol. Evol. 2011, 73:209-220.
    • (2011) J. Mol. Evol. , vol.73 , pp. 209-220
    • van Dam, T.J.P.1
  • 13
    • 83455177213 scopus 로고    scopus 로고
    • Target of rapamycin (TOR) in nutrient signaling and growth control
    • Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
    • (2011) Genetics , vol.189 , pp. 1177-1201
    • Loewith, R.1    Hall, M.N.2
  • 14
    • 84884889883 scopus 로고    scopus 로고
    • SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation
    • Panchaud N., et al. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013, 12:2948-2952.
    • (2013) Cell Cycle , vol.12 , pp. 2948-2952
    • Panchaud, N.1
  • 15
    • 78650510609 scopus 로고    scopus 로고
    • MTOR: from growth signal integration to cancer, diabetes and ageing
    • Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 21-35
    • Zoncu, R.1
  • 16
    • 84937633778 scopus 로고    scopus 로고
    • Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2
    • Gaubitz C., et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 2015, 58:977-988.
    • (2015) Mol. Cell , vol.58 , pp. 977-988
    • Gaubitz, C.1
  • 17
    • 84890972420 scopus 로고    scopus 로고
    • Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae
    • Kliegman J.I., et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep. 2013, 5:1725-1736.
    • (2013) Cell Rep. , vol.5 , pp. 1725-1736
    • Kliegman, J.I.1
  • 18
    • 84931281895 scopus 로고    scopus 로고
    • Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways
    • Rispal D., et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J. Biol. Chem. 2015, 290:14963-14978.
    • (2015) J. Biol. Chem. , vol.290 , pp. 14963-14978
    • Rispal, D.1
  • 19
    • 84938801173 scopus 로고    scopus 로고
    • TOR signalling in plants
    • Rexin D., et al. TOR signalling in plants. Biochem. J. 2015, 470:1-14.
    • (2015) Biochem. J. , vol.470 , pp. 1-14
    • Rexin, D.1
  • 20
    • 77953091045 scopus 로고    scopus 로고
    • Structure of the human mTOR complex I and its implications for rapamycin inhibition
    • Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
    • (2010) Mol. Cell , vol.38 , pp. 768-774
    • Yip, C.K.1
  • 21
    • 84952950121 scopus 로고    scopus 로고
    • Architecture of human mTOR complex 1
    • Aylett C.H.S., et al. Architecture of human mTOR complex 1. Science 2016, 351:48-52.
    • (2016) Science , vol.351 , pp. 48-52
    • Aylett, C.H.S.1
  • 22
    • 84877761058 scopus 로고    scopus 로고
    • MTOR kinase structure, mechanism and regulation
    • Yang H., et al. mTOR kinase structure, mechanism and regulation. Nature 2013, 497:217-223.
    • (2013) Nature , vol.497 , pp. 217-223
    • Yang, H.1
  • 23
    • 84963976230 scopus 로고    scopus 로고
    • Tor forms a dimer through an N-terminal helical solenoid with a complex topology
    • Published online April 13, 2016
    • Baretić D., et al. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat. Commun. 2016, Published online April 13, 2016. 10.1038/ncomms11016.
    • (2016) Nat. Commun.
    • Baretić, D.1
  • 24
    • 0028800996 scopus 로고
    • PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints
    • Keith C.T., Schreiber S.L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 1995, 270:50-51.
    • (1995) Science , vol.270 , pp. 50-51
    • Keith, C.T.1    Schreiber, S.L.2
  • 25
    • 0028076764 scopus 로고
    • The ancient regulatory-protein family of WD-repeat proteins
    • Neer E.J., et al. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371:297-300.
    • (1994) Nature , vol.371 , pp. 297-300
    • Neer, E.J.1
  • 26
    • 24744439255 scopus 로고    scopus 로고
    • Molecular organization of target of rapamycin complex 2
    • Wullschleger S., et al. Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 2005, 280:30697-30704.
    • (2005) J. Biol. Chem. , vol.280 , pp. 30697-30704
    • Wullschleger, S.1
  • 27
    • 84881115632 scopus 로고    scopus 로고
    • Tandem-repeat proteins: regularity plus modularity equals design-ability
    • Javadi Y., Itzhaki L.S. Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr. Opin. Struct. Biol. 2013, 23:622-631.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 622-631
    • Javadi, Y.1    Itzhaki, L.S.2
  • 28
    • 13444262384 scopus 로고    scopus 로고
    • CDD: a Conserved Domain Database for protein classification
    • Marchler-Bauer A. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2004, 33:D192-D196.
    • (2004) Nucleic Acids Res. , vol.33 , pp. D192-D196
    • Marchler-Bauer, A.1
  • 29
    • 0032849043 scopus 로고    scopus 로고
    • A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium
    • Lee S., et al. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium. Mol. Biol. Cell 1999, 10:2829-2845.
    • (1999) Mol. Biol. Cell , vol.10 , pp. 2829-2845
    • Lee, S.1
  • 30
    • 0025771976 scopus 로고
    • Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae
    • Colicelli J., et al. Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:2913-2917.
    • (1991) Proc. Natl. Acad. Sci. U.S.A. , vol.88 , pp. 2913-2917
    • Colicelli, J.1
  • 31
    • 26244438381 scopus 로고    scopus 로고
    • TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium
    • Lee S., et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell 2005, 16:4572-4583.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 4572-4583
    • Lee, S.1
  • 32
    • 34147097962 scopus 로고    scopus 로고
    • Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling
    • Schroder W.A., et al. Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. Cell. Signal. 2007, 19:1279-1289.
    • (2007) Cell. Signal. , vol.19 , pp. 1279-1289
    • Schroder, W.A.1
  • 33
    • 63749117393 scopus 로고    scopus 로고
    • TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
    • Berchtold D., Walther T.C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 2009, 20:1565-1575.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1565-1575
    • Berchtold, D.1    Walther, T.C.2
  • 34
    • 78649853031 scopus 로고    scopus 로고
    • A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae
    • Gallego O., et al. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol. Syst. Biol. 2010, 6:430.
    • (2010) Mol. Syst. Biol. , vol.6 , pp. 430
    • Gallego, O.1
  • 35
    • 84860275662 scopus 로고    scopus 로고
    • Structures of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1 and its human orthologue Sin1, an essential subunit of TOR complex 2
    • Pan D., Matsuura Y. Structures of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1 and its human orthologue Sin1, an essential subunit of TOR complex 2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68:386-392.
    • (2012) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. , vol.68 , pp. 386-392
    • Pan, D.1    Matsuura, Y.2
  • 36
    • 4444377577 scopus 로고    scopus 로고
    • Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene
    • Schroder W., et al. Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene. Gene 2004, 339:17-23.
    • (2004) Gene , vol.339 , pp. 17-23
    • Schroder, W.1
  • 37
    • 80053286420 scopus 로고    scopus 로고
    • MTORC2 targets AGC kinases through Sin1-dependent recruitment
    • Cameron A.J.M., et al. mTORC2 targets AGC kinases through Sin1-dependent recruitment. Biochem. J. 2011, 439:287-297.
    • (2011) Biochem. J. , vol.439 , pp. 287-297
    • Cameron, A.J.M.1
  • 38
    • 84863157961 scopus 로고    scopus 로고
    • Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae
    • Liao H-C., Chen M-Y. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae. J. Biol. Chem. 2012, 287:6089-6099.
    • (2012) J. Biol. Chem. , vol.287 , pp. 6089-6099
    • Liao, H.-C.1    Chen, M.-Y.2
  • 39
    • 33748934979 scopus 로고    scopus 로고
    • MTORC2 caught in a SINful Akt
    • Polak P., Hall M.N. mTORC2 caught in a SINful Akt. Dev. Cell 2006, 11:433-434.
    • (2006) Dev. Cell , vol.11 , pp. 433-434
    • Polak, P.1    Hall, M.N.2
  • 40
    • 33748471980 scopus 로고    scopus 로고
    • MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
    • Frias M.A., et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006, 16:1865-1870.
    • (2006) Curr. Biol. , vol.16 , pp. 1865-1870
    • Frias, M.A.1
  • 41
    • 84942944786 scopus 로고    scopus 로고
    • Characterization of Sin1 isoforms reveals an mTOR-dependent and independent function of Sin1γ
    • Yuan Y., et al. Characterization of Sin1 isoforms reveals an mTOR-dependent and independent function of Sin1γ. PLoS ONE 2015, 10:e0135017.
    • (2015) PLoS ONE , vol.10 , pp. e0135017
    • Yuan, Y.1
  • 42
    • 79955546330 scopus 로고    scopus 로고
    • Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney
    • Pearce L.R., et al. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 2011, 436:169-179.
    • (2011) Biochem. J. , vol.436 , pp. 169-179
    • Pearce, L.R.1
  • 43
    • 43249124698 scopus 로고    scopus 로고
    • PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
    • Thedieck K., et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007, 2:e1217.
    • (2007) PLoS ONE , vol.2 , pp. e1217
    • Thedieck, K.1
  • 44
    • 34548509880 scopus 로고    scopus 로고
    • PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
    • Woo S-Y., et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J. Biol. Chem. 2007, 282:25604-25612.
    • (2007) J. Biol. Chem. , vol.282 , pp. 25604-25612
    • Woo, S.-Y.1
  • 45
    • 1442358124 scopus 로고    scopus 로고
    • Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans
    • Gatherar I., et al. Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans. Fungal Genet. Biol. 2004, 41:463-471.
    • (2004) Fungal Genet. Biol. , vol.41 , pp. 463-471
    • Gatherar, I.1
  • 46
    • 77954296666 scopus 로고    scopus 로고
    • A new bioinformatics analysis tools framework at EMBL-EBI
    • Goujon M., et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38:W695-W699.
    • (2010) Nucleic Acids Res. , vol.38 , pp. W695-W699
    • Goujon, M.1
  • 47
    • 16344385976 scopus 로고    scopus 로고
    • The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2
    • Fadri M., et al. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol. Biol. Cell 2005, 16:1883-1900.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 1883-1900
    • Fadri, M.1
  • 48
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
    • Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
    • (2009) Cell , vol.137 , pp. 873-886
    • Peterson, T.R.1
  • 49
    • 84899586186 scopus 로고    scopus 로고
    • DEP domains: structurally similar but functionally different
    • Consonni S.V., et al. DEP domains: structurally similar but functionally different. Nat. Rev. Mol. Cell Biol. 2014, 15:357-362.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 357-362
    • Consonni, S.V.1
  • 50
    • 84860501617 scopus 로고    scopus 로고
    • Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis
    • Berchtold D., et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14:542-547.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 542-547
    • Berchtold, D.1
  • 51
    • 84907553623 scopus 로고    scopus 로고
    • Fungal membrane organization: the eisosome concept
    • Douglas L.M., Konopka J.B. Fungal membrane organization: the eisosome concept. Annu. Rev. Microbiol. 2014, 68:377-393.
    • (2014) Annu. Rev. Microbiol. , vol.68 , pp. 377-393
    • Douglas, L.M.1    Konopka, J.B.2
  • 52
    • 84949883181 scopus 로고    scopus 로고
    • Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane
    • Kabeche R., et al. Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane. J. Cell Sci. 2015, 128:4057-4062.
    • (2015) J. Cell Sci. , vol.128 , pp. 4057-4062
    • Kabeche, R.1
  • 53
    • 84857131380 scopus 로고    scopus 로고
    • Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
    • Niles B.J., et al. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1536-1541.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 1536-1541
    • Niles, B.J.1
  • 54
    • 13244296900 scopus 로고    scopus 로고
    • Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor
    • Kippenberger S., et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J. Biol. Chem. 2005, 280:3060-3067.
    • (2005) J. Biol. Chem. , vol.280 , pp. 3060-3067
    • Kippenberger, S.1
  • 55
    • 16444371939 scopus 로고    scopus 로고
    • Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo
    • Sedding D.G. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 2005, 96:635-642.
    • (2005) Circ. Res. , vol.96 , pp. 635-642
    • Sedding, D.G.1
  • 56
    • 33646422239 scopus 로고    scopus 로고
    • Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels
    • Yu J. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 2006, 116:1284-1291.
    • (2006) J. Clin. Invest. , vol.116 , pp. 1284-1291
    • Yu, J.1
  • 57
    • 34250646601 scopus 로고    scopus 로고
    • Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells
    • Zhang B., et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell. Signal. 2007, 19:1690-1700.
    • (2007) Cell. Signal. , vol.19 , pp. 1690-1700
    • Zhang, B.1
  • 58
    • 79952119614 scopus 로고    scopus 로고
    • ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor
    • ra10
    • Chen C-H., et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci. Signal 2011, 4. ra10.
    • (2011) Sci. Signal , vol.4
    • Chen, C.-H.1
  • 59
    • 85001819551 scopus 로고    scopus 로고
    • TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids
    • Muir A., et al. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014, 3:e03779.
    • (2014) Elife , vol.3 , pp. e03779
    • Muir, A.1
  • 60
    • 84890149646 scopus 로고    scopus 로고
    • Where is mTOR and what is it doing there?
    • Betz C., Hall M.N. Where is mTOR and what is it doing there?. J. Cell Biol. 2013, 203:563-574.
    • (2013) J. Cell Biol. , vol.203 , pp. 563-574
    • Betz, C.1    Hall, M.N.2
  • 61
    • 84937520970 scopus 로고    scopus 로고
    • Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy
    • Arias E., et al. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 2015, 59:270-284.
    • (2015) Mol. Cell , vol.59 , pp. 270-284
    • Arias, E.1
  • 62
    • 79953216041 scopus 로고    scopus 로고
    • Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
    • Gan X., et al. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 2011, 286:10998-11002.
    • (2011) J. Biol. Chem. , vol.286 , pp. 10998-11002
    • Gan, X.1
  • 63
    • 84946216201 scopus 로고    scopus 로고
    • PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex
    • Liu P., et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov 2015, 5:1194-1209.
    • (2015) Cancer Discov , vol.5 , pp. 1194-1209
    • Liu, P.1
  • 64
    • 84879613791 scopus 로고    scopus 로고
    • Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
    • Swaney D.L., et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 2013, 10:676-682.
    • (2013) Nat. Methods , vol.10 , pp. 676-682
    • Swaney, D.L.1
  • 65
    • 70350545722 scopus 로고    scopus 로고
    • Characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
    • Dibble C.C., et al. Characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol. Cell. Biol. 2009, 29:5657-5670.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5657-5670
    • Dibble, C.C.1
  • 66
    • 84855282748 scopus 로고    scopus 로고
    • Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein
    • Glidden E.J., et al. Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 2012, 287:581-588.
    • (2012) J. Biol. Chem. , vol.287 , pp. 581-588
    • Glidden, E.J.1
  • 67
    • 84887430714 scopus 로고    scopus 로고
    • MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
    • Masui K., et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013, 18:726-739.
    • (2013) Cell Metab. , vol.18 , pp. 726-739
    • Masui, K.1
  • 68
    • 84904872156 scopus 로고    scopus 로고
    • The growing landscape of lysine acetylation links metabolism and cell signalling
    • Choudhary C., et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 2014, 15:536-550.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 536-550
    • Choudhary, C.1
  • 69
    • 84924891848 scopus 로고    scopus 로고
    • Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae
    • Nomura W., Inoue Y. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 2015, 35:1269-1280.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 1269-1280
    • Nomura, W.1    Inoue, Y.2
  • 70
    • 84928136179 scopus 로고    scopus 로고
    • Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose
    • Hatano T., et al. Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose. Cell Cycle 2015, 14:848-856.
    • (2015) Cell Cycle , vol.14 , pp. 848-856
    • Hatano, T.1
  • 71
    • 78649316549 scopus 로고    scopus 로고
    • Rab-family GTPase regulates TOR complex 2 signaling in fission yeast
    • Tatebe H., et al. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr. Biol. 2010, 20:1975-1982.
    • (2010) Curr. Biol. , vol.20 , pp. 1975-1982
    • Tatebe, H.1
  • 72
    • 79953307234 scopus 로고    scopus 로고
    • Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size
    • Saci A., et al. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell 2011, 42:50-61.
    • (2011) Mol. Cell , vol.42 , pp. 50-61
    • Saci, A.1
  • 73
    • 84919797782 scopus 로고    scopus 로고
    • MTORC2 is required for Rit-mediated oxidative stress resistance
    • Cai W., Andres D.A. mTORC2 is required for Rit-mediated oxidative stress resistance. PLoS ONE 2014, 9:e115602.
    • (2014) PLoS ONE , vol.9 , pp. e115602
    • Cai, W.1    Andres, D.A.2
  • 74
    • 84913582792 scopus 로고    scopus 로고
    • TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species
    • Niles B.J., Powers T. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol. Biol. Cell 2014, 25:3962-3972.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 3962-3972
    • Niles, B.J.1    Powers, T.2
  • 75
    • 84885035768 scopus 로고    scopus 로고
    • XPLN is an endogenous inhibitor of mTORC2
    • Khanna N., et al. XPLN is an endogenous inhibitor of mTORC2. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:15979-15984.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 15979-15984
    • Khanna, N.1
  • 76
    • 78649712949 scopus 로고    scopus 로고
    • MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
    • Oh W.J., et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29:3939-3951.
    • (2010) EMBO J. , vol.29 , pp. 3939-3951
    • Oh, W.J.1
  • 77
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1
  • 78
    • 72949093349 scopus 로고    scopus 로고
    • The nuts and bolts of AGC protein kinases
    • Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 9-22
    • Pearce, L.R.1
  • 79
    • 23344448223 scopus 로고    scopus 로고
    • Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
    • Kamada Y., et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell. Biol. 2005, 25:7239-7248.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7239-7248
    • Kamada, Y.1
  • 80
    • 6444241901 scopus 로고    scopus 로고
    • Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9
    • Roelants F.M. Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 2004, 150:3289-3304.
    • (2004) Microbiology , vol.150 , pp. 3289-3304
    • Roelants, F.M.1
  • 81
    • 84957587533 scopus 로고    scopus 로고
    • TOR complexes and the maintenance of cellular homeostasis
    • Eltschinger S., Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 2016, 26:148-159.
    • (2016) Trends Cell Biol , vol.26 , pp. 148-159
    • Eltschinger, S.1    Loewith, R.2
  • 82
    • 84884592244 scopus 로고    scopus 로고
    • TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks
    • Shimada K., et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol. Cell 2013, 51:829-839.
    • (2013) Mol. Cell , vol.51 , pp. 829-839
    • Shimada, K.1
  • 83
    • 58649092475 scopus 로고    scopus 로고
    • MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
    • García-Martínez J.M., Alessi D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 2008, 416:375-385.
    • (2008) Biochem. J. , vol.416 , pp. 375-385
    • García-Martínez, J.M.1    Alessi, D.R.2
  • 84
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
    • Guertin D.A., et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 2006, 11:859-871.
    • (2006) Dev. Cell , vol.11 , pp. 859-871
    • Guertin, D.A.1
  • 85
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
    • Ikenoue T., et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008, 27:1919-1931.
    • (2008) EMBO J. , vol.27 , pp. 1919-1931
    • Ikenoue, T.1
  • 86
    • 13844312400 scopus 로고    scopus 로고
    • Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex
    • Sarbassov D.D., et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005, 307:1098-1101.
    • (2005) Science , vol.307 , pp. 1098-1101
    • Sarbassov, D.D.1
  • 87
    • 77954235821 scopus 로고    scopus 로고
    • Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy
    • Sparks C.A., Guertin D.A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010, 29:3733-3744.
    • (2010) Oncogene , vol.29 , pp. 3733-3744
    • Sparks, C.A.1    Guertin, D.A.2
  • 88
    • 37549000623 scopus 로고    scopus 로고
    • Muscle-specific deletion of Rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity
    • Kumar A., et al. Muscle-specific deletion of Rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol. Cell. Biol. 2008, 28:61-70.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 61-70
    • Kumar, A.1
  • 89
    • 54849426651 scopus 로고    scopus 로고
    • Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
    • Bentzinger C.F., et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008, 8:411-424.
    • (2008) Cell Metab. , vol.8 , pp. 411-424
    • Bentzinger, C.F.1
  • 90
    • 63749119765 scopus 로고    scopus 로고
    • PIKKing on PKB: regulation of PKB activity by phosphorylation
    • Bozulic L., Hemmings B.A. PIKKing on PKB: regulation of PKB activity by phosphorylation. Cell Regul. 2009, 21:256-261.
    • (2009) Cell Regul. , vol.21 , pp. 256-261
    • Bozulic, L.1    Hemmings, B.A.2
  • 91
    • 84904433925 scopus 로고    scopus 로고
    • Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
    • Hung C-M., et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014, 8:256-271.
    • (2014) Cell Rep. , vol.8 , pp. 256-271
    • Hung, C.-M.1
  • 92
    • 33748950810 scopus 로고    scopus 로고
    • Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability
    • Shiota C., et al. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 2006, 11:583-589.
    • (2006) Dev. Cell , vol.11 , pp. 583-589
    • Shiota, C.1
  • 93
    • 84949239285 scopus 로고    scopus 로고
    • Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult
    • Aimi F., et al. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci. Rep. 2015, 5:17705.
    • (2015) Sci. Rep. , vol.5 , pp. 17705
    • Aimi, F.1
  • 94
    • 84924863743 scopus 로고    scopus 로고
    • Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways
    • Wang S., et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol. Cell. Biol. 2015, 35:1299-1313.
    • (2015) Mol. Cell. Biol. , vol.35 , pp. 1299-1313
    • Wang, S.1
  • 95
    • 84876742129 scopus 로고    scopus 로고
    • Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology
    • Thomanetz V., et al. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J. Cell Biol. 2013, 201:293-308.
    • (2013) J. Cell Biol. , vol.201 , pp. 293-308
    • Thomanetz, V.1
  • 96
    • 84906085545 scopus 로고    scopus 로고
    • Mammalian target of rapamycin complex 2 modulates TCR processing and surface expression during thymocyte development
    • Chou P-C., et al. Mammalian target of rapamycin complex 2 modulates TCR processing and surface expression during thymocyte development. J. Immunol. 2014, 193:1162-1170.
    • (2014) J. Immunol. , vol.193 , pp. 1162-1170
    • Chou, P.-C.1
  • 97
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1
  • 98
    • 67649867447 scopus 로고    scopus 로고
    • MTOR complex 2 in adipose tissue negatively controls whole-body growth
    • Cybulski N., et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9902-9907.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 9902-9907
    • Cybulski, N.1
  • 99
    • 77953200528 scopus 로고    scopus 로고
    • Fat cell-specific ablation of Rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
    • Kumar A., et al. Fat cell-specific ablation of Rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010, 59:1397-1406.
    • (2010) Diabetes , vol.59 , pp. 1397-1406
    • Kumar, A.1
  • 100
    • 79952374430 scopus 로고    scopus 로고
    • Rictor/mTORC2 is essential for maintaining a balance between β-cell proliferation and cell size
    • Gu Y., et al. Rictor/mTORC2 is essential for maintaining a balance between β-cell proliferation and cell size. Diabetes 2011, 60:827-837.
    • (2011) Diabetes , vol.60 , pp. 827-837
    • Gu, Y.1
  • 101
    • 84860454425 scopus 로고    scopus 로고
    • Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
    • Hagiwara A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012, 15:725-738.
    • (2012) Cell Metab. , vol.15 , pp. 725-738
    • Hagiwara, A.1
  • 102
    • 84859117806 scopus 로고    scopus 로고
    • Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
    • Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335:1638-1643.
    • (2012) Science , vol.335 , pp. 1638-1643
    • Lamming, D.W.1
  • 103
    • 84894225988 scopus 로고    scopus 로고
    • Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)
    • Lamming D.W., et al. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). FASEB J. 2014, 28:300-315.
    • (2014) FASEB J. , vol.28 , pp. 300-315
    • Lamming, D.W.1
  • 104
    • 84955216171 scopus 로고    scopus 로고
    • Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system
    • Arriola Apelo S.I., et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 2016, 15:28-38.
    • (2016) Aging Cell , vol.15 , pp. 28-38
    • Arriola Apelo, S.I.1
  • 105
    • 84874611570 scopus 로고    scopus 로고
    • Rapalogs and mTOR inhibitors as anti-aging therapeutics
    • Lamming D.W., et al. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 2013, 123:980-989.
    • (2013) J. Clin. Invest. , vol.123 , pp. 980-989
    • Lamming, D.W.1
  • 106
    • 84927695687 scopus 로고    scopus 로고
    • MTORC2 regulates cardiac response to stress by inhibiting MST1
    • Sciarretta S., et al. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 2015, 11:125-136.
    • (2015) Cell Rep. , vol.11 , pp. 125-136
    • Sciarretta, S.1
  • 107
    • 84923277833 scopus 로고    scopus 로고
    • Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan
    • Lamming D.W., et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 2014, 13:911-917.
    • (2014) Aging Cell , vol.13 , pp. 911-917
    • Lamming, D.W.1
  • 108
    • 33947330747 scopus 로고    scopus 로고
    • Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth
    • Hietakangas V., Cohen S.M. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev. 2007, 21:632-637.
    • (2007) Genes Dev. , vol.21 , pp. 632-637
    • Hietakangas, V.1    Cohen, S.M.2
  • 109
    • 58649114084 scopus 로고    scopus 로고
    • MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
    • Guertin D.A., et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
    • (2009) Cancer Cell , vol.15 , pp. 148-159
    • Guertin, D.A.1
  • 110
    • 84884997982 scopus 로고    scopus 로고
    • Emerging landscape of oncogenic signatures across human cancers
    • Ciriello G., et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013, 45:1127-1133.
    • (2013) Nat. Genet. , vol.45 , pp. 1127-1133
    • Ciriello, G.1
  • 111
    • 84960131361 scopus 로고    scopus 로고
    • RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors
    • Cheng H., et al. RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors. Cancer Discov. 2015, 5:1262-1270.
    • (2015) Cancer Discov. , vol.5 , pp. 1262-1270
    • Cheng, H.1
  • 112
    • 84906971768 scopus 로고    scopus 로고
    • Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IB kinase (IKK)
    • Dan H.C., et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IB kinase (IKK). J. Biol. Chem. 2014, 289:25227-25240.
    • (2014) J. Biol. Chem. , vol.289 , pp. 25227-25240
    • Dan, H.C.1
  • 113
    • 79960349522 scopus 로고    scopus 로고
    • MTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression
    • Ekim B., et al. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol. Cell. Biol. 2011, 31:2787-2801.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 2787-2801
    • Ekim, B.1
  • 114
    • 84890130657 scopus 로고    scopus 로고
    • Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition
    • Halova L., et al. Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition. J. Cell Biol. 2013, 203:595-604.
    • (2013) J. Cell Biol. , vol.203 , pp. 595-604
    • Halova, L.1
  • 115
    • 22544455676 scopus 로고    scopus 로고
    • Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
    • Holz M.K. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26089-26093
    • Holz, M.K.1
  • 116
    • 62449266454 scopus 로고    scopus 로고
    • TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2
    • Copp J., et al. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 2009, 69:1821-1827.
    • (2009) Cancer Res. , vol.69 , pp. 1821-1827
    • Copp, J.1
  • 117
    • 75749105049 scopus 로고    scopus 로고
    • MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
    • Julien L-A., et al. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol. 2010, 30:908-921.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 908-921
    • Julien, L.-A.1
  • 118
    • 77149163803 scopus 로고    scopus 로고
    • Rictor is a novel target of p70 S6 kinase-1
    • Treins C., et al. Rictor is a novel target of p70 S6 kinase-1. Oncogene 2010, 29:1003-1016.
    • (2010) Oncogene , vol.29 , pp. 1003-1016
    • Treins, C.1
  • 119
    • 84878796897 scopus 로고    scopus 로고
    • Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
    • Humphrey S.J., et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013, 17:1009-1020.
    • (2013) Cell Metab. , vol.17 , pp. 1009-1020
    • Humphrey, S.J.1
  • 120
    • 84898596335 scopus 로고    scopus 로고
    • Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity
    • Liu P., et al. Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein Cell 2014, 5:171-177.
    • (2014) Protein Cell , vol.5 , pp. 171-177
    • Liu, P.1
  • 121
    • 84947023702 scopus 로고    scopus 로고
    • A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation
    • Yang G., et al. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep. 2015, 12:937-943.
    • (2015) Cell Rep. , vol.12 , pp. 937-943
    • Yang, G.1
  • 122
    • 84884571694 scopus 로고    scopus 로고
    • Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism
    • Chen C-H., et al. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism. J. Biol. Chem. 2013, 288:27019-27030.
    • (2013) J. Biol. Chem. , vol.288 , pp. 27019-27030
    • Chen, C.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.