-
1
-
-
0016713286
-
Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization
-
Sehgal S.N., et al. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J. Antibiot. (Tokyo) 1975, 28:727-732.
-
(1975)
J. Antibiot. (Tokyo)
, vol.28
, pp. 727-732
-
-
Sehgal, S.N.1
-
2
-
-
0016724057
-
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
-
Vezina C., et al. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo) 1975, 28:721-726.
-
(1975)
J. Antibiot. (Tokyo)
, vol.28
, pp. 721-726
-
-
Vezina, C.1
-
3
-
-
80155142474
-
Rapamycin passes the torch: a new generation of mTOR inhibitors
-
Benjamin D., et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat. Rev. Drug Discov. 2011, 10:868-880.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 868-880
-
-
Benjamin, D.1
-
4
-
-
0020523643
-
Human brain tumor xenografts in nude mice as a chemotherapy model
-
Houchens D.P., et al. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 1983, 19:799-805.
-
(1983)
Eur. J. Cancer Clin. Oncol.
, vol.19
, pp. 799-805
-
-
Houchens, D.P.1
-
5
-
-
0025776523
-
Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
-
Heitman J., et al. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991, 253:905-909.
-
(1991)
Science
, vol.253
, pp. 905-909
-
-
Heitman, J.1
-
6
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 2002, 10:457-468.
-
(2002)
Mol. Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
-
7
-
-
0037345059
-
Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae
-
Wedaman K.P., et al. Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 2003, 14:1204-1220.
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 1204-1220
-
-
Wedaman, K.P.1
-
8
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
-
9
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E., et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004, 6:1122-1128.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
-
10
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D-H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
-
11
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov D.D., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14:1296-1302.
-
(2004)
Curr. Biol.
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
-
12
-
-
84856351274
-
Evolution of the TOR Pathway
-
van Dam T.J.P., et al. Evolution of the TOR Pathway. J. Mol. Evol. 2011, 73:209-220.
-
(2011)
J. Mol. Evol.
, vol.73
, pp. 209-220
-
-
van Dam, T.J.P.1
-
13
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
14
-
-
84884889883
-
SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation
-
Panchaud N., et al. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013, 12:2948-2952.
-
(2013)
Cell Cycle
, vol.12
, pp. 2948-2952
-
-
Panchaud, N.1
-
15
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., et al. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 2011, 12:21-35.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
-
16
-
-
84937633778
-
Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2
-
Gaubitz C., et al. Molecular basis of the rapamycin insensitivity of target of rapamycin complex 2. Mol. Cell 2015, 58:977-988.
-
(2015)
Mol. Cell
, vol.58
, pp. 977-988
-
-
Gaubitz, C.1
-
17
-
-
84890972420
-
Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae
-
Kliegman J.I., et al. Chemical genetics of rapamycin-insensitive TORC2 in S. cerevisiae. Cell Rep. 2013, 5:1725-1736.
-
(2013)
Cell Rep.
, vol.5
, pp. 1725-1736
-
-
Kliegman, J.I.1
-
18
-
-
84931281895
-
Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways
-
Rispal D., et al. Target of rapamycin complex 2 regulates actin polarization and endocytosis via multiple pathways. J. Biol. Chem. 2015, 290:14963-14978.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 14963-14978
-
-
Rispal, D.1
-
19
-
-
84938801173
-
TOR signalling in plants
-
Rexin D., et al. TOR signalling in plants. Biochem. J. 2015, 470:1-14.
-
(2015)
Biochem. J.
, vol.470
, pp. 1-14
-
-
Rexin, D.1
-
20
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip C.K., et al. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38:768-774.
-
(2010)
Mol. Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
-
21
-
-
84952950121
-
Architecture of human mTOR complex 1
-
Aylett C.H.S., et al. Architecture of human mTOR complex 1. Science 2016, 351:48-52.
-
(2016)
Science
, vol.351
, pp. 48-52
-
-
Aylett, C.H.S.1
-
22
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang H., et al. mTOR kinase structure, mechanism and regulation. Nature 2013, 497:217-223.
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
-
23
-
-
84963976230
-
Tor forms a dimer through an N-terminal helical solenoid with a complex topology
-
Published online April 13, 2016
-
Baretić D., et al. Tor forms a dimer through an N-terminal helical solenoid with a complex topology. Nat. Commun. 2016, Published online April 13, 2016. 10.1038/ncomms11016.
-
(2016)
Nat. Commun.
-
-
Baretić, D.1
-
24
-
-
0028800996
-
PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints
-
Keith C.T., Schreiber S.L. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science 1995, 270:50-51.
-
(1995)
Science
, vol.270
, pp. 50-51
-
-
Keith, C.T.1
Schreiber, S.L.2
-
25
-
-
0028076764
-
The ancient regulatory-protein family of WD-repeat proteins
-
Neer E.J., et al. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994, 371:297-300.
-
(1994)
Nature
, vol.371
, pp. 297-300
-
-
Neer, E.J.1
-
26
-
-
24744439255
-
Molecular organization of target of rapamycin complex 2
-
Wullschleger S., et al. Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 2005, 280:30697-30704.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 30697-30704
-
-
Wullschleger, S.1
-
27
-
-
84881115632
-
Tandem-repeat proteins: regularity plus modularity equals design-ability
-
Javadi Y., Itzhaki L.S. Tandem-repeat proteins: regularity plus modularity equals design-ability. Curr. Opin. Struct. Biol. 2013, 23:622-631.
-
(2013)
Curr. Opin. Struct. Biol.
, vol.23
, pp. 622-631
-
-
Javadi, Y.1
Itzhaki, L.S.2
-
28
-
-
13444262384
-
CDD: a Conserved Domain Database for protein classification
-
Marchler-Bauer A. CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 2004, 33:D192-D196.
-
(2004)
Nucleic Acids Res.
, vol.33
, pp. D192-D196
-
-
Marchler-Bauer, A.1
-
29
-
-
0032849043
-
A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium
-
Lee S., et al. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium. Mol. Biol. Cell 1999, 10:2829-2845.
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 2829-2845
-
-
Lee, S.1
-
30
-
-
0025771976
-
Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae
-
Colicelli J., et al. Expression of three mammalian cDNAs that interfere with RAS function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 1991, 88:2913-2917.
-
(1991)
Proc. Natl. Acad. Sci. U.S.A.
, vol.88
, pp. 2913-2917
-
-
Colicelli, J.1
-
31
-
-
26244438381
-
TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium
-
Lee S., et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell 2005, 16:4572-4583.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4572-4583
-
-
Lee, S.1
-
32
-
-
34147097962
-
Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling
-
Schroder W.A., et al. Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. Cell. Signal. 2007, 19:1279-1289.
-
(2007)
Cell. Signal.
, vol.19
, pp. 1279-1289
-
-
Schroder, W.A.1
-
33
-
-
63749117393
-
TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
-
Berchtold D., Walther T.C. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 2009, 20:1565-1575.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1565-1575
-
-
Berchtold, D.1
Walther, T.C.2
-
34
-
-
78649853031
-
A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae
-
Gallego O., et al. A systematic screen for protein-lipid interactions in Saccharomyces cerevisiae. Mol. Syst. Biol. 2010, 6:430.
-
(2010)
Mol. Syst. Biol.
, vol.6
, pp. 430
-
-
Gallego, O.1
-
35
-
-
84860275662
-
Structures of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1 and its human orthologue Sin1, an essential subunit of TOR complex 2
-
Pan D., Matsuura Y. Structures of the pleckstrin homology domain of Saccharomyces cerevisiae Avo1 and its human orthologue Sin1, an essential subunit of TOR complex 2. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68:386-392.
-
(2012)
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
, vol.68
, pp. 386-392
-
-
Pan, D.1
Matsuura, Y.2
-
36
-
-
4444377577
-
Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene
-
Schroder W., et al. Alternative polyadenylation and splicing of mRNAs transcribed from the human Sin1 gene. Gene 2004, 339:17-23.
-
(2004)
Gene
, vol.339
, pp. 17-23
-
-
Schroder, W.1
-
37
-
-
80053286420
-
MTORC2 targets AGC kinases through Sin1-dependent recruitment
-
Cameron A.J.M., et al. mTORC2 targets AGC kinases through Sin1-dependent recruitment. Biochem. J. 2011, 439:287-297.
-
(2011)
Biochem. J.
, vol.439
, pp. 287-297
-
-
Cameron, A.J.M.1
-
38
-
-
84863157961
-
Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae
-
Liao H-C., Chen M-Y. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae. J. Biol. Chem. 2012, 287:6089-6099.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 6089-6099
-
-
Liao, H.-C.1
Chen, M.-Y.2
-
39
-
-
33748934979
-
MTORC2 caught in a SINful Akt
-
Polak P., Hall M.N. mTORC2 caught in a SINful Akt. Dev. Cell 2006, 11:433-434.
-
(2006)
Dev. Cell
, vol.11
, pp. 433-434
-
-
Polak, P.1
Hall, M.N.2
-
40
-
-
33748471980
-
MSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s
-
Frias M.A., et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr. Biol. 2006, 16:1865-1870.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1865-1870
-
-
Frias, M.A.1
-
41
-
-
84942944786
-
Characterization of Sin1 isoforms reveals an mTOR-dependent and independent function of Sin1γ
-
Yuan Y., et al. Characterization of Sin1 isoforms reveals an mTOR-dependent and independent function of Sin1γ. PLoS ONE 2015, 10:e0135017.
-
(2015)
PLoS ONE
, vol.10
, pp. e0135017
-
-
Yuan, Y.1
-
42
-
-
79955546330
-
Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney
-
Pearce L.R., et al. Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem. J. 2011, 436:169-179.
-
(2011)
Biochem. J.
, vol.436
, pp. 169-179
-
-
Pearce, L.R.1
-
43
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K., et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007, 2:e1217.
-
(2007)
PLoS ONE
, vol.2
, pp. e1217
-
-
Thedieck, K.1
-
44
-
-
34548509880
-
PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling
-
Woo S-Y., et al. PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J. Biol. Chem. 2007, 282:25604-25612.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25604-25612
-
-
Woo, S.-Y.1
-
45
-
-
1442358124
-
Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans
-
Gatherar I., et al. Identification of a novel gene hbrB required for polarised growth in Aspergillus nidulans. Fungal Genet. Biol. 2004, 41:463-471.
-
(2004)
Fungal Genet. Biol.
, vol.41
, pp. 463-471
-
-
Gatherar, I.1
-
46
-
-
77954296666
-
A new bioinformatics analysis tools framework at EMBL-EBI
-
Goujon M., et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 2010, 38:W695-W699.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. W695-W699
-
-
Goujon, M.1
-
47
-
-
16344385976
-
The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2
-
Fadri M., et al. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol-4,5-bisphosphate and TORC2. Mol. Biol. Cell 2005, 16:1883-1900.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 1883-1900
-
-
Fadri, M.1
-
48
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson T.R., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
-
49
-
-
84899586186
-
DEP domains: structurally similar but functionally different
-
Consonni S.V., et al. DEP domains: structurally similar but functionally different. Nat. Rev. Mol. Cell Biol. 2014, 15:357-362.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 357-362
-
-
Consonni, S.V.1
-
50
-
-
84860501617
-
Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis
-
Berchtold D., et al. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nat. Cell Biol. 2012, 14:542-547.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 542-547
-
-
Berchtold, D.1
-
51
-
-
84907553623
-
Fungal membrane organization: the eisosome concept
-
Douglas L.M., Konopka J.B. Fungal membrane organization: the eisosome concept. Annu. Rev. Microbiol. 2014, 68:377-393.
-
(2014)
Annu. Rev. Microbiol.
, vol.68
, pp. 377-393
-
-
Douglas, L.M.1
Konopka, J.B.2
-
52
-
-
84949883181
-
Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane
-
Kabeche R., et al. Eisosomes provide membrane reservoirs for rapid expansion of the yeast plasma membrane. J. Cell Sci. 2015, 128:4057-4062.
-
(2015)
J. Cell Sci.
, vol.128
, pp. 4057-4062
-
-
Kabeche, R.1
-
53
-
-
84857131380
-
Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2
-
Niles B.J., et al. Plasma membrane recruitment and activation of the AGC kinase Ypk1 is mediated by target of rapamycin complex 2 (TORC2) and its effector proteins Slm1 and Slm2. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:1536-1541.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 1536-1541
-
-
Niles, B.J.1
-
54
-
-
13244296900
-
Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor
-
Kippenberger S., et al. Mechanical stretch stimulates protein kinase B/Akt phosphorylation in epidermal cells via angiotensin II type 1 receptor and epidermal growth factor receptor. J. Biol. Chem. 2005, 280:3060-3067.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 3060-3067
-
-
Kippenberger, S.1
-
55
-
-
16444371939
-
Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo
-
Sedding D.G. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ. Res. 2005, 96:635-642.
-
(2005)
Circ. Res.
, vol.96
, pp. 635-642
-
-
Sedding, D.G.1
-
56
-
-
33646422239
-
Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels
-
Yu J. Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. J. Clin. Invest. 2006, 116:1284-1291.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1284-1291
-
-
Yu, J.1
-
57
-
-
34250646601
-
Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells
-
Zhang B., et al. Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell. Signal. 2007, 19:1690-1700.
-
(2007)
Cell. Signal.
, vol.19
, pp. 1690-1700
-
-
Zhang, B.1
-
58
-
-
79952119614
-
ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor
-
ra10
-
Chen C-H., et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3β-mediated phosphorylation of rictor. Sci. Signal 2011, 4. ra10.
-
(2011)
Sci. Signal
, vol.4
-
-
Chen, C.-H.1
-
59
-
-
85001819551
-
TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids
-
Muir A., et al. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 2014, 3:e03779.
-
(2014)
Elife
, vol.3
, pp. e03779
-
-
Muir, A.1
-
60
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz C., Hall M.N. Where is mTOR and what is it doing there?. J. Cell Biol. 2013, 203:563-574.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
61
-
-
84937520970
-
Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy
-
Arias E., et al. Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy. Mol. Cell 2015, 59:270-284.
-
(2015)
Mol. Cell
, vol.59
, pp. 270-284
-
-
Arias, E.1
-
62
-
-
79953216041
-
Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate
-
Gan X., et al. Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 2011, 286:10998-11002.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10998-11002
-
-
Gan, X.1
-
63
-
-
84946216201
-
PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex
-
Liu P., et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov 2015, 5:1194-1209.
-
(2015)
Cancer Discov
, vol.5
, pp. 1194-1209
-
-
Liu, P.1
-
64
-
-
84879613791
-
Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation
-
Swaney D.L., et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat. Methods 2013, 10:676-682.
-
(2013)
Nat. Methods
, vol.10
, pp. 676-682
-
-
Swaney, D.L.1
-
65
-
-
70350545722
-
Characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1
-
Dibble C.C., et al. Characterization of rictor phosphorylation sites reveals direct regulation of mTOR complex 2 by S6K1. Mol. Cell. Biol. 2009, 29:5657-5670.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5657-5670
-
-
Dibble, C.C.1
-
66
-
-
84855282748
-
Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein
-
Glidden E.J., et al. Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J. Biol. Chem. 2012, 287:581-588.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 581-588
-
-
Glidden, E.J.1
-
67
-
-
84887430714
-
MTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc
-
Masui K., et al. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab. 2013, 18:726-739.
-
(2013)
Cell Metab.
, vol.18
, pp. 726-739
-
-
Masui, K.1
-
68
-
-
84904872156
-
The growing landscape of lysine acetylation links metabolism and cell signalling
-
Choudhary C., et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat. Rev. Mol. Cell Biol. 2014, 15:536-550.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 536-550
-
-
Choudhary, C.1
-
69
-
-
84924891848
-
Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae
-
Nomura W., Inoue Y. Methylglyoxal activates the target of rapamycin complex 2-protein kinase C signaling pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 2015, 35:1269-1280.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 1269-1280
-
-
Nomura, W.1
Inoue, Y.2
-
70
-
-
84928136179
-
Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose
-
Hatano T., et al. Fission yeast Ryh1 GTPase activates TOR complex 2 in response to glucose. Cell Cycle 2015, 14:848-856.
-
(2015)
Cell Cycle
, vol.14
, pp. 848-856
-
-
Hatano, T.1
-
71
-
-
78649316549
-
Rab-family GTPase regulates TOR complex 2 signaling in fission yeast
-
Tatebe H., et al. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr. Biol. 2010, 20:1975-1982.
-
(2010)
Curr. Biol.
, vol.20
, pp. 1975-1982
-
-
Tatebe, H.1
-
72
-
-
79953307234
-
Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size
-
Saci A., et al. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell 2011, 42:50-61.
-
(2011)
Mol. Cell
, vol.42
, pp. 50-61
-
-
Saci, A.1
-
73
-
-
84919797782
-
MTORC2 is required for Rit-mediated oxidative stress resistance
-
Cai W., Andres D.A. mTORC2 is required for Rit-mediated oxidative stress resistance. PLoS ONE 2014, 9:e115602.
-
(2014)
PLoS ONE
, vol.9
, pp. e115602
-
-
Cai, W.1
Andres, D.A.2
-
74
-
-
84913582792
-
TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species
-
Niles B.J., Powers T. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species. Mol. Biol. Cell 2014, 25:3962-3972.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 3962-3972
-
-
Niles, B.J.1
Powers, T.2
-
75
-
-
84885035768
-
XPLN is an endogenous inhibitor of mTORC2
-
Khanna N., et al. XPLN is an endogenous inhibitor of mTORC2. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:15979-15984.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 15979-15984
-
-
Khanna, N.1
-
76
-
-
78649712949
-
MTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide
-
Oh W.J., et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010, 29:3939-3951.
-
(2010)
EMBO J.
, vol.29
, pp. 3939-3951
-
-
Oh, W.J.1
-
77
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V., et al. Activation of mTORC2 by association with the ribosome. Cell 2011, 144:757-768.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
-
78
-
-
72949093349
-
The nuts and bolts of AGC protein kinases
-
Pearce L.R., et al. The nuts and bolts of AGC protein kinases. Nat. Rev. Mol. Cell Biol. 2010, 11:9-22.
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 9-22
-
-
Pearce, L.R.1
-
79
-
-
23344448223
-
Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization
-
Kamada Y., et al. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol. Cell. Biol. 2005, 25:7239-7248.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 7239-7248
-
-
Kamada, Y.1
-
80
-
-
6444241901
-
Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9
-
Roelants F.M. Differential roles of PDK1- and PDK2-phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and Sch9. Microbiology 2004, 150:3289-3304.
-
(2004)
Microbiology
, vol.150
, pp. 3289-3304
-
-
Roelants, F.M.1
-
81
-
-
84957587533
-
TOR complexes and the maintenance of cellular homeostasis
-
Eltschinger S., Loewith R. TOR complexes and the maintenance of cellular homeostasis. Trends Cell Biol 2016, 26:148-159.
-
(2016)
Trends Cell Biol
, vol.26
, pp. 148-159
-
-
Eltschinger, S.1
Loewith, R.2
-
82
-
-
84884592244
-
TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks
-
Shimada K., et al. TORC2 signaling pathway guarantees genome stability in the face of DNA strand breaks. Mol. Cell 2013, 51:829-839.
-
(2013)
Mol. Cell
, vol.51
, pp. 829-839
-
-
Shimada, K.1
-
83
-
-
58649092475
-
MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1)
-
García-Martínez J.M., Alessi D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J. 2008, 416:375-385.
-
(2008)
Biochem. J.
, vol.416
, pp. 375-385
-
-
García-Martínez, J.M.1
Alessi, D.R.2
-
84
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1
-
Guertin D.A., et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1. Dev. Cell 2006, 11:859-871.
-
(2006)
Dev. Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
-
85
-
-
47949104258
-
Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
-
Ikenoue T., et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J. 2008, 27:1919-1931.
-
(2008)
EMBO J.
, vol.27
, pp. 1919-1931
-
-
Ikenoue, T.1
-
86
-
-
13844312400
-
Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex
-
Sarbassov D.D., et al. Phosphorylation and regulation of Akt/PKB by the Rictor-mTOR complex. Science 2005, 307:1098-1101.
-
(2005)
Science
, vol.307
, pp. 1098-1101
-
-
Sarbassov, D.D.1
-
87
-
-
77954235821
-
Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy
-
Sparks C.A., Guertin D.A. Targeting mTOR: prospects for mTOR complex 2 inhibitors in cancer therapy. Oncogene 2010, 29:3733-3744.
-
(2010)
Oncogene
, vol.29
, pp. 3733-3744
-
-
Sparks, C.A.1
Guertin, D.A.2
-
88
-
-
37549000623
-
Muscle-specific deletion of Rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity
-
Kumar A., et al. Muscle-specific deletion of Rictor impairs insulin-stimulated glucose transport and enhances basal glycogen synthase activity. Mol. Cell. Biol. 2008, 28:61-70.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 61-70
-
-
Kumar, A.1
-
89
-
-
54849426651
-
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
-
Bentzinger C.F., et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008, 8:411-424.
-
(2008)
Cell Metab.
, vol.8
, pp. 411-424
-
-
Bentzinger, C.F.1
-
90
-
-
63749119765
-
PIKKing on PKB: regulation of PKB activity by phosphorylation
-
Bozulic L., Hemmings B.A. PIKKing on PKB: regulation of PKB activity by phosphorylation. Cell Regul. 2009, 21:256-261.
-
(2009)
Cell Regul.
, vol.21
, pp. 256-261
-
-
Bozulic, L.1
Hemmings, B.A.2
-
91
-
-
84904433925
-
Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease
-
Hung C-M., et al. Rictor/mTORC2 loss in the Myf5 lineage reprograms brown fat metabolism and protects mice against obesity and metabolic disease. Cell Rep. 2014, 8:256-271.
-
(2014)
Cell Rep.
, vol.8
, pp. 256-271
-
-
Hung, C.-M.1
-
92
-
-
33748950810
-
Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability
-
Shiota C., et al. Multiallelic disruption of the rictor gene in mice reveals that mTOR complex 2 is essential for fetal growth and viability. Dev. Cell 2006, 11:583-589.
-
(2006)
Dev. Cell
, vol.11
, pp. 583-589
-
-
Shiota, C.1
-
93
-
-
84949239285
-
Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult
-
Aimi F., et al. Endothelial Rictor is crucial for midgestational development and sustained and extensive FGF2-induced neovascularization in the adult. Sci. Rep. 2015, 5:17705.
-
(2015)
Sci. Rep.
, vol.5
, pp. 17705
-
-
Aimi, F.1
-
94
-
-
84924863743
-
Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways
-
Wang S., et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol. Cell. Biol. 2015, 35:1299-1313.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 1299-1313
-
-
Wang, S.1
-
95
-
-
84876742129
-
Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology
-
Thomanetz V., et al. Ablation of the mTORC2 component rictor in brain or Purkinje cells affects size and neuron morphology. J. Cell Biol. 2013, 201:293-308.
-
(2013)
J. Cell Biol.
, vol.201
, pp. 293-308
-
-
Thomanetz, V.1
-
96
-
-
84906085545
-
Mammalian target of rapamycin complex 2 modulates TCR processing and surface expression during thymocyte development
-
Chou P-C., et al. Mammalian target of rapamycin complex 2 modulates TCR processing and surface expression during thymocyte development. J. Immunol. 2014, 193:1162-1170.
-
(2014)
J. Immunol.
, vol.193
, pp. 1162-1170
-
-
Chou, P.-C.1
-
97
-
-
77953897189
-
Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
-
Lee K., et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010, 32:743-753.
-
(2010)
Immunity
, vol.32
, pp. 743-753
-
-
Lee, K.1
-
98
-
-
67649867447
-
MTOR complex 2 in adipose tissue negatively controls whole-body growth
-
Cybulski N., et al. mTOR complex 2 in adipose tissue negatively controls whole-body growth. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:9902-9907.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 9902-9907
-
-
Cybulski, N.1
-
99
-
-
77953200528
-
Fat cell-specific ablation of Rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism
-
Kumar A., et al. Fat cell-specific ablation of Rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes 2010, 59:1397-1406.
-
(2010)
Diabetes
, vol.59
, pp. 1397-1406
-
-
Kumar, A.1
-
100
-
-
79952374430
-
Rictor/mTORC2 is essential for maintaining a balance between β-cell proliferation and cell size
-
Gu Y., et al. Rictor/mTORC2 is essential for maintaining a balance between β-cell proliferation and cell size. Diabetes 2011, 60:827-837.
-
(2011)
Diabetes
, vol.60
, pp. 827-837
-
-
Gu, Y.1
-
101
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
Hagiwara A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 2012, 15:725-738.
-
(2012)
Cell Metab.
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
-
102
-
-
84859117806
-
Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity
-
Lamming D.W., et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335:1638-1643.
-
(2012)
Science
, vol.335
, pp. 1638-1643
-
-
Lamming, D.W.1
-
103
-
-
84894225988
-
Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2)
-
Lamming D.W., et al. Hepatic signaling by the mechanistic target of rapamycin complex 2 (mTORC2). FASEB J. 2014, 28:300-315.
-
(2014)
FASEB J.
, vol.28
, pp. 300-315
-
-
Lamming, D.W.1
-
104
-
-
84955216171
-
Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system
-
Arriola Apelo S.I., et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell 2016, 15:28-38.
-
(2016)
Aging Cell
, vol.15
, pp. 28-38
-
-
Arriola Apelo, S.I.1
-
105
-
-
84874611570
-
Rapalogs and mTOR inhibitors as anti-aging therapeutics
-
Lamming D.W., et al. Rapalogs and mTOR inhibitors as anti-aging therapeutics. J. Clin. Invest. 2013, 123:980-989.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 980-989
-
-
Lamming, D.W.1
-
106
-
-
84927695687
-
MTORC2 regulates cardiac response to stress by inhibiting MST1
-
Sciarretta S., et al. mTORC2 regulates cardiac response to stress by inhibiting MST1. Cell Rep. 2015, 11:125-136.
-
(2015)
Cell Rep.
, vol.11
, pp. 125-136
-
-
Sciarretta, S.1
-
107
-
-
84923277833
-
Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan
-
Lamming D.W., et al. Depletion of Rictor, an essential protein component of mTORC2, decreases male lifespan. Aging Cell 2014, 13:911-917.
-
(2014)
Aging Cell
, vol.13
, pp. 911-917
-
-
Lamming, D.W.1
-
108
-
-
33947330747
-
Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth
-
Hietakangas V., Cohen S.M. Re-evaluating AKT regulation: role of TOR complex 2 in tissue growth. Genes Dev. 2007, 21:632-637.
-
(2007)
Genes Dev.
, vol.21
, pp. 632-637
-
-
Hietakangas, V.1
Cohen, S.M.2
-
109
-
-
58649114084
-
MTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice
-
Guertin D.A., et al. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell 2009, 15:148-159.
-
(2009)
Cancer Cell
, vol.15
, pp. 148-159
-
-
Guertin, D.A.1
-
110
-
-
84884997982
-
Emerging landscape of oncogenic signatures across human cancers
-
Ciriello G., et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 2013, 45:1127-1133.
-
(2013)
Nat. Genet.
, vol.45
, pp. 1127-1133
-
-
Ciriello, G.1
-
111
-
-
84960131361
-
RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors
-
Cheng H., et al. RICTOR amplification defines a novel subset of patients with lung cancer who may benefit from treatment with mTORC1/2 inhibitors. Cancer Discov. 2015, 5:1262-1270.
-
(2015)
Cancer Discov.
, vol.5
, pp. 1262-1270
-
-
Cheng, H.1
-
112
-
-
84906971768
-
Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IB kinase (IKK)
-
Dan H.C., et al. Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IB kinase (IKK). J. Biol. Chem. 2014, 289:25227-25240.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 25227-25240
-
-
Dan, H.C.1
-
113
-
-
79960349522
-
MTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression
-
Ekim B., et al. mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth, and cell cycle progression. Mol. Cell. Biol. 2011, 31:2787-2801.
-
(2011)
Mol. Cell. Biol.
, vol.31
, pp. 2787-2801
-
-
Ekim, B.1
-
114
-
-
84890130657
-
Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition
-
Halova L., et al. Phosphorylation of the TOR ATP binding domain by AGC kinase constitutes a novel mode of TOR inhibition. J. Cell Biol. 2013, 203:595-604.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 595-604
-
-
Halova, L.1
-
115
-
-
22544455676
-
Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase
-
Holz M.K. Identification of S6 kinase 1 as a novel mammalian target of rapamycin (mTOR)-phosphorylating kinase. J. Biol. Chem. 2005, 280:26089-26093.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26089-26093
-
-
Holz, M.K.1
-
116
-
-
62449266454
-
TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2
-
Copp J., et al. TORC-specific phosphorylation of mammalian target of rapamycin (mTOR): phospho-Ser2481 is a marker for intact mTOR signaling complex 2. Cancer Res. 2009, 69:1821-1827.
-
(2009)
Cancer Res.
, vol.69
, pp. 1821-1827
-
-
Copp, J.1
-
117
-
-
75749105049
-
MTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling
-
Julien L-A., et al. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol. Cell. Biol. 2010, 30:908-921.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 908-921
-
-
Julien, L.-A.1
-
118
-
-
77149163803
-
Rictor is a novel target of p70 S6 kinase-1
-
Treins C., et al. Rictor is a novel target of p70 S6 kinase-1. Oncogene 2010, 29:1003-1016.
-
(2010)
Oncogene
, vol.29
, pp. 1003-1016
-
-
Treins, C.1
-
119
-
-
84878796897
-
Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2
-
Humphrey S.J., et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metab. 2013, 17:1009-1020.
-
(2013)
Cell Metab.
, vol.17
, pp. 1009-1020
-
-
Humphrey, S.J.1
-
120
-
-
84898596335
-
Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity
-
Liu P., et al. Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein Cell 2014, 5:171-177.
-
(2014)
Protein Cell
, vol.5
, pp. 171-177
-
-
Liu, P.1
-
121
-
-
84947023702
-
A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation
-
Yang G., et al. A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep. 2015, 12:937-943.
-
(2015)
Cell Rep.
, vol.12
, pp. 937-943
-
-
Yang, G.1
-
122
-
-
84884571694
-
Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism
-
Chen C-H., et al. Autoregulation of the mechanistic target of rapamycin (mTOR) complex 2 integrity is controlled by an ATP-dependent mechanism. J. Biol. Chem. 2013, 288:27019-27030.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 27019-27030
-
-
Chen, C.-H.1
|