-
1
-
-
57449121882
-
Getting into the brain: approaches to enhance brain drug delivery
-
COI: 1:CAS:528:DC%2BD1MXitFCmsb0%3D, PID: 19062774
-
Patel MM, Goyal BR, Bhadada SV, et al. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs. 2009;23:35–58.
-
(2009)
CNS Drugs.
, vol.23
, pp. 35-58
-
-
Patel, M.M.1
Goyal, B.R.2
Bhadada, S.V.3
-
2
-
-
0017689969
-
Morphology of blood–brain interfaces
-
Brightman MW. Morphology of blood–brain interfaces. Exp Eye Res. 1977;25(Suppl. 1):1–25.
-
(1977)
Exp Eye Res
, vol.25
, pp. 1-25
-
-
Brightman, M.W.1
-
3
-
-
0027604576
-
The blood–brain barrier: morphology, molecules, and neurothelin
-
COI: 1:CAS:528:DyaK3sXlslyjsLk%3D
-
Schlosshauer B. The blood–brain barrier: morphology, molecules, and neurothelin. Bioassays. 1993;15:341–6.
-
(1993)
Bioassays.
, vol.15
, pp. 341-346
-
-
Schlosshauer, B.1
-
4
-
-
33745032028
-
Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue?
-
COI: 1:CAS:528:DC%2BD28XmtVaisL8%3D, PID: 16787219
-
Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem. 2006;13:1757–75.
-
(2006)
Curr Med Chem.
, vol.13
, pp. 1757-1775
-
-
Ricci, M.1
Blasi, P.2
Giovagnoli, S.3
Rossi, C.4
-
5
-
-
17644364388
-
Dynamics of CNS barriers: evolution, differentiation, and modulation
-
PID: 15962506
-
Abbott NJ. Dynamics of CNS barriers: evolution, differentiation, and modulation. Cell Mol Neurobiol. 2005;25:5–23.
-
(2005)
Cell Mol Neurobiol.
, vol.25
, pp. 5-23
-
-
Abbott, N.J.1
-
6
-
-
0033968049
-
Endothelial vesicles in the blood–brain barrier: are they related to permeability?
-
COI: 1:STN:280:DC%2BD3c7mtFCqtQ%3D%3D, PID: 10696507
-
Stewart PA. Endothelial vesicles in the blood–brain barrier: are they related to permeability? Cell Mol Neurobiol. 2000;20:149–63.
-
(2000)
Cell Mol Neurobiol.
, vol.20
, pp. 149-163
-
-
Stewart, P.A.1
-
8
-
-
84894310713
-
Ageing and Parkinson’s disease: why is advancing age the biggest risk factor?
-
Reev A, Simcox E, Turnbull D. Ageing and Parkinson’s disease: why is advancing age the biggest risk factor? Ageing Res Rev. 2014;14:19–30.
-
(2014)
Ageing Res Rev.
, vol.14
, pp. 19-30
-
-
Reev, A.1
Simcox, E.2
Turnbull, D.3
-
9
-
-
84859996647
-
Modern methods for delivery of drugs across the blood–brain barrier
-
COI: 1:CAS:528:DC%2BC38XlvFygtbc%3D, PID: 22154620
-
Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64:640–65.
-
(2012)
Adv Drug Deliv Rev.
, vol.64
, pp. 640-665
-
-
Chen, Y.1
Liu, L.2
-
10
-
-
37149034911
-
Strategies to advance translational research into brain barriers
-
COI: 1:CAS:528:DC%2BD1cXhtlaqtbo%3D, PID: 18093565
-
Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol. 2008;7:84–96.
-
(2008)
Lancet Neurol.
, vol.7
, pp. 84-96
-
-
Neuwelt, E.1
Abbott, N.J.2
Abrey, L.3
-
11
-
-
85011412510
-
-
Alzheimer’s Association. Alzheimer’s disease facts and figures. Accessed 29 Aug 2016.
-
Alzheimer’s Association. Alzheimer’s disease facts and figures. http://www.alz.org/facts/. Accessed 29 Aug 2016.
-
-
-
-
12
-
-
85011399343
-
-
Parkinson’s Disease Foundation. Accessed 29 Aug 2016.
-
Parkinson’s Disease Foundation. http://www.pdf.org/en/parkinson_statistics. Accessed 29 Aug 2016.
-
-
-
-
13
-
-
85011369247
-
-
National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER) Program. Accessed 29 Aug 2016
-
National Cancer Institute, Surveillance, Epidemiology, and End Results (SEER) Program. http://seer.cancer.gov/statfacts/html/brain.html. Accessed 29 Aug 2016.
-
-
-
-
14
-
-
84927942273
-
2014 global prescription medication statistics: strong growth and CNS well represented
-
COI: 1:CAS:528:DC%2BC2MXmtF2ntr8%3D, PID: 25873191
-
Lindsley CW. 2014 global prescription medication statistics: strong growth and CNS well represented. ACS Chem Neurosci. 2015;6(4):505–6.
-
(2015)
ACS Chem Neurosci.
, vol.6
, Issue.4
, pp. 505-506
-
-
Lindsley, C.W.1
-
15
-
-
84901595804
-
Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma
-
COI: 1:CAS:528:DC%2BC2cXntlOhu7w%3D, PID: 24786603
-
Hottinger AF, Aissa AB, Espeli V, et al. Phase I study of sorafenib combined with radiation therapy and temozolomide as first-line treatment of high-grade glioma. Br J Cancer. 2014;110(11):2655–61.
-
(2014)
Br J Cancer.
, vol.110
, Issue.11
, pp. 2655-2661
-
-
Hottinger, A.F.1
Aissa, A.B.2
Espeli, V.3
-
16
-
-
84921596103
-
Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas
-
COI: 1:CAS:528:DC%2BC28XhvFWlt73J, PID: 24803676
-
Karajannis MA, Legault G, Fisher MJ, et al. Phase II study of sorafenib in children with recurrent or progressive low-grade astrocytomas. Neuro Oncol. 2014;16(10):1408–16.
-
(2014)
Neuro Oncol.
, vol.16
, Issue.10
, pp. 1408-1416
-
-
Karajannis, M.A.1
Legault, G.2
Fisher, M.J.3
-
17
-
-
84925491476
-
Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma
-
COI: 1:CAS:528:DC%2BC2cXitVWksLfJ, PID: 25411098
-
Taylor JW, Dietrich J, Gerstner ER, et al. Phase 2 study of bosutinib, a Src inhibitor, in adults with recurrent glioblastoma. J Neurooncol. 2015;121(3):557–63.
-
(2015)
J Neurooncol.
, vol.121
, Issue.3
, pp. 557-563
-
-
Taylor, J.W.1
Dietrich, J.2
Gerstner, E.R.3
-
18
-
-
84919493168
-
Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a phase II study
-
PID: 24424564
-
Balaña C, Gil MJ, Perez P, et al. Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a phase II study. Target Oncol. 2014;9(4):321–9.
-
(2014)
Target Oncol.
, vol.9
, Issue.4
, pp. 321-329
-
-
Balaña, C.1
Gil, M.J.2
Perez, P.3
-
19
-
-
84901592754
-
A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas
-
COI: 1:CAS:528:DC%2BC2cXhtleru78%3D, PID: 24449400
-
Raizer JJ, Grimm SA, Rademaker A, et al. A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neurooncol. 2014;117(1):93–101.
-
(2014)
J Neurooncol.
, vol.117
, Issue.1
, pp. 93-101
-
-
Raizer, J.J.1
Grimm, S.A.2
Rademaker, A.3
-
20
-
-
84945465953
-
A phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies
-
COI: 1:CAS:528:DC%2BC2MXhslGju7nF, PID: 26154941
-
Cacciavillano W, Sampor C, Venier C, et al. A phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies. Pediatr Blood Cancer. 2015;62(12):2120–4.
-
(2015)
Pediatr Blood Cancer.
, vol.62
, Issue.12
, pp. 2120-2124
-
-
Cacciavillano, W.1
Sampor, C.2
Venier, C.3
-
21
-
-
84921343959
-
Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein
-
COI: 1:CAS:528:DC%2BC28XmvFyqsLw%3D, PID: 25427053
-
Curtin F, Perron H, Kromminga A, et al. Preclinical and early clinical development of GNbAC1, a humanized IgG4 monoclonal antibody targeting endogenous retroviral MSRV-Env protein. MAbs. 2015;7(1):265–75.
-
(2015)
MAbs.
, vol.7
, Issue.1
, pp. 265-275
-
-
Curtin, F.1
Perron, H.2
Kromminga, A.3
-
22
-
-
84899795339
-
Nimotuzumab in combination with radiotherapy in high grade glioma patients: a single institution experience
-
COI: 1:CAS:528:DC%2BC2cXhsFelur%2FL, PID: 24521695
-
Solomon MT, Miranda N, Jorrín E, et al. Nimotuzumab in combination with radiotherapy in high grade glioma patients: a single institution experience. Cancer Biol Ther. 2014;15(5):504–9.
-
(2014)
Cancer Biol Ther.
, vol.15
, Issue.5
, pp. 504-509
-
-
Solomon, M.T.1
Miranda, N.2
Jorrín, E.3
-
23
-
-
84925483827
-
Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study
-
COI: 1:CAS:528:DC%2BC2cXitFOku7fM, PID: 25503302
-
Chheda MG, Wen PY, Hochberg FH, et al. Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol. 2015;121(3):627–34.
-
(2015)
J Neurooncol.
, vol.121
, Issue.3
, pp. 627-634
-
-
Chheda, M.G.1
Wen, P.Y.2
Hochberg, F.H.3
-
24
-
-
84927614039
-
A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease
-
PID: 25874001
-
Nygaard HB, Wagner AF, Bowen GS, et al. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):35.
-
(2015)
Alzheimers Res Ther.
, vol.7
, Issue.1
, pp. 35
-
-
Nygaard, H.B.1
Wagner, A.F.2
Bowen, G.S.3
-
25
-
-
84946709627
-
Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial
-
PID: 26414022
-
Coric V, Salloway S, van Dyck CH, et al. Targeting prodromal Alzheimer disease with avagacestat: a randomized clinical trial. JAMA Neurol. 2015;72(11):1324–33.
-
(2015)
JAMA Neurol.
, vol.72
, Issue.11
, pp. 1324-1333
-
-
Coric, V.1
Salloway, S.2
van Dyck, C.H.3
-
26
-
-
84991662187
-
-
Ryan ML, Falk DE, Fertig JB, et al. A phase 2, double-blind, placebo-controlled randomized trial assessing the efficacy of ABT-436, a novel V1b receptor antagonist, for alcohol dependence. Neuropsychopharmacology. 2016 Oct 19
-
Ryan ML, Falk DE, Fertig JB, et al. A phase 2, double-blind, placebo-controlled randomized trial assessing the efficacy of ABT-436, a novel V1b receptor antagonist, for alcohol dependence. Neuropsychopharmacology. 2016 Oct 19. doi:10.1038/npp.2016.214. (Epub ahead of print).
-
-
-
-
27
-
-
84898539374
-
Castellanos M; URICO-ICTUS Investigators. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial
-
COI: 1:CAS:528:DC%2BC2cXlsFygsbs%3D, PID: 24703208
-
Chamorro A, Amaro S. Castellanos M; URICO-ICTUS Investigators. Safety and efficacy of uric acid in patients with acute stroke (URICO-ICTUS): a randomised, double-blind phase 2b/3 trial. Lancet Neurol. 2014;13(5):453–60.
-
(2014)
Lancet Neurol.
, vol.13
, Issue.5
, pp. 453-460
-
-
Chamorro, A.1
Amaro, S.2
-
28
-
-
85051881934
-
-
® (amphotericin B) liposome for injection [product information]
-
® (amphotericin B) liposome for injection [product information]. https://www.ambisome.com/. Accessed 18 Nov 2016.
-
-
-
-
29
-
-
85011393515
-
-
Titan Pharmaceuticals
-
Titan Pharmaceuticals. http://www.titanpharm.com/pipeline/probuphine. Accessed 18 Nov 2016.
-
-
-
-
30
-
-
85051883339
-
-
Zinbryta™ (dacaluzumab), 150 mg subcutaneous injection [product information]
-
Zinbryta™ (dacaluzumab), 150 mg subcutaneous injection [product information]. https://www.zinbryta.com/. Accessed 18 Nov 2016.
-
-
-
-
31
-
-
85011325794
-
-
Fycompa™ (perampal), tablets, oral suspension [product information]
-
Fycompa™ (perampal), tablets, oral suspension [product information]. https://fycompa.com/. Accessed 18 Nov 2016.
-
-
-
-
32
-
-
85051875758
-
-
® (melphalan) [product information]. Accessed 18 Nov 2016.
-
® (melphalan) [product information]. http://www.evomela.com/. Accessed 18 Nov 2016.
-
-
-
-
33
-
-
85051882814
-
-
® (brivacetam) [product information].
-
® (brivacetam) [product information]. https://www.briviact.com/. Accessed 18 Nov 2016.
-
-
-
-
34
-
-
85051881635
-
-
® Xsail (sumatriptan nasal powder) 11 mg per nose piece [product information]. Accessed 18 Nov 2016.
-
® Xsail (sumatriptan nasal powder) 11 mg per nose piece [product information]. https://www.onzetra.com/. Accessed 18 Nov 2016.
-
-
-
-
35
-
-
85051878626
-
-
Zembrace™ Symtouch™ (sumatriptan injection) 3 mg [product information]. Accessed 18 Nov 2016
-
Zembrace™ Symtouch™ (sumatriptan injection) 3 mg [product information]. http://www.zembrace.com/. Accessed 18 Nov 2016.
-
-
-
-
36
-
-
85011325808
-
-
Adzenys XR-OD™ (amphetamine) extended-release orally disintegrating tablets [product information]. Accessed 18 Nov 2016
-
Adzenys XR-OD™ (amphetamine) extended-release orally disintegrating tablets [product information]. http://adzenysxrodt.com/. Accessed 18 Nov 2016.
-
-
-
-
37
-
-
85051882437
-
-
® (carbidopa and levodopa) extended-release capsules [product information]. Accessed 18 Nov 2016.
-
® (carbidopa and levodopa) extended-release capsules [product information]. https://rytary.com/. Accessed 18 Nov 2016.
-
-
-
-
38
-
-
85051879528
-
-
® carbidopa/levodopa enteral suspension 4.63 mg/20 mg per ml [product information]. Accessed 18 Nov 2016.
-
® carbidopa/levodopa enteral suspension 4.63 mg/20 mg per ml [product information]. https://www.duopa.com/. Accessed 18 Nov 2016.
-
-
-
-
39
-
-
85051873564
-
-
® methylphenidate HCl extended-release capsules [product information]. Accessed 18 Nov 2016.
-
® methylphenidate HCl extended-release capsules [product information]. http://www.aptensioxr.com/. Accessed 18 Nov 2016.
-
-
-
-
40
-
-
85011393520
-
-
Unitixin (dinuuximab) injection [product information]. Accessed 18 Nov 2016
-
Unitixin (dinuuximab) injection [product information]. https://www.unituxin.com/. Accessed 18 Nov 2016.
-
-
-
-
41
-
-
85051880986
-
-
® paliperidone palmitate extended-release injectable suspension [product information]. Accessed 18 Nov 2016
-
® paliperidone palmitate extended-release injectable suspension [product information]. https://www.invegatrinzahcp.com/. Accessed 18 Nov 2016.
-
-
-
-
42
-
-
85051881521
-
-
® brexpiprazole 2 mg tablets [product information]. Accessed 18 Nov 2016.
-
® brexpiprazole 2 mg tablets [product information]. https://www.rexulti.com/us/mdd. Accessed 18 Nov 2016.
-
-
-
-
43
-
-
85051879433
-
-
® (levetiracetam) tablets for oral suspension [product information]. https://www.spritam.com/. Accessed 18 Nov 2016.
-
-
-
-
44
-
-
85051878717
-
-
® (cariprazine) capsules [product information]. Accessed 18 Nov 2016.
-
® (cariprazine) capsules [product information]. http://www.vraylar.com/. Accessed 18 Nov 2016.
-
-
-
-
45
-
-
85051879794
-
-
® aripiprazole lauroxil extended-release injectable suspension [product information]. Accessed 18 Nov 2016
-
® aripiprazole lauroxil extended-release injectable suspension [product information]. https://www.aristada.com/. Accessed 18 Nov 2016.
-
-
-
-
46
-
-
85011377201
-
-
Belbuca™ (buprenorphine) buccal film [product information]. Accessed 18 Nov 2016
-
Belbuca™ (buprenorphine) buccal film [product information]. https://www.belbuca.com/patient/. Accessed 18 Nov 2016.
-
-
-
-
47
-
-
0028344380
-
Drug delivery to the brain utilizing blood–brain barrier transport systems
-
COI: 1:CAS:528:DyaK2cXisFeisLg%3D
-
Terasaki T, Tsuji A. Drug delivery to the brain utilizing blood–brain barrier transport systems. J Control Release. 1994;29:163–9.
-
(1994)
J Control Release
, vol.29
, pp. 163-169
-
-
Terasaki, T.1
Tsuji, A.2
-
48
-
-
84944164665
-
Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration
-
COI: 1:CAS:528:DC%2BC2MXhtVSitbzK, PID: 25976552
-
Kamalinia G, Khodagholi F, Shaerzadeh F, et al. Cationic albumin-conjugated chelating agent as a novel brain drug delivery system in neurodegeneration. Chem Biol Drug Des. 2015;86:1203–14.
-
(2015)
Chem Biol Drug Des.
, vol.86
, pp. 1203-1214
-
-
Kamalinia, G.1
Khodagholi, F.2
Shaerzadeh, F.3
-
49
-
-
33847148515
-
Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle
-
COI: 1:CAS:528:DC%2BD2sXitV2rsro%3D, PID: 17240471
-
Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release. 2007;118:38–53.
-
(2007)
J Control Release.
, vol.118
, pp. 38-53
-
-
Lu, W.1
Wan, J.2
She, Z.3
Jiang, X.4
-
50
-
-
81155128611
-
Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting
-
Agarwal A, Agrawal H, Tiwari S, et al. Cationic ligand appended nanoconstructs: a prospective strategy for brain targeting. Int J Pharm. 2011;12(421):189–201.
-
(2011)
Int J Pharm.
, vol.12
, Issue.421
, pp. 189-201
-
-
Agarwal, A.1
Agrawal, H.2
Tiwari, S.3
-
51
-
-
84862001921
-
In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice
-
COI: 1:CAS:528:DC%2BC38XmtFGht7o%3D, PID: 22536790
-
Stojanov K, Georgieva JV, Brinkhuis RP, et al. In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice. Mol Pharm. 2012;9:1620–7.
-
(2012)
Mol Pharm.
, vol.9
, pp. 1620-1627
-
-
Stojanov, K.1
Georgieva, J.V.2
Brinkhuis, R.P.3
-
52
-
-
38549180565
-
Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier
-
COI: 1:CAS:528:DC%2BD1cXhtVGjtrw%3D, PID: 18155137
-
Liu L, Guo K, Lu J, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29:1509–17.
-
(2008)
Biomaterials.
, vol.29
, pp. 1509-1517
-
-
Liu, L.1
Guo, K.2
Lu, J.3
-
53
-
-
58149185965
-
Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier
-
COI: 1:CAS:528:DC%2BD1cXht1ygtbbL, PID: 18412128
-
Liu L, Venkatraman SS, Yang YY, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood–brain barrier. Biopolymers. 2008;90:617–23.
-
(2008)
Biopolymers.
, vol.90
, pp. 617-623
-
-
Liu, L.1
Venkatraman, S.S.2
Yang, Y.Y.3
-
54
-
-
77952239864
-
Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery
-
COI: 1:CAS:528:DC%2BC3cXlt1SmsbY%3D, PID: 20298779
-
Chen H, Tang L, Qin Y, et al. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery. Eur J Pharm Sci. 2010;40:94–102.
-
(2010)
Eur J Pharm Sci.
, vol.40
, pp. 94-102
-
-
Chen, H.1
Tang, L.2
Qin, Y.3
-
55
-
-
80052024056
-
Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas
-
COI: 1:CAS:528:DC%2BC3MXhtVKltrfO, PID: 21782939
-
Chen H, Qin Y, Zhang Q, et al. Lactoferrin modified doxorubicin-loaded procationic liposomes for the treatment of gliomas. Eur J Pharm Sci. 2011;44:164–73.
-
(2011)
Eur J Pharm Sci.
, vol.44
, pp. 164-173
-
-
Chen, H.1
Qin, Y.2
Zhang, Q.3
-
56
-
-
84957552788
-
Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors
-
COI: 1:CAS:528:DC%2BC28Xit1Srsbg%3D, PID: 26826308
-
Byeon HJ, le Thao Q, Lee S, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release. 2016;225:301–13.
-
(2016)
J Control Release.
, vol.225
, pp. 301-313
-
-
Byeon, H.J.1
le Thao, Q.2
Lee, S.3
-
57
-
-
0033980182
-
P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs
-
COI: 1:CAS:528:DC%2BD38XovVyksQ%3D%3D, PID: 10706193
-
Fromm MF. P-glycoprotein: a defense mechanism limiting oral bioavailability and CNS accumulation of drugs. Int J Clin Pharmacol Ther. 2000;38:69–74.
-
(2000)
Int J Clin Pharmacol Ther.
, vol.38
, pp. 69-74
-
-
Fromm, M.F.1
-
58
-
-
84940766932
-
Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma
-
PID: 25972455
-
Becker CM, Oberoi RK, McFarren SJ, et al. Decreased affinity for efflux transporters increases brain penetrance and molecular targeting of a PI3K/mTOR inhibitor in a mouse model of glioblastoma. Neuro Oncol. 2015;17:1210–9.
-
(2015)
Neuro Oncol.
, vol.17
, pp. 1210-1219
-
-
Becker, C.M.1
Oberoi, R.K.2
McFarren, S.J.3
-
59
-
-
84866844026
-
Targeting blood–brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain
-
COI: 1:CAS:528:DC%2BC38XhsFCrs7fJ, PID: 22949658
-
Cannon RE, Peart JC, Hawkins BT, et al. Targeting blood–brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci USA. 2012;109:15930–5.
-
(2012)
Proc Natl Acad Sci USA.
, vol.109
, pp. 15930-15935
-
-
Cannon, R.E.1
Peart, J.C.2
Hawkins, B.T.3
-
60
-
-
84859974633
-
Brain distribution of cediranib is limited by active efflux at the blood–brain barrier
-
COI: 1:CAS:528:DC%2BC38Xmt1KntLo%3D, PID: 22323823
-
Wang T, Agarwal S, Elmquist WF. Brain distribution of cediranib is limited by active efflux at the blood–brain barrier. J Pharmacol Exp Ther. 2012;341:386–95.
-
(2012)
J Pharmacol Exp Ther.
, vol.341
, pp. 386-395
-
-
Wang, T.1
Agarwal, S.2
Elmquist, W.F.3
-
61
-
-
78650785470
-
The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain
-
COI: 1:CAS:528:DC%2BC3MXls1eqtg%3D%3D, PID: 20952483
-
Agarwal S, Sane R, Ohlfest JR, Elmquist WF. The role of the breast cancer resistance protein (ABCG2) in the distribution of sorafenib to the brain. J Pharmacol Exp Ther. 2011;336:223–33.
-
(2011)
J Pharmacol Exp Ther.
, vol.336
, pp. 223-233
-
-
Agarwal, S.1
Sane, R.2
Ohlfest, J.R.3
Elmquist, W.F.4
-
62
-
-
0032883658
-
Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers
-
COI: 1:CAS:528:DyaK1MXmtVKktLc%3D, PID: 10496651
-
Batrakova EV, Li S, Miller DW, Kabanov AV. Pluronic P85 increases permeability of a broad spectrum of drugs in polarized BBMEC and Caco-2 cell monolayers. Pharm Res. 1999;16:1366–72.
-
(1999)
Pharm Res.
, vol.16
, pp. 1366-1372
-
-
Batrakova, E.V.1
Li, S.2
Miller, D.W.3
Kabanov, A.V.4
-
63
-
-
17744382615
-
Effect of pluronic P85 on ATPase activity of drug efflux transporters
-
COI: 1:CAS:528:DC%2BD2MXjslyjsw%3D%3D, PID: 15648254
-
Batrakova EV, Li S, Li Y, et al. Effect of pluronic P85 on ATPase activity of drug efflux transporters. Pharm Res. 2004;21:2226–33.
-
(2004)
Pharm Res.
, vol.21
, pp. 2226-2233
-
-
Batrakova, E.V.1
Li, S.2
Li, Y.3
-
64
-
-
0031665981
-
Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells
-
COI: 1:CAS:528:DyaK1cXms1GhtbY%3D, PID: 9794493
-
Batrakova EV, Han HY, Miller DW, Kabanov AV. Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res. 1998;15:1525–32.
-
(1998)
Pharm Res.
, vol.15
, pp. 1525-1532
-
-
Batrakova, E.V.1
Han, H.Y.2
Miller, D.W.3
Kabanov, A.V.4
-
65
-
-
0037457792
-
Pluronic block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier
-
COI: 1:CAS:528:DC%2BD3sXivVWmsg%3D%3D, PID: 12535579
-
Kabanov AV, Batrakova EV, Miller DW. Pluronic block copolymers as modulators of drug efflux transporter activity in the blood–brain barrier. Adv Drug Deliv Rev. 2003;55:151–64.
-
(2003)
Adv Drug Deliv Rev.
, vol.55
, pp. 151-164
-
-
Kabanov, A.V.1
Batrakova, E.V.2
Miller, D.W.3
-
66
-
-
54249111320
-
Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant
-
COI: 1:CAS:528:DC%2BD1cXht1yrsL3K, PID: 18722489
-
Sharma AK, Zhang L, Li S, et al. Prevention of MDR development in leukemia cells by micelle-forming polymeric surfactant. J Control Release. 2008;131:220–7.
-
(2008)
J Control Release.
, vol.131
, pp. 220-227
-
-
Sharma, A.K.1
Zhang, L.2
Li, S.3
-
67
-
-
0016425567
-
Protein intake and treatment of Parkinson’s disease with levodopa
-
COI: 1:STN:280:DyaE2M%2FksFanuw%3D%3D, PID: 1109209
-
Mena I, Cotzias GC. Protein intake and treatment of Parkinson’s disease with levodopa. N Engl J Med. 1975;292:181–4.
-
(1975)
N Engl J Med.
, vol.292
, pp. 181-184
-
-
Mena, I.1
Cotzias, G.C.2
-
68
-
-
0028127716
-
The human brain glut1 glucose transporter: Ultrastructural localization to the blood–brain barrier endothelia
-
COI: 1:CAS:528:DyaK2cXisVWktrc%3D, PID: 8263045
-
Cornford EM, Hyman S, Swartz BE. The human brain glut1 glucose transporter: Ultrastructural localization to the blood–brain barrier endothelia. J Cereb Blood Flow Metab. 1994;14:106–12.
-
(1994)
J Cereb Blood Flow Metab.
, vol.14
, pp. 106-112
-
-
Cornford, E.M.1
Hyman, S.2
Swartz, B.E.3
-
69
-
-
0032897670
-
Synthesis, stability, and pharmacological evaluation of nipecotic acid prodrugs
-
COI: 1:CAS:528:DyaK1MXhvVeisLc%3D, PID: 10229650
-
Bonina FP, Arenare L, Palagiano F, et al. Synthesis, stability, and pharmacological evaluation of nipecotic acid prodrugs. J Pharm Sci. 1999;88:561–7.
-
(1999)
J Pharm Sci.
, vol.88
, pp. 561-567
-
-
Bonina, F.P.1
Arenare, L.2
Palagiano, F.3
-
70
-
-
0034691811
-
Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs
-
COI: 1:CAS:528:DC%2BD3cXltVChsLY%3D, PID: 10915929
-
Bonina FP, Arenare L, Ippolito R, et al. Synthesis, pharmacokinetics and anticonvulsant activity of 7-chlorokynurenic acid prodrugs. Int J Pharm. 2000;202:79–88.
-
(2000)
Int J Pharm.
, vol.202
, pp. 79-88
-
-
Bonina, F.P.1
Arenare, L.2
Ippolito, R.3
-
71
-
-
0033526179
-
Carrier-mediated or specialized transport of drugs across the blood–brain barrier
-
COI: 1:CAS:528:DyaK1MXhvVCnsr0%3D, PID: 10837720
-
Tsuji A, Tamai I. Carrier-mediated or specialized transport of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 1999;36:277–90.
-
(1999)
Adv Drug Deliv Rev.
, vol.36
, pp. 277-290
-
-
Tsuji, A.1
Tamai, I.2
-
72
-
-
84901342070
-
Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain
-
PID: 24847943
-
Sarkar G, Curran GL, Sarkaria JN, et al. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain. PLoS One. 2014;9:e97655.
-
(2014)
PLoS One.
, vol.9
-
-
Sarkar, G.1
Curran, G.L.2
Sarkaria, J.N.3
-
73
-
-
84954171194
-
Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes
-
COI: 1:CAS:528:DC%2BC2MXitVeitLzL, PID: 26658072
-
Johnsen KB, Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release. 2016;222:32–46.
-
(2016)
J Control Release.
, vol.222
, pp. 32-46
-
-
Johnsen, K.B.1
Moos, T.2
-
74
-
-
0023547088
-
Receptor-mediated transcytosis of transferrin across the blood–brain barrier
-
COI: 1:CAS:528:DyaL1cXjsFaktQ%3D%3D, PID: 3694713
-
Fishman JB, Rubin JB, Handrahan JV, et al. Receptor-mediated transcytosis of transferrin across the blood–brain barrier. J Neurosci Res. 1987;18:299–304.
-
(1987)
J Neurosci Res.
, vol.18
, pp. 299-304
-
-
Fishman, J.B.1
Rubin, J.B.2
Handrahan, J.V.3
-
75
-
-
0026055852
-
Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells
-
COI: 1:CAS:528:DyaK3MXmt12ju7g%3D, PID: 1939342
-
Raub TJ, Newton CR. Recycling kinetics and transcytosis of transferrin in primary cultures of bovine brain microvessel endothelial cells. J Cell Physiol. 1991;149:141–51.
-
(1991)
J Cell Physiol.
, vol.149
, pp. 141-151
-
-
Raub, T.J.1
Newton, C.R.2
-
76
-
-
0029867619
-
Receptor-mediated transcytosis of transferrin through blood–brain barrier endothelial cells
-
COI: 1:CAS:528:DyaK28Xis1Klur0%3D, PID: 8967351
-
Descamps L, Dehouck MP, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferrin through blood–brain barrier endothelial cells. Am J Physiol. 1996;270(4 Pt 2):H1149–58.
-
(1996)
Am J Physiol.
, vol.270
, Issue.4
, pp. H1149-H1158
-
-
Descamps, L.1
Dehouck, M.P.2
Torpier, G.3
Cecchelli, R.4
-
77
-
-
0025828176
-
Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier
-
COI: 1:CAS:528:DyaK3MXksFOjtrY%3D, PID: 2052557
-
Friden PM, Walus LR, Musso GF, et al. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood–brain barrier. Proc Natl Acad Sci USA. 1991;88:4771–5.
-
(1991)
Proc Natl Acad Sci USA.
, vol.88
, pp. 4771-4775
-
-
Friden, P.M.1
Walus, L.R.2
Musso, G.F.3
-
78
-
-
0025836586
-
Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo
-
COI: 1:CAS:528:DyaK3MXms1egt7w%3D, PID: 1920136
-
Pardridge WM, Buciak JL, Friden PM. Selective transport of an anti-transferrin receptor antibody through the blood–brain barrier in vivo. J Pharmacol Exp Ther. 1991;259:66–70.
-
(1991)
J Pharmacol Exp Ther.
, vol.259
, pp. 66-70
-
-
Pardridge, W.M.1
Buciak, J.L.2
Friden, P.M.3
-
79
-
-
0034794883
-
Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat
-
COI: 1:CAS:528:DC%2BD3MXnsV2isb4%3D, PID: 11595764
-
Moos T, Morgan EH. Restricted transport of anti-transferrin receptor antibody (OX26) through the blood–brain barrier in the rat. J Neurochem. 2001;79:119–29.
-
(2001)
J Neurochem.
, vol.79
, pp. 119-129
-
-
Moos, T.1
Morgan, E.H.2
-
80
-
-
8344282653
-
Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion
-
COI: 1:CAS:528:DC%2BD2cXptl2gtrg%3D, PID: 15545912
-
Gosk S, Vermehren C, Storm G, Moos T. Targeting anti-transferrin receptor antibody (OX26) and OX26-conjugated liposomes to brain capillary endothelial cells using in situ perfusion. J Cereb Blood Flow Metab. 2004;24:1193–204.
-
(2004)
J Cereb Blood Flow Metab.
, vol.24
, pp. 1193-1204
-
-
Gosk, S.1
Vermehren, C.2
Storm, G.3
Moos, T.4
-
81
-
-
84946408279
-
Trafficking of gold nanoparticles coated with the 8D3 anti-transferrin receptor antibody at the mouse blood–brain barrier
-
PID: 26440359
-
Cabezón I, Manich G, Martín-Venegas R, et al. Trafficking of gold nanoparticles coated with the 8D3 anti-transferrin receptor antibody at the mouse blood–brain barrier. Mol Pharm. 2015;12:4137–45.
-
(2015)
Mol Pharm.
, vol.12
, pp. 4137-4145
-
-
Cabezón, I.1
Manich, G.2
Martín-Venegas, R.3
-
82
-
-
79957439772
-
-
Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.
-
Yu YJ, Zhang Y, Kenrick M, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.
-
-
-
-
83
-
-
84921443725
-
Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody
-
COI: 1:CAS:528:DC%2BC2MXhsFWksro%3D, PID: 25138991
-
Pardridge WM. Blood–brain barrier drug delivery of IgG fusion proteins with a transferrin receptor monoclonal antibody. Expert Opin Drug Deliv. 2015;12:207–22.
-
(2015)
Expert Opin Drug Deliv.
, vol.12
, pp. 207-222
-
-
Pardridge, W.M.1
-
84
-
-
84891804917
-
Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle
-
COI: 1:CAS:528:DC%2BC2cXlt1CmtQ%3D%3D, PID: 24411731
-
Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014;81:49–60.
-
(2014)
Neuron.
, vol.81
, pp. 49-60
-
-
Niewoehner, J.1
Bohrmann, B.2
Collin, L.3
-
85
-
-
84943410720
-
Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core
-
COI: 1:CAS:528:DC%2BC2MXhsFamsL%2FL, PID: 26392563
-
Clark AJ, Davis ME. Increased brain uptake of targeted nanoparticles by adding an acid-cleavable linkage between transferrin and the nanoparticle core. Proc Natl Acad Sci USA. 2015;112:12486–91.
-
(2015)
Proc Natl Acad Sci USA.
, vol.112
, pp. 12486-12491
-
-
Clark, A.J.1
Davis, M.E.2
-
86
-
-
84990173647
-
Use of PEGylated immunoliposomes to deliver dopamine across the blood–brain barrier in a rat model of Parkinson’s disease
-
COI: 1:CAS:528:DC%2BC28XhsFWhsb%2FK, PID: 27350533
-
Kang YS, Jung HJ, Oh JS, Song DY. Use of PEGylated immunoliposomes to deliver dopamine across the blood–brain barrier in a rat model of Parkinson’s disease. CNS Neurosci Ther. 2016;22(10):817–23.
-
(2016)
CNS Neurosci Ther.
, vol.22
, Issue.10
, pp. 817-823
-
-
Kang, Y.S.1
Jung, H.J.2
Oh, J.S.3
Song, D.Y.4
-
87
-
-
84978519667
-
Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles
-
COI: 1:CAS:528:DC%2BC28XhtFKmurfN, PID: 27374198
-
Wei L, Guo XY, Yang T, et al. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510:394–405.
-
(2016)
Int J Pharm.
, vol.510
, pp. 394-405
-
-
Wei, L.1
Guo, X.Y.2
Yang, T.3
-
88
-
-
84893229394
-
A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery
-
COI: 1:CAS:528:DC%2BC2cXitFKitQ%3D%3D, PID: 24387132
-
Youn P, Chen Y, Furgeson DY. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm. 2014;11:486–95.
-
(2014)
Mol Pharm.
, vol.11
, pp. 486-495
-
-
Youn, P.1
Chen, Y.2
Furgeson, D.Y.3
-
89
-
-
84980009866
-
Combining stimulus-triggered release and active targeting strategies improves cytotoxicity of cytochrome c nanoparticles in tumor cells
-
COI: 1:CAS:528:DC%2BC28XpsVCmu7Y%3D, PID: 27283751
-
Morales-Cruz M, Cruz-Montañez A, Figueroa CM, et al. Combining stimulus-triggered release and active targeting strategies improves cytotoxicity of cytochrome c nanoparticles in tumor cells. Mol Pharm. 2016;13:2844–54.
-
(2016)
Mol Pharm.
, vol.13
, pp. 2844-2854
-
-
Morales-Cruz, M.1
Cruz-Montañez, A.2
Figueroa, C.M.3
-
90
-
-
84900418399
-
Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting
-
COI: 1:CAS:528:DC%2BC2cXkvVCrsro%3D, PID: 24716601
-
Dong S, Cho HJ, Lee YW, Roman M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules. 2014;15:1560–7.
-
(2014)
Biomacromolecules.
, vol.15
, pp. 1560-1567
-
-
Dong, S.1
Cho, H.J.2
Lee, Y.W.3
Roman, M.4
-
91
-
-
0030837448
-
Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas
-
COI: 1:CAS:528:DyaK2sXktlSms7k%3D, PID: 9205092
-
Yamamoto M, Ikeda K, Ohshima K, et al. Increased expression of low density lipoprotein receptor-related protein/alpha2-macroglobulin receptor in human malignant astrocytomas. Cancer Res. 1997;57:2799–805.
-
(1997)
Cancer Res.
, vol.57
, pp. 2799-2805
-
-
Yamamoto, M.1
Ikeda, K.2
Ohshima, K.3
-
92
-
-
84880161805
-
Receptor-mediated endocytosis and brain delivery of therapeutic biologics
-
PID: 23840214
-
Xiao G, Gan LS. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol. 2013;2013:703545.
-
(2013)
Int J Cell Biol.
, vol.2013
, pp. 703545
-
-
Xiao, G.1
Gan, L.S.2
-
93
-
-
0035092052
-
The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation
-
COI: 1:CAS:528:DC%2BD3MXit1CitLg%3D, PID: 11251301
-
Peiser L, Gordon S. The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes Infect. 2001;3:149–59.
-
(2001)
Microbes Infect.
, vol.3
, pp. 149-159
-
-
Peiser, L.1
Gordon, S.2
-
94
-
-
0038639097
-
Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol
-
COI: 1:CAS:528:DC%2BD3sXjsVeltL0%3D, PID: 12736081
-
Srivastava RA. Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol. J Neurol Sci. 2003;210:11–8.
-
(2003)
J Neurol Sci.
, vol.210
, pp. 11-18
-
-
Srivastava, R.A.1
-
96
-
-
84899483274
-
Peptide-based delivery of oligonucleotides across blood–brain barrier model
-
COI: 1:CAS:528:DC%2BC3sXhslGjt7nL
-
Srimanee A, Regberg J, Hällbrink M, et al. Peptide-based delivery of oligonucleotides across blood–brain barrier model. Int J Pept Res Ther. 2014;20:169–78.
-
(2014)
Int J Pept Res Ther.
, vol.20
, pp. 169-178
-
-
Srimanee, A.1
Regberg, J.2
Hällbrink, M.3
-
97
-
-
84955264852
-
Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood–brain barrier model
-
COI: 1:CAS:528:DC%2BC28XhtlWjsb0%3D, PID: 26773601
-
Srimanee A, Regberg J, Hällbrink M, et al. Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood–brain barrier model. Int J Pharm. 2016;500:128–35.
-
(2016)
Int J Pharm.
, vol.500
, pp. 128-135
-
-
Srimanee, A.1
Regberg, J.2
Hällbrink, M.3
-
98
-
-
0038826031
-
Current developments in cancer vaccines and cellular immunotherapy
-
COI: 1:CAS:528:DC%2BD2cXpsVKjsL0%3D, PID: 12805342
-
Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 2003;21:2415–32.
-
(2003)
J Clin Oncol.
, vol.21
, pp. 2415-2432
-
-
Ribas, A.1
Butterfield, L.H.2
Glaspy, J.A.3
Economou, J.S.4
-
99
-
-
66449122783
-
Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model
-
COI: 1:CAS:528:DC%2BD1MXjtVyjtrc%3D, PID: 19276162
-
Madhankumar AB, Slagle-Webb B, Wang X, et al. Efficacy of interleukin-13 receptor-targeted liposomal doxorubicin in the intracranial brain tumor model. Mol Cancer Ther. 2009;8:648–54.
-
(2009)
Mol Cancer Ther.
, vol.8
, pp. 648-654
-
-
Madhankumar, A.B.1
Slagle-Webb, B.2
Wang, X.3
-
100
-
-
84899942122
-
Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α 2-mediated endocytosis
-
COI: 1:CAS:528:DC%2BC2cXmtFWitb0%3D, PID: 24743033
-
Wang B, Lv L, Wang Z, et al. Nanoparticles functionalized with Pep-1 as potential glioma targeting delivery system via interleukin 13 receptor α 2-mediated endocytosis. Biomaterials. 2014;35:5897–907.
-
(2014)
Biomaterials.
, vol.35
, pp. 5897-5907
-
-
Wang, B.1
Lv, L.2
Wang, Z.3
-
101
-
-
84947279586
-
Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel
-
COI: 1:CAS:528:DC%2BC2MXhvVequrfF, PID: 26567528
-
Wang B, Lv L, Wang Z, et al. Improved anti-glioblastoma efficacy by IL-13Rα2 mediated copolymer nanoparticles loaded with paclitaxel. Sci Rep. 2015;5:16589.
-
(2015)
Sci Rep.
, vol.5
, pp. 16589
-
-
Wang, B.1
Lv, L.2
Wang, Z.3
-
102
-
-
84899443991
-
Overcoming the blood–brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist
-
COI: 1:CAS:528:DC%2BC2cXltFaqurs%3D, PID: 24673594
-
Gao X, Qian J, Zheng S, et al. Overcoming the blood–brain barrier for delivering drugs into the brain by using adenosine receptor nanoagonist. ACS Nano. 2014;8:3678–89.
-
(2014)
ACS Nano.
, vol.8
, pp. 3678-3689
-
-
Gao, X.1
Qian, J.2
Zheng, S.3
-
103
-
-
84954229751
-
Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy
-
COI: 1:CAS:528:DC%2BC28XntF2itLs%3D, PID: 26877777
-
Liu Y, Mei L, Xu C, et al. Dual receptor recognizing cell penetrating peptide for selective targeting, efficient intratumoral diffusion and synthesized anti-glioma therapy. Theranostics. 2016;6:177–91.
-
(2016)
Theranostics.
, vol.6
, pp. 177-191
-
-
Liu, Y.1
Mei, L.2
Xu, C.3
-
104
-
-
0021841594
-
Human blood–brain barrier insulin receptor
-
COI: 1:CAS:528:DyaL2MXktFOiu70%3D, PID: 2859355
-
Pardridge WM, Eisenberg J, Yang J. Human blood–brain barrier insulin receptor. J Neurochem. 1985;44:1771–8.
-
(1985)
J Neurochem.
, vol.44
, pp. 1771-1778
-
-
Pardridge, W.M.1
Eisenberg, J.2
Yang, J.3
-
105
-
-
18744438248
-
-
Xie L, Helmerhorst E, Taddei K, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22:RC221.
-
Xie L, Helmerhorst E, Taddei K, et al. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22:RC221.
-
-
-
-
106
-
-
84908371508
-
Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells
-
COI: 1:CAS:528:DC%2BC2cXhtFSru7vN, PID: 24929212
-
Dieu LH, Wu D, Palivan CG, et al. Polymersomes conjugated to 83-14 monoclonal antibodies: in vitro targeting of brain capillary endothelial cells. Eur J Pharm Biopharm. 2014;88:316–24.
-
(2014)
Eur J Pharm Biopharm.
, vol.88
, pp. 316-324
-
-
Dieu, L.H.1
Wu, D.2
Palivan, C.G.3
-
107
-
-
84966280633
-
Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1
-
COI: 1:CAS:528:DC%2BC28XotlCisbg%3D, PID: 26839377
-
Webster CI, Caram-Salas N, Haqqani AS, et al. Brain penetration, target engagement, and disposition of the blood–brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1. FASEB J. 2016;30:1927–40.
-
(2016)
FASEB J.
, vol.30
, pp. 1927-1940
-
-
Webster, C.I.1
Caram-Salas, N.2
Haqqani, A.S.3
-
108
-
-
56049093057
-
Cell-penetrating and cell-targeting peptides in drug delivery
-
PID: 18440319
-
Vivès E, Schmidt J, Pèlegrin A. Cell-penetrating and cell-targeting peptides in drug delivery. Biochim Biophys Acta. 2008;1786:126–38.
-
(2008)
Biochim Biophys Acta.
, vol.1786
, pp. 126-138
-
-
Vivès, E.1
Schmidt, J.2
Pèlegrin, A.3
-
109
-
-
84894433216
-
Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A
-
PID: 24573272
-
Böckenhoff A, Cramer S, Wölte P, et al. Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A. J Neurosci. 2014;34:3122–9.
-
(2014)
J Neurosci.
, vol.34
, pp. 3122-3129
-
-
Böckenhoff, A.1
Cramer, S.2
Wölte, P.3
-
110
-
-
84921312620
-
ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice
-
COI: 1:CAS:528:DC%2BC2MXnslWgtQ%3D%3D, PID: 25492620
-
Regina A, Demeule M, Tripathy S, et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther. 2015;14:129–40.
-
(2015)
Mol Cancer Ther.
, vol.14
, pp. 129-140
-
-
Regina, A.1
Demeule, M.2
Tripathy, S.3
-
111
-
-
84940826772
-
Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC2MXhtF2isbnO, PID: 26143603
-
Yin T, Yang L, Liu Y, et al. Sialic acid (SA)-modified selenium nanoparticles coated with a high blood–brain barrier permeability peptide-B6 peptide for potential use in Alzheimer’s disease. Acta Biomater. 2015;25:172–83.
-
(2015)
Acta Biomater.
, vol.25
, pp. 172-183
-
-
Yin, T.1
Yang, L.2
Liu, Y.3
-
112
-
-
6944234040
-
Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia
-
COI: 1:CAS:528:DC%2BD2cXkslWit7g%3D, PID: 15084516
-
Simard AR, Rivest S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. Faseb J. 2004;18:998–1000.
-
(2004)
Faseb J.
, vol.18
, pp. 998-1000
-
-
Simard, A.R.1
Rivest, S.2
-
113
-
-
16344393716
-
Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia
-
COI: 1:CAS:528:DC%2BD2MXjtFaksLs%3D, PID: 15671154
-
Bechmann IL, Goldmann J, Kovac AD, et al. Circulating monocytic cells infiltrate layers of anterograde axonal degeneration where they transform into microglia. Faseb J. 2005;19:647–9.
-
(2005)
Faseb J.
, vol.19
, pp. 647-649
-
-
Bechmann, I.L.1
Goldmann, J.2
Kovac, A.D.3
-
114
-
-
0035658031
-
Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment
-
COI: 1:CAS:528:DC%2BD3MXovFKmt7c%3D, PID: 11726978
-
Priller J, Flügel A, Wehner T, et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med. 2001;7:1356–61.
-
(2001)
Nat Med.
, vol.7
, pp. 1356-1361
-
-
Priller, J.1
Flügel, A.2
Wehner, T.3
-
115
-
-
84977557547
-
Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue: evaluations on monocyte-based delivery system for the central nervous system
-
PID: 27115998
-
Tong HI, Kang W, Davy PM, et al. Monocyte trafficking, engraftment, and delivery of nanoparticles and an exogenous gene into the acutely inflamed brain tissue: evaluations on monocyte-based delivery system for the central nervous system. PLoS One. 2016;11:e0154022.
-
(2016)
PLoS One.
, vol.11
-
-
Tong, H.I.1
Kang, W.2
Davy, P.M.3
-
117
-
-
84946498967
-
Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats
-
COI: 1:CAS:528:DC%2BC2MXhtFOjtrrO, PID: 26058696
-
Chien CT, Jou MJ, Cheng TY, et al. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats. J Cereb Blood Flow Metab. 2015;35:1790–803.
-
(2015)
J Cereb Blood Flow Metab.
, vol.35
, pp. 1790-1803
-
-
Chien, C.T.1
Jou, M.J.2
Cheng, T.Y.3
-
118
-
-
84905386828
-
New celecoxib multiparticulate systems to improve glioblastoma treatment
-
COI: 1:CAS:528:DC%2BC2cXht1KgsbzF, PID: 25066075
-
Vera M, Barcia E, Negro S, et al. New celecoxib multiparticulate systems to improve glioblastoma treatment. Int J Pharm. 2014;473:518–27.
-
(2014)
Int J Pharm.
, vol.473
, pp. 518-527
-
-
Vera, M.1
Barcia, E.2
Negro, S.3
-
119
-
-
84930645718
-
The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model
-
PID: 26044202
-
Shivinsky A, Bronshtein T, Haber T, Machluf M. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model. Biomed Microdevices. 2015;17:69.
-
(2015)
Biomed Microdevices.
, vol.17
, pp. 69
-
-
Shivinsky, A.1
Bronshtein, T.2
Haber, T.3
Machluf, M.4
-
120
-
-
84955172304
-
Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy
-
COI: 1:CAS:528:DC%2BC2MXhvVOgurnP, PID: 26238392
-
Floyd JA, Galperin A, Ratner BD. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy. J Biomed Mater Res A. 2016;104:544–52.
-
(2016)
J Biomed Mater Res A.
, vol.104
, pp. 544-552
-
-
Floyd, J.A.1
Galperin, A.2
Ratner, B.D.3
-
121
-
-
0035816179
-
Biodegradable polymer implants to treat brain tumors
-
COI: 1:CAS:528:DC%2BD3MXlslansr0%3D, PID: 11489483
-
Brem H, Gabikian P. Biodegradable polymer implants to treat brain tumors. J Control Release. 2001;74:63–7.
-
(2001)
J Control Release
, vol.74
, pp. 63-67
-
-
Brem, H.1
Gabikian, P.2
-
122
-
-
0034013024
-
Bioavailability of ziconotide in brain: influx from blood, stability and diffusion
-
COI: 1:CAS:528:DC%2BD3cXjsVGns7c%3D, PID: 10822104
-
Newcomb R, Abbruscato TJ, Singh T, et al. Bioavailability of ziconotide in brain: influx from blood, stability and diffusion. Peptides. 2000;21:491–501.
-
(2000)
Peptides
, vol.21
, pp. 491-501
-
-
Newcomb, R.1
Abbruscato, T.J.2
Singh, T.3
-
123
-
-
79951990891
-
Brain tumor and Gliadel wafer treatment
-
COI: 1:STN:280:DC%2BC3M3gsVWqtA%3D%3D, PID: 21330749
-
Panigrahi M, Das PK, Parikh PM. Brain tumor and Gliadel wafer treatment. Indian J Cancer. 2011;48:11–7.
-
(2011)
Indian J Cancer.
, vol.48
, pp. 11-17
-
-
Panigrahi, M.1
Das, P.K.2
Parikh, P.M.3
-
124
-
-
85011331697
-
-
Gliadel. Accessed 18 Nov 2016
-
Gliadel. http://gliadel.com/patient/how-gliadel-is-used.php. Accessed 18 Nov 2016.
-
-
-
-
125
-
-
85011336936
-
Nano carriers for drug transport across the blood brain barrier
-
COI: 1:CAS:528:DC%2BC28XhvVyrsLbI
-
Li X, Tsibouklis J, Weng T, et al. Nano carriers for drug transport across the blood brain barrier. J Drug Target. 2016;19:1–12.
-
(2016)
J Drug Target.
, vol.19
, pp. 1-12
-
-
Li, X.1
Tsibouklis, J.2
Weng, T.3
-
127
-
-
0024300189
-
Liposome targeting to mouse brain: mannose as a recognition marker
-
COI: 1:CAS:528:DyaL1cXltFGqt7w%3D, PID: 3390170
-
Umezawa F, Eto Y. Liposome targeting to mouse brain: mannose as a recognition marker. Biochem Biophys Res Commun. 1988;153:1038–44.
-
(1988)
Biochem Biophys Res Commun
, vol.153
, pp. 1038-1044
-
-
Umezawa, F.1
Eto, Y.2
-
128
-
-
4444300812
-
Therapeutic efficacy of targeting chemotherapy using local hyperthermia and thermosensitive liposome: evaluation of drug distribution in a rat glioma model
-
COI: 1:CAS:528:DC%2BD2cXmsV2htrg%3D
-
Aoki H, Kakinuma K, Morita K, et al. Therapeutic efficacy of targeting chemotherapy using local hyperthermia and thermosensitive liposome: evaluation of drug distribution in a rat glioma model. Int J Hyperther. 2004;20:595–605.
-
(2004)
Int J Hyperther
, vol.20
, pp. 595-605
-
-
Aoki, H.1
Kakinuma, K.2
Morita, K.3
-
129
-
-
11244264537
-
PEGylated immunoliposomes directed against brain astrocytes
-
COI: 1:CAS:528:DC%2BD2cXhtFChsLrE, PID: 15801714
-
Chekhonin VP, Zhirkov YA, Gurina OI, et al. PEGylated immunoliposomes directed against brain astrocytes. Drug Deliv. 2005;12:1–6.
-
(2005)
Drug Deliv
, vol.12
, pp. 1-6
-
-
Chekhonin, V.P.1
Zhirkov, Y.A.2
Gurina, O.I.3
-
130
-
-
12344251148
-
Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy
-
PID: 15717064
-
Pardridge WM. Tyrosine hydroxylase replacement in experimental Parkinson’s disease with transvascular gene therapy. NeuroRx. 2005;2:129–38.
-
(2005)
NeuroRx
, vol.2
, pp. 129-138
-
-
Pardridge, W.M.1
-
131
-
-
84974666248
-
Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma
-
COI: 1:CAS:528:DC%2BC28XnvFSjsrs%3D, PID: 27033513
-
Chen X, Yuan M, Zhang Q, et al. Synergistic combination of doxorubicin and paclitaxel delivered by blood brain barrier and glioma cells dual targeting liposomes for chemotherapy of brain glioma. Curr Pharm Biotechnol. 2016;17:636–50.
-
(2016)
Curr Pharm Biotechnol.
, vol.17
, pp. 636-650
-
-
Chen, X.1
Yuan, M.2
Zhang, Q.3
-
132
-
-
84954488592
-
Glycosylated sertraline-loaded liposomes for brain targeting: QbD study of formulation variabilities and brain transport
-
COI: 1:CAS:528:DC%2BC28XhtlShsLc%3D, PID: 26786680
-
Harbi I, Aljaeid B, El-Say KM, Zidan AS. Glycosylated sertraline-loaded liposomes for brain targeting: QbD study of formulation variabilities and brain transport. AAPS PharmSciTech. 2016;17(6):1404–20.
-
(2016)
AAPS PharmSciTech.
, vol.17
, Issue.6
, pp. 1404-1420
-
-
Harbi, I.1
Aljaeid, B.2
El-Say, K.M.3
Zidan, A.S.4
-
133
-
-
84943236321
-
Liposome-based glioma targeted drug delivery enabled by stable peptide ligands
-
COI: 1:CAS:528:DC%2BC2MXhs1SktbfF, PID: 26428462
-
Wei X, Gao J, Zhan C, et al. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands. J Control Release. 2015;218:13–21.
-
(2015)
J Control Release.
, vol.218
, pp. 13-21
-
-
Wei, X.1
Gao, J.2
Zhan, C.3
-
134
-
-
84931827816
-
PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting
-
COI: 1:CAS:528:DC%2BC2MXhtVSqsr7I, PID: 26080696
-
Monsalve Y, Tosi G, Ruozi B, et al. PEG-g-chitosan nanoparticles functionalized with the monoclonal antibody OX26 for brain drug targeting. Nanomedicine (Lond). 2015;10:1735–50.
-
(2015)
Nanomedicine (Lond).
, vol.10
, pp. 1735-1750
-
-
Monsalve, Y.1
Tosi, G.2
Ruozi, B.3
-
135
-
-
84937787787
-
Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery
-
COI: 1:CAS:528:DC%2BC2MXhtFKjt7zI, PID: 26168166
-
Chen B, He XY, Yi XQ, et al. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl Mater Interfaces. 2015;7:15148–53.
-
(2015)
ACS Appl Mater Interfaces.
, vol.7
, pp. 15148-15153
-
-
Chen, B.1
He, X.Y.2
Yi, X.Q.3
-
136
-
-
84931273562
-
PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier
-
COI: 1:CAS:528:DC%2BC2MXhtVWjsb3E, PID: 26057857
-
Fornaguera C, Dols-Perez A, Calderó G, et al. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release. 2015;211:134–43.
-
(2015)
J Control Release.
, vol.211
, pp. 134-143
-
-
Fornaguera, C.1
Dols-Perez, A.2
Calderó, G.3
-
137
-
-
84885375897
-
Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development
-
European Union, In Tech
-
Attama AA, Momoh MA, Philip F. Lipid nanoparticulate drug delivery systems: a revolution in dosage form design and development. In: Sezer AD, editor. Recent Advances Novel Drug Carrier Systems. Croatia (European Union): In Tech; 2012. doi:10.5772/50486.
-
(2012)
Recent Advances Novel Drug Carrier Systems. Croatia
-
-
Attama, A.A.1
Momoh, M.A.2
Philip, F.3
Sezer, A.D.4
-
138
-
-
84942858630
-
-
Springer International Publishing, Geneva
-
Shah R, Eldridge D, Palombo E, Harding I. Lipid nanoparticle: production, characterization and stability. 1st ed. Geneva: Springer International Publishing; 2015.
-
(2015)
Lipid nanoparticle: production, characterization and stability
-
-
Shah, R.1
Eldridge, D.2
Palombo, E.3
Harding, I.4
-
139
-
-
84956872630
-
Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles
-
COI: 1:CAS:528:DC%2BC28XhvVOlt7Y%3D, PID: 26775062
-
Garanti T, Stasik A, Burrow AJ, et al. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm. 2016;500(1–2):305–15.
-
(2016)
Int J Pharm.
, vol.500
, Issue.1-2
, pp. 305-315
-
-
Garanti, T.1
Stasik, A.2
Burrow, A.J.3
-
140
-
-
84954244639
-
Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles
-
COI: 1:CAS:528:DC%2BC28Xos1ymtQ%3D%3D, PID: 26768307
-
Kuo YC, Wang IH. Enhanced delivery of etoposide across the blood–brain barrier to restrain brain tumor growth using melanotransferrin antibody- and tamoxifen-conjugated solid lipid nanoparticles. J Drug Target. 2016;24:645–54.
-
(2016)
J Drug Target.
, vol.24
, pp. 645-654
-
-
Kuo, Y.C.1
Wang, I.H.2
-
141
-
-
84945231820
-
Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations
-
COI: 1:CAS:528:DC%2BC28XotV2qsbw%3D, PID: 26405825
-
Misra S, Chopra K, Sinha VR, Medhi B. Galantamine-loaded solid-lipid nanoparticles for enhanced brain delivery: preparation, characterization, in vitro and in vivo evaluations. Drug Deliv. 2016;23:1434–43.
-
(2016)
Drug Deliv.
, vol.23
, pp. 1434-1443
-
-
Misra, S.1
Chopra, K.2
Sinha, V.R.3
Medhi, B.4
-
142
-
-
84955743976
-
Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting
-
COI: 1:CAS:528:DC%2BC28Xht1Crtb0%3D, PID: 26219519
-
Singh I, Swami R, Pooja D, et al. Lactoferrin bioconjugated solid lipid nanoparticles: a new drug delivery system for potential brain targeting. J Drug Target. 2016;24:212–23.
-
(2016)
J Drug Target.
, vol.24
, pp. 212-223
-
-
Singh, I.1
Swami, R.2
Pooja, D.3
-
143
-
-
84977952959
-
Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery
-
Wu M, Fan Y, Lv S, et al. Vincristine and temozolomide combined chemotherapy for the treatment of glioma: a comparison of solid lipid nanoparticles and nanostructured lipid carriers for dual drugs delivery. Drug Deliv. 2015;27:1–6.
-
(2015)
Drug Deliv.
, vol.27
, pp. 1-6
-
-
Wu, M.1
Fan, Y.2
Lv, S.3
-
144
-
-
77955466238
-
Nanoparticle-mediated brain-specific drug delivery, imaging and diagnosis
-
COI: 1:CAS:528:DC%2BC3cXotFelsLw%3D, PID: 20593303
-
Yang Hu. Nanoparticle-mediated brain-specific drug delivery, imaging and diagnosis. Pharm Res. 2010;27:1759–71.
-
(2010)
Pharm Res.
, vol.27
, pp. 1759-1771
-
-
Yang, H.1
-
145
-
-
84881669479
-
Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment
-
COI: 1:CAS:528:DC%2BC3sXht1alt7%2FF, PID: 23932498
-
Cui Y, Xu Q, Chow PK, et al. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34:8511–20.
-
(2013)
Biomaterials.
, vol.34
, pp. 8511-8520
-
-
Cui, Y.1
Xu, Q.2
Chow, P.K.3
-
146
-
-
84862777853
-
The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2
-
COI: 1:CAS:528:DC%2BC38XhvVSgu7Y%3D, PID: 22281423
-
Ren J, Shen S, Wang D, et al. The targeted delivery of anticancer drugs to brain glioma by PEGylated oxidized multi-walled carbon nanotubes modified with angiopep-2. Biomaterials. 2012;33:3324–33.
-
(2012)
Biomaterials.
, vol.33
, pp. 3324-3333
-
-
Ren, J.1
Shen, S.2
Wang, D.3
-
147
-
-
84911935820
-
Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles
-
COI: 1:CAS:528:DC%2BC2cXhs1WjsL3L, PID: 25374303
-
Liu DF, Qian C, An YL, et al. Magnetic resonance imaging of post-ischemic blood–brain barrier damage with PEGylated iron oxide nanoparticles. Nanoscale. 2014;6:15161–7.
-
(2014)
Nanoscale.
, vol.6
, pp. 15161-15167
-
-
Liu, D.F.1
Qian, C.2
An, Y.L.3
-
148
-
-
84974815668
-
Superparamagnetic iron oxide nanoparticles modified with Tween 80 pass through the intact blood–brain barrier in rats under magnetic field
-
COI: 1:CAS:528:DC%2BC28Xmt12nurc%3D
-
Huang Y, Zhang B, Xie S, et al. Superparamagnetic iron oxide nanoparticles modified with Tween 80 pass through the intact blood–brain barrier in rats under magnetic field. ACS Appl Mater Inter. 2016;8:11336–41.
-
(2016)
ACS Appl Mater Inter.
, vol.8
, pp. 11336-11341
-
-
Huang, Y.1
Zhang, B.2
Xie, S.3
-
149
-
-
84891753109
-
Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors
-
Shevtsov MA, Nikolaev BP, Yakovleva LY, et al. Superparamagnetic iron oxide nanoparticles conjugated with epidermal growth factor (SPION-EGF) for targeting brain tumors. Int J Nanomed. 2014;9:273–87.
-
(2014)
Int J Nanomed.
, vol.9
, pp. 273-287
-
-
Shevtsov, M.A.1
Nikolaev, B.P.2
Yakovleva, L.Y.3
-
150
-
-
84905989428
-
Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges
-
COI: 1:CAS:528:DC%2BC2cXhsVWrur%2FO, PID: 24870351
-
Laurent S, Saei AA, Behzadi S, et al. Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv. 2014;11:1449–70.
-
(2014)
Expert Opin Drug Deliv.
, vol.11
, pp. 1449-1470
-
-
Laurent, S.1
Saei, A.A.2
Behzadi, S.3
-
151
-
-
84951808977
-
Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC2MXhvFOmu7nF, PID: 26708643
-
Picone P, Ditta LA, Sabatino MA, et al. Ionizing radiation-engineered nanogels as insulin nanocarriers for the development of a new strategy for the treatment of Alzheimer’s disease. Biomaterials. 2016;80:179–94.
-
(2016)
Biomaterials.
, vol.80
, pp. 179-194
-
-
Picone, P.1
Ditta, L.A.2
Sabatino, M.A.3
-
152
-
-
84898880302
-
Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1
-
COI: 1:CAS:528:DC%2BC2MXptFans7o%3D, PID: 24437962
-
Baklaushev VP, Nukolova NN, Khalansky AS, et al. Treatment of glioma by cisplatin-loaded nanogels conjugated with monoclonal antibodies against Cx43 and BSAT1. Drug Deliv. 2015;22:276–85.
-
(2015)
Drug Deliv.
, vol.22
, pp. 276-285
-
-
Baklaushev, V.P.1
Nukolova, N.N.2
Khalansky, A.S.3
-
153
-
-
84927957959
-
Targeted delivery of cisplatin by connexin 43 vector nanogels to the focus of experimental glioma C6
-
COI: 1:CAS:528:DC%2BC2cXhtlOrsL7K, PID: 25110098
-
Nukolova NV, Baklaushev VP, Abakumova TO, et al. Targeted delivery of cisplatin by connexin 43 vector nanogels to the focus of experimental glioma C6. Bull Exp Biol Med. 2014;157:524–9.
-
(2014)
Bull Exp Biol Med.
, vol.157
, pp. 524-529
-
-
Nukolova, N.V.1
Baklaushev, V.P.2
Abakumova, T.O.3
-
154
-
-
84908462496
-
Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues
-
PID: 25035633
-
Madaan K, Kumar S, Poonia N, et al. Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci. 2014;6(3):139–50.
-
(2014)
J Pharm Bioallied Sci.
, vol.6
, Issue.3
, pp. 139-150
-
-
Madaan, K.1
Kumar, S.2
Poonia, N.3
-
155
-
-
84899920884
-
-
Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomaterials. 2014;2014:Article ID 507273. (19 pages).
-
Noriega-Luna B, Godínez LA, Rodríguez FJ, et al. Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomaterials. 2014;2014:Article ID 507273. (19 pages).
-
-
-
-
156
-
-
84941360130
-
Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer
-
COI: 1:CAS:528:DC%2BC2MXht1GktbjM, PID: 26226403
-
Katare YK, Daya RP, Sookram Gray C, et al. Brain targeting of a water insoluble antipsychotic drug haloperidol via the intranasal route using PAMAM dendrimer. Mol Pharm. 2015;12:3380–8.
-
(2015)
Mol Pharm.
, vol.12
, pp. 3380-3388
-
-
Katare, Y.K.1
Daya, R.P.2
Sookram Gray, C.3
-
157
-
-
84926452148
-
CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery
-
COI: 1:CAS:528:DC%2BC2MXlt1CntLs%3D, PID: 25863222
-
Zhao J, Zhang B, Shen S, et al. CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. J Colloid Interface Sci. 2015;450:396–403.
-
(2015)
J Colloid Interface Sci.
, vol.450
, pp. 396-403
-
-
Zhao, J.1
Zhang, B.2
Shen, S.3
-
158
-
-
84935455778
-
Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain
-
COI: 1:CAS:528:DC%2BC2MXhtV2iu7bI, PID: 26118442
-
Zarebkohan A, Najafi F, Moghimi HR, et al. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci. 2015;78:19–30.
-
(2015)
Eur J Pharm Sci.
, vol.78
, pp. 19-30
-
-
Zarebkohan, A.1
Najafi, F.2
Moghimi, H.R.3
-
159
-
-
84945242123
-
Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats
-
COI: 1:CAS:528:DC%2BC28XotFams7Y%3D, PID: 26431064
-
Sonali, Agrawal P, Singh RP, et al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv. 2016;23:1788–98.
-
(2016)
Drug Deliv.
, vol.23
, pp. 1788-1798
-
-
Sonali1
Agrawal, P.2
Singh, R.P.3
-
160
-
-
84974593817
-
Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo
-
COI: 1:CAS:528:DC%2BC28Xps1aqtrs%3D, PID: 27242199
-
Wang G, Wang JJ, Chen XL, et al. Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo. J Control Release. 2016;235:276–90.
-
(2016)
J Control Release.
, vol.235
, pp. 276-290
-
-
Wang, G.1
Wang, J.J.2
Chen, X.L.3
-
161
-
-
84963652921
-
In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer
-
COI: 1:CAS:528:DC%2BC28Xks1yjtL4%3D, PID: 26970027
-
Wang G, Wang JJ, Tang XJ, et al. In vitro and in vivo evaluation of functionalized chitosan-Pluronic micelles loaded with myricetin on glioblastoma cancer. Nanomedicine. 2016;12:1263–78.
-
(2016)
Nanomedicine.
, vol.12
, pp. 1263-1278
-
-
Wang, G.1
Wang, J.J.2
Tang, X.J.3
-
162
-
-
84964453193
-
Development and evaluation of a novel drug delivery: Pluronics/SDS mixed micelle loaded with myricetin in vitro and in vivo
-
COI: 1:CAS:528:DC%2BC28XhtF2mtrrM, PID: 26947760
-
Wang G, Wang JJ, Li F, To SS. Development and evaluation of a novel drug delivery: Pluronics/SDS mixed micelle loaded with myricetin in vitro and in vivo. J Pharm Sci. 2016;105:1535–43.
-
(2016)
J Pharm Sci.
, vol.105
, pp. 1535-1543
-
-
Wang, G.1
Wang, J.J.2
Li, F.3
To, S.S.4
-
163
-
-
84938080952
-
Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation
-
PID: 26209070
-
Đorđević SM, Cekić ND, Savić MM, et al. Parenteral nanoemulsions as promising carriers for brain delivery of risperidone: design, characterization and in vivo pharmacokinetic evaluation. Int J Pharm. 2015;493:40–54.
-
(2015)
Int J Pharm.
, vol.493
, pp. 40-54
-
-
Đorđević, S.M.1
Cekić, N.D.2
Savić, M.M.3
-
164
-
-
36549029876
-
Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations
-
COI: 1:CAS:528:DC%2BD2sXhtlOjsrbP, PID: 17651927
-
Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347:93–101.
-
(2008)
Int J Pharm.
, vol.347
, pp. 93-101
-
-
Vyas, T.K.1
Shahiwala, A.2
Amiji, M.M.3
-
165
-
-
0033553661
-
Polymersomes: tough vesicles made from diblock copolymers
-
COI: 1:CAS:528:DyaK1MXjtlWru7Y%3D, PID: 10325219
-
Discher BM, Won YY, Ege DS, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284:1143–6.
-
(1999)
Science
, vol.284
, pp. 1143-1146
-
-
Discher, B.M.1
Won, Y.Y.2
Ege, D.S.3
-
166
-
-
79959228150
-
Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin
-
COI: 1:CAS:528:DC%2BC3MXlvVOgtrY%3D, PID: 21528923
-
Pang Z, Gao H, Yu Y, et al. Enhanced intracellular delivery and chemotherapy for glioma rats by transferrin-conjugated biodegradable polymersomes loaded with doxorubicin. Bioconjug Chem. 2011;22:1171–80.
-
(2011)
Bioconjug Chem.
, vol.22
, pp. 1171-1180
-
-
Pang, Z.1
Gao, H.2
Yu, Y.3
-
167
-
-
84896856661
-
The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood–brain barrier after modification with lactoferrin
-
COI: 1:CAS:528:DC%2BC2cXjt1ylur8%3D, PID: 24503971
-
Yu Y, Jiang X, Gong S, et al. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood–brain barrier after modification with lactoferrin. Nanoscale. 2014;6:3250–8.
-
(2014)
Nanoscale.
, vol.6
, pp. 3250-3258
-
-
Yu, Y.1
Jiang, X.2
Gong, S.3
-
168
-
-
84896727833
-
Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system
-
COI: 1:CAS:528:DC%2BC2cXitFagsrk%3D, PID: 24513319
-
Chen YC, Chiang CF, Chen LF, et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-penetrating cancer cell-targeting delivery system. Biomaterials. 2014;35:4066–81.
-
(2014)
Biomaterials.
, vol.35
, pp. 4066-4081
-
-
Chen, Y.C.1
Chiang, C.F.2
Chen, L.F.3
-
169
-
-
84935026792
-
Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio
-
COI: 1:CAS:528:DC%2BC2MXht1Omsrk%3D, PID: 25609010
-
Yang T, Martin P, Fogarty B, et al. Exosome delivered anticancer drugs across the blood–brain barrier for brain cancer therapy in Danio rerio. Pharm Res. 2015;32:2003–14.
-
(2015)
Pharm Res.
, vol.32
, pp. 2003-2014
-
-
Yang, T.1
Martin, P.2
Fogarty, B.3
-
170
-
-
84866760775
-
Exosome mimetics: a novel class of drug delivery systems
-
COI: 1:CAS:528:DC%2BC38Xkslamsbg%3D
-
Kooijmans SA, Vader P, van Dommelen SM, et al. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomed. 2012;7:1525–41.
-
(2012)
Int J Nanomed.
, vol.7
, pp. 1525-1541
-
-
Kooijmans, S.A.1
Vader, P.2
van Dommelen, S.M.3
-
171
-
-
84879409612
-
Exosomes for drug delivery: a novel application for the mesenchymal stem cell
-
COI: 1:CAS:528:DC%2BC38XhtlSgtL7M, PID: 22959595
-
Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery: a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31:543–51.
-
(2013)
Biotechnol Adv.
, vol.31
, pp. 543-551
-
-
Lai, R.C.1
Yeo, R.W.2
Tan, K.H.3
Lim, S.K.4
-
173
-
-
80052831943
-
Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers
-
Lakhaland S, Wood MJ. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays News Rev Mol Cell Dev Biol. 2011;33:737–41.
-
(2011)
BioEssays News Rev Mol Cell Dev Biol.
, vol.33
, pp. 737-741
-
-
Lakhaland, S.1
Wood, M.J.2
-
174
-
-
80053574021
-
Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain
-
COI: 1:CAS:528:DC%2BC3MXhtFGnurjL
-
Zhuang X, Xiang X, Grizzle W, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther J Am Soc Gene Ther. 2011;19:1769–79.
-
(2011)
Mol Ther J Am Soc Gene Ther.
, vol.19
, pp. 1769-1779
-
-
Zhuang, X.1
Xiang, X.2
Grizzle, W.3
-
175
-
-
59949097474
-
Large-scale proteomics and phosphoproteomics of urinary exosomes
-
COI: 1:CAS:528:DC%2BD1MXjtFCrtLs%3D, PID: 19056867
-
Gonzales PA, Pisitkun T, Hoffert JD, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.
-
(2009)
J Am Soc Nephrol.
, vol.20
, pp. 363-379
-
-
Gonzales, P.A.1
Pisitkun, T.2
Hoffert, J.D.3
-
176
-
-
79953858598
-
Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes
-
COI: 1:CAS:528:DC%2BC3MXjsVKqsLw%3D, PID: 21423189
-
Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.
-
(2011)
Nat Biotechnol.
, vol.29
, pp. 341-345
-
-
Alvarez-Erviti, L.1
Seow, Y.2
Yin, H.3
-
177
-
-
84884935709
-
Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors
-
COI: 1:CAS:528:DC%2BC3sXhtlChsrrO, PID: 24004438
-
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7:7698–710.
-
(2013)
ACS Nano.
, vol.7
, pp. 7698-7710
-
-
Jang, S.C.1
Kim, O.Y.2
Yoon, C.M.3
-
178
-
-
0041736008
-
Developmental aspects of blood–brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport
-
Yangand J, Aschner M. Developmental aspects of blood–brain barrier (BBB) and rat brain endothelial (RBE4) cells as in vitro model for studies on chlorpyrifos transport. Neurotoxicology. 2003;24:741–5.
-
(2003)
Neurotoxicology.
, vol.24
, pp. 741-745
-
-
Yangand, J.1
Aschner, M.2
-
179
-
-
77956264919
-
A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes
-
COI: 1:CAS:528:DC%2BC3cXnvVShu7c%3D
-
Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther J Am Soc Gene Ther. 2010;18:1606–14.
-
(2010)
Mol Ther J Am Soc Gene Ther.
, vol.18
, pp. 1606-1614
-
-
Sun, D.1
Zhuang, X.2
Xiang, X.3
-
180
-
-
84962425233
-
Internalization of targeted quantum dots by brain capillary endothelial cells in vivo
-
PID: 26661181
-
Paris-Robidas S, Brouard D, Emond V, et al. Internalization of targeted quantum dots by brain capillary endothelial cells in vivo. J Cereb Blood Flow Metab. 2016;36:731–42.
-
(2016)
J Cereb Blood Flow Metab.
, vol.36
, pp. 731-742
-
-
Paris-Robidas, S.1
Brouard, D.2
Emond, V.3
-
181
-
-
84927586584
-
Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas
-
COI: 1:CAS:528:DC%2BC2MXlvFemsro%3D, PID: 25853310
-
Chaichana KL, Pinheiro L, Brem H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv. 2015;6:353–69.
-
(2015)
Ther Deliv.
, vol.6
, pp. 353-369
-
-
Chaichana, K.L.1
Pinheiro, L.2
Brem, H.3
-
182
-
-
0033611506
-
A controlled-release microchip
-
COI: 1:CAS:528:DyaK1MXhtVyjsLg%3D, PID: 9988626
-
Santini JT Jr, Cima MJ, Langer R. A controlled-release microchip. Nature. 1999;397:335–8.
-
(1999)
Nature.
, vol.397
, pp. 335-338
-
-
Santini, J.T.1
Cima, M.J.2
Langer, R.3
-
183
-
-
0242499354
-
Multi-pulse drug delivery from a resorbable polymeric microchip device
-
PID: 14619935
-
Richards Grayson AC, Choi IS, Tyler BM, et al. Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat Mater. 2003;2:767–72.
-
(2003)
Nat Mater.
, vol.2
, pp. 767-772
-
-
Richards Grayson, A.C.1
Choi, I.S.2
Tyler, B.M.3
-
184
-
-
79251593273
-
Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model
-
COI: 1:CAS:528:DC%2BC3MXht1Sqs7s%3D, PID: 21220172
-
Scott AW, Tyler BM, Masi BC, et al. Intracranial microcapsule drug delivery device for the treatment of an experimental gliosarcoma model. Biomaterials. 2011;32:2532–9.
-
(2011)
Biomaterials.
, vol.32
, pp. 2532-2539
-
-
Scott, A.W.1
Tyler, B.M.2
Masi, B.C.3
-
185
-
-
0037459005
-
Nasal drug delivery: possibilities, problems and solutions
-
COI: 1:CAS:528:DC%2BD3sXhsFOls7c%3D, PID: 12618035
-
Illum L. Nasal drug delivery: possibilities, problems and solutions. J Control Release. 2003;87:187–98.
-
(2003)
J Control Release.
, vol.87
, pp. 187-198
-
-
Illum, L.1
-
186
-
-
0034095651
-
Transport of drugs from the nasal cavity to the central nervous system
-
COI: 1:CAS:528:DC%2BD3cXksFektLo%3D, PID: 10913748
-
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11:1–18.
-
(2000)
Eur J Pharm Sci.
, vol.11
, pp. 1-18
-
-
Illum, L.1
-
188
-
-
0034730443
-
Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology
-
COI: 1:CAS:528:DC%2BD3cXnt1Sitrc%3D, PID: 11033313
-
Fehm HL, Perras B, Smolnik R, et al. Manipulating neuropeptidergic pathways in humans: a novel approach to neuropharmacology. Eur J Pharmacol. 2000;405:43–54.
-
(2000)
Eur J Pharmacol.
, vol.405
, pp. 43-54
-
-
Fehm, H.L.1
Perras, B.2
Smolnik, R.3
-
189
-
-
0032908509
-
Beneficial treatment of agerelated sleep disturbances with prolonged intranasal vasopressin
-
COI: 1:CAS:528:DyaK1MXpvV2qtg%3D%3D
-
Perras B, Pannenborg H, Marshall L, et al. Beneficial treatment of agerelated sleep disturbances with prolonged intranasal vasopressin. J Clin N Psychopharmacol. 1999;19:28–36.
-
(1999)
J Clin N Psychopharmacol.
, vol.19
, pp. 28-36
-
-
Perras, B.1
Pannenborg, H.2
Marshall, L.3
-
190
-
-
0032786623
-
Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans
-
COI: 1:CAS:528:DyaK1MXltlOmtr4%3D, PID: 10451909
-
Perras B, Marshall L, Köhler G, et al. Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology. 1999;24:743–57.
-
(1999)
Psychoneuroendocrinology.
, vol.24
, pp. 743-757
-
-
Perras, B.1
Marshall, L.2
Köhler, G.3
-
191
-
-
84860193946
-
Intranasal delivery of biologics to the central nervous system
-
COI: 1:CAS:528:DC%2BC38XlvFyrsL4%3D, PID: 22119441
-
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.
-
(2012)
Adv Drug Deliv Rev.
, vol.64
, pp. 614-628
-
-
Lochhead, J.J.1
Thorne, R.G.2
-
192
-
-
84946477995
-
Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC2MXhtVygu7bN, PID: 26113236
-
Zheng X, Shao X, Zhang C, et al. Intranasal H102 peptide-loaded liposomes for brain delivery to treat Alzheimer’s disease. Pharm Res. 2015;32:3837–49.
-
(2015)
Pharm Res.
, vol.32
, pp. 3837-3849
-
-
Zheng, X.1
Shao, X.2
Zhang, C.3
-
193
-
-
84921776454
-
Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate
-
COI: 1:CAS:528:DC%2BC2MXhtlOmsL8%3D, PID: 25620068
-
Rassu G, Soddu E, Cossu M, et al. Solid microparticles based on chitosan or methyl-β-cyclodextrin: a first formulative approach to increase the nose-to-brain transport of deferoxamine mesylate. J Control Release. 2015;201:68–77.
-
(2015)
J Control Release.
, vol.201
, pp. 68-77
-
-
Rassu, G.1
Soddu, E.2
Cossu, M.3
-
194
-
-
84941179298
-
Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity
-
COI: 1:CAS:528:DC%2BC2MXhtFeis7jK, PID: 26147711
-
Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104:3544–56.
-
(2015)
J Pharm Sci.
, vol.104
, pp. 3544-3556
-
-
Elnaggar, Y.S.1
Etman, S.M.2
Abdelmonsif, D.A.3
Abdallah, O.Y.4
-
195
-
-
84973547274
-
Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease
-
COI: 1:CAS:528:DC%2BC28XptVWrsb0%3D, PID: 27185298
-
Muntimadugu E, Dhommati R, Jain A, et al. Intranasal delivery of nanoparticle encapsulated tarenflurbil: a potential brain targeting strategy for Alzheimer’s disease. Eur J Pharm Sci. 2016;92:224–34.
-
(2016)
Eur J Pharm Sci.
, vol.92
, pp. 224-234
-
-
Muntimadugu, E.1
Dhommati, R.2
Jain, A.3
-
196
-
-
26244468076
-
Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen
-
COI: 1:CAS:528:DC%2BD2MXhtVymsLnJ, PID: 16109410
-
Krauze MT, Saito R, Noble C, et al. Effects of the perivascular space on convection-enhanced delivery of liposomes in primate putamen. Exp Neurol. 2005;196:104–11.
-
(2005)
Exp Neurol.
, vol.196
, pp. 104-111
-
-
Krauze, M.T.1
Saito, R.2
Noble, C.3
-
197
-
-
84924536171
-
-
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl. 2):ii3–8.
-
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol. 2015;17(Suppl. 2):ii3–8.
-
-
-
-
198
-
-
84891016613
-
Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma
-
COI: 1:CAS:528:DC%2BC3sXhtlahtr%2FL, PID: 23891990
-
Bernal GM, LaRiviere MJ, Mansour N, et al. Convection-enhanced delivery and in vivo imaging of polymeric nanoparticles for the treatment of malignant glioma. Nanomedicine. 2014;10:149–57.
-
(2014)
Nanomedicine.
, vol.10
, pp. 149-157
-
-
Bernal, G.M.1
LaRiviere, M.J.2
Mansour, N.3
-
199
-
-
84555180911
-
Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles
-
COI: 1:CAS:528:DC%2BC3MXhtFGkt7rI
-
Corem-Salkmon E, Ram Z, Daniels D, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomed. 2011;6:1595–602.
-
(2011)
Int J Nanomed.
, vol.6
, pp. 1595-1602
-
-
Corem-Salkmon, E.1
Ram, Z.2
Daniels, D.3
-
200
-
-
77955388676
-
EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma
-
COI: 1:CAS:528:DC%2BC3cXpsVCnur8%3D, PID: 20647323
-
Hadjipanayis CG, Machaidze R, Kaluzova M, et al. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res. 2010;70:6303–12.
-
(2010)
Cancer Res.
, vol.70
, pp. 6303-6312
-
-
Hadjipanayis, C.G.1
Machaidze, R.2
Kaluzova, M.3
-
201
-
-
81155150555
-
Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors
-
COI: 1:CAS:528:DC%2BC3MXisFeku7Y%3D, PID: 21691426
-
Sawyer AJ, Saucier-Sawyer JK, Booth CJ, et al. Convection-enhanced delivery of camptothecin-loaded polymer nanoparticles for treatment of intracranial tumors. Drug Deliv Transl Res. 2011;1:34–42.
-
(2011)
Drug Deliv Transl Res.
, vol.1
, pp. 34-42
-
-
Sawyer, A.J.1
Saucier-Sawyer, J.K.2
Booth, C.J.3
-
202
-
-
0141870056
-
Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma
-
COI: 1:CAS:528:DC%2BD3sXosFCksLg%3D, PID: 14520660
-
Voges J, Reszka R, Gossmann A, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol. 2003;54:479–87.
-
(2003)
Ann Neurol.
, vol.54
, pp. 479-487
-
-
Voges, J.1
Reszka, R.2
Gossmann, A.3
-
203
-
-
43249088115
-
Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation
-
COI: 1:CAS:528:DC%2BD1cXmtFSrsrs%3D, PID: 18447717
-
Dickinson PJ, LeCouteur RA, Higgins RJ, et al. Canine model of convection-enhanced delivery of liposomes containing CPT-11 monitored with real-time magnetic resonance imaging: laboratory investigation. J Neurosurg. 2008;108:989–98.
-
(2008)
J Neurosurg.
, vol.108
, pp. 989-998
-
-
Dickinson, P.J.1
LeCouteur, R.A.2
Higgins, R.J.3
-
204
-
-
13844262865
-
Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating
-
COI: 1:CAS:528:DC%2BD2MXhslWktLs%3D, PID: 15722054
-
MacKay JA, Deen DF, Szoka FC Jr. Distribution in brain of liposomes after convection enhanced delivery; modulation by particle charge, particle diameter, and presence of steric coating. Brain Res. 2005;1035:139–53.
-
(2005)
Brain Res.
, vol.1035
, pp. 139-153
-
-
MacKay, J.A.1
Deen, D.F.2
Szoka, F.C.3
-
205
-
-
84860295382
-
An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma
-
COI: 1:CAS:528:DC%2BC38Xmt1OjsLg%3D, PID: 22476649
-
White E, Bienemann A, Pugh J, et al. An evaluation of the safety and feasibility of convection-enhanced delivery of carboplatin into the white matter as a potential treatment for high-grade glioma. J Neurooncol. 2012;108:77–88.
-
(2012)
J Neurooncol.
, vol.108
, pp. 77-88
-
-
White, E.1
Bienemann, A.2
Pugh, J.3
-
206
-
-
84884180892
-
Convection-enhanced delivery of AAV2 in white matter: a novel method for gene delivery to cerebral cortex
-
COI: 1:CAS:528:DC%2BC3sXhs1Whtr3E, PID: 23988614
-
Barua NU, Woolley M, Bienemann AS, et al. Convection-enhanced delivery of AAV2 in white matter: a novel method for gene delivery to cerebral cortex. J Neurosci Methods. 2013;220:1–8.
-
(2013)
J Neurosci Methods.
, vol.220
, pp. 1-8
-
-
Barua, N.U.1
Woolley, M.2
Bienemann, A.S.3
-
207
-
-
79951602633
-
Trabedersen Glioma Study Group. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study
-
COI: 1:CAS:528:DC%2BC3MXhvFOiur8%3D, PID: 20980335
-
Bogdahn U, Hau P, Stockhammer G, et al. Trabedersen Glioma Study Group. Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2011;13(1):132–42.
-
(2011)
Neuro Oncol.
, vol.13
, Issue.1
, pp. 132-142
-
-
Bogdahn, U.1
Hau, P.2
Stockhammer, G.3
-
208
-
-
77954646180
-
Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study
-
Bogdahn U, Hau P, Stockhammer G, Trabedersen Glioma Study Group, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12:401–8.
-
(2010)
Neuro Oncol.
, vol.12
, pp. 401-408
-
-
Bogdahn, U.1
Hau, P.2
Stockhammer, G.3
-
209
-
-
84953439125
-
Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system
-
COI: 1:CAS:528:DC%2BC2MXitV2msbvJ, PID: 26724368
-
Crawford L, Rosch J, Putnam D. Concepts, technologies, and practices for drug delivery past the blood–brain barrier to the central nervous system. J Control Release. 2016;240:251–6.
-
(2016)
J Control Release.
, vol.240
, pp. 251-256
-
-
Crawford, L.1
Rosch, J.2
Putnam, D.3
-
210
-
-
84867535127
-
Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy
-
COI: 1:CAS:528:DC%2BC38XhtlWgsrzK, PID: 22574981
-
Borlongan CV, Glover LE, Sanberg PR, Hess DC. Permeating the blood brain barrier and abrogating the inflammation in stroke: implications for stroke therapy. Curr Pharm Des. 2012;18:3670–6.
-
(2012)
Curr Pharm Des.
, vol.18
, pp. 3670-3676
-
-
Borlongan, C.V.1
Glover, L.E.2
Sanberg, P.R.3
Hess, D.C.4
-
211
-
-
84903317310
-
Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier
-
Sun Z, Worden M, Wroczynskyj Y, et al. Magnetic field enhanced convective diffusion of iron oxide nanoparticles in an osmotically disrupted cell culture model of the blood–brain barrier. Int J Nanomed. 2014;9:3013–26.
-
(2014)
Int J Nanomed.
, vol.9
, pp. 3013-3026
-
-
Sun, Z.1
Worden, M.2
Wroczynskyj, Y.3
-
212
-
-
84887365441
-
Mannitol enhances therapeutic effects of intra-arterial transplantation of mesenchymal stem cells into the brain after traumatic brain injury
-
COI: 1:CAS:528:DC%2BC3sXhslClt7%2FK, PID: 24016413
-
Okuma Y, Wang F, Toyoshima A, et al. Mannitol enhances therapeutic effects of intra-arterial transplantation of mesenchymal stem cells into the brain after traumatic brain injury. Neurosci Lett. 2013;554:156–61.
-
(2013)
Neurosci Lett.
, vol.554
, pp. 156-161
-
-
Okuma, Y.1
Wang, F.2
Toyoshima, A.3
-
213
-
-
84878437478
-
Intra-carotid angiotensin II activates tyrosine hydroxylase expressing rostral ventrolateral medulla neurons following blood–brain barrier disruption in rats
-
Yao ST, May CN. Intra-carotid angiotensin II activates tyrosine hydroxylase expressing rostral ventrolateral medulla neurons following blood–brain barrier disruption in rats. Neuroscience. 2013;24:148–56.
-
(2013)
Neuroscience.
, vol.24
, pp. 148-156
-
-
Yao, S.T.1
May, C.N.2
-
214
-
-
84908191350
-
Intraarterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption
-
COI: 1:CAS:528:DC%2BC2cXhs1Gmu7nM, PID: 25270115
-
Foley CP, Rubin DG, Santillan A, et al. Intraarterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. J Control Release. 2014;196:71–8.
-
(2014)
J Control Release.
, vol.196
, pp. 71-78
-
-
Foley, C.P.1
Rubin, D.G.2
Santillan, A.3
-
215
-
-
79955774513
-
A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA
-
COI: 1:CAS:528:DC%2BC3MXmtVWlt70%3D, PID: 21489620
-
Hwang DW, Son S, Jang J, et al. A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA. Biomaterials. 2011;32:4968–75.
-
(2011)
Biomaterials.
, vol.32
, pp. 4968-4975
-
-
Hwang, D.W.1
Son, S.2
Jang, J.3
-
216
-
-
0024206648
-
Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: an electron microscopic study
-
COI: 1:STN:280:DyaL1M7ovFKgtw%3D%3D, PID: 3149121
-
Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: an electron microscopic study. Acta Neuropathol. 1988;77:5–13.
-
(1988)
Acta Neuropathol.
, vol.77
, pp. 5-13
-
-
Salahuddin, T.S.1
Johansson, B.B.2
Kalimo, H.3
Olsson, Y.4
-
217
-
-
0024244691
-
Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study
-
COI: 1:STN:280:DyaL1M7ktl2ntQ%3D%3D
-
Salahuddin TS, Johansson BB, Kalimo H, Olsson Y. Structural changes in the rat brain after carotid infusions of hyperosmolar solutions: a light microscopic and immunohistochemical study. Neuropathol Appl Neurobiol Neuropept. 1988;14:467–82.
-
(1988)
Neuropathol Appl Neurobiol Neuropept.
, vol.14
, pp. 467-482
-
-
Salahuddin, T.S.1
Johansson, B.B.2
Kalimo, H.3
Olsson, Y.4
-
218
-
-
0037119577
-
Drug targeting: breaking down barriers
-
COI: 1:CAS:528:DC%2BD38XmsVOit7k%3D, PID: 12183610
-
Miller G. Drug targeting: breaking down barriers. Science. 2002;297:1116–8.
-
(2002)
Science.
, vol.297
, pp. 1116-1118
-
-
Miller, G.1
-
219
-
-
34248575545
-
The enhancing effect of synthetical borneol on the absorption of tetramethylpyrazine phosphate in mouse
-
PID: 17275227
-
Yan-Yu X, Qi-Neng P, Zhi-Peng C. The enhancing effect of synthetical borneol on the absorption of tetramethylpyrazine phosphate in mouse. Int J Pharm. 2007;337:74–9.
-
(2007)
Int J Pharm.
, vol.337
, pp. 74-79
-
-
Yan-Yu, X.1
Qi-Neng, P.2
Zhi-Peng, C.3
-
220
-
-
84923166783
-
Hyperosmotic polydixylitol for crossing the blood brain barrier and efficient nucleic acid delivery
-
COI: 1:CAS:528:DC%2BC2MXos1ShsQ%3D%3D
-
Garg P, Pandey S, Seonwoo H, et al. Hyperosmotic polydixylitol for crossing the blood brain barrier and efficient nucleic acid delivery. Chem Commun. 2015;51:3645–8.
-
(2015)
Chem Commun.
, vol.51
, pp. 3645-3648
-
-
Garg, P.1
Pandey, S.2
Seonwoo, H.3
-
221
-
-
84889096528
-
Rapid and reversible enhancement of blood–brain barrier permeability using lysophosphatidic acid
-
COI: 1:CAS:528:DC%2BC3sXhsVyqtLnJ, PID: 24045401
-
On NH, Savant S, Toews M, Miller DW. Rapid and reversible enhancement of blood–brain barrier permeability using lysophosphatidic acid. J Cereb Blood Flow Metab. 2013;33:1944–54.
-
(2013)
J Cereb Blood Flow Metab.
, vol.33
, pp. 1944-1954
-
-
On, N.H.1
Savant, S.2
Toews, M.3
Miller, D.W.4
-
222
-
-
0029900093
-
Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of the bradykinin analog, RMP-7
-
COI: 1:STN:280:DyaK28zpvVejuw%3D%3D, PID: 8805148
-
Matsukado K, Inamura T, Nakano S, et al. Enhanced tumor uptake of carboplatin and survival in glioma-bearing rats by intracarotid infusion of the bradykinin analog, RMP-7. Neurosurgery. 1996;39:125–33.
-
(1996)
Neurosurgery.
, vol.39
, pp. 125-133
-
-
Matsukado, K.1
Inamura, T.2
Nakano, S.3
-
223
-
-
84883376947
-
Dual kinin B1 and B2 receptor activation provides enhanced blood–brain barrier permeability and anticancer drug delivery into brain tumors
-
PID: 23792591
-
Côté J, Savard M, Neugebauer W, et al. Dual kinin B1 and B2 receptor activation provides enhanced blood–brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biol Ther. 2013;14:806–11.
-
(2013)
Cancer Biol Ther.
, vol.14
, pp. 806-811
-
-
Côté, J.1
Savard, M.2
Neugebauer, W.3
-
224
-
-
84905080443
-
Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin
-
COI: 1:CAS:528:DC%2BC2cXhtFWiurfK, PID: 25041794
-
Kuo YC, Chou PR. Neuroprotection against degeneration of SK-N-MC cells using neuron growth factor-encapsulated liposomes with surface cereport and transferrin. J Pharm Sci. 2014;103:2484–97.
-
(2014)
J Pharm Sci.
, vol.103
, pp. 2484-2497
-
-
Kuo, Y.C.1
Chou, P.R.2
-
225
-
-
84937977564
-
A2A adenosine receptor regulates the human blood–brain barrier permeability
-
COI: 1:CAS:528:DC%2BC2cXhs1GmsbrP, PID: 25262373
-
Kim DG, Bynoe MS. A2A adenosine receptor regulates the human blood–brain barrier permeability. Mol Neurobiol. 2015;52:664–78.
-
(2015)
Mol Neurobiol.
, vol.52
, pp. 664-678
-
-
Kim, D.G.1
Bynoe, M.S.2
-
226
-
-
84901738399
-
RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration
-
COI: 1:CAS:528:DC%2BC2cXit1yls7s%3D, PID: 24521297
-
Gao H, Xiong Y, Zhang S, et al. RGD and interleukin-13 peptide functionalized nanoparticles for enhanced glioblastoma cells and neovasculature dual targeting delivery and elevated tumor penetration. Mol Pharm. 2014;11:1042–52.
-
(2014)
Mol Pharm.
, vol.11
, pp. 1042-1052
-
-
Gao, H.1
Xiong, Y.2
Zhang, S.3
-
227
-
-
84938068298
-
Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement
-
COI: 1:CAS:528:DC%2BC2MXhtFGnsbnJ, PID: 26188608
-
Zheng S, Bai YY, Liu Y, et al. Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement. Biomaterials. 2015;66:9–20.
-
(2015)
Biomaterials.
, vol.66
, pp. 9-20
-
-
Zheng, S.1
Bai, Y.Y.2
Liu, Y.3
-
228
-
-
57449105820
-
Pathways for drug delivery to the central nervous system
-
Wang B, Siahaan T, Soltero RA, (eds), Wiley Interscience, Hoboken
-
Zhang Y, Miller DW. Pathways for drug delivery to the central nervous system. In: Wang B, Siahaan T, Soltero RA, editors. Drug delivery: principles and applications. Hoboken: Wiley Interscience; 2005. p. 29–56.
-
(2005)
Drug delivery: principles and applications
, pp. 29-56
-
-
Zhang, Y.1
Miller, D.W.2
-
229
-
-
1642504354
-
Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries
-
COI: 1:CAS:528:DC%2BD2cXpvV2mtg%3D%3D, PID: 14597599
-
Erdlenbruch B, Alipour M, Fricker G, et al. Alkylglycerol opening of the blood–brain barrier to small and large fluorescence markers in normal and C6 glioma-bearing rats and isolated rat brain capillaries. Br J Pharmacol. 2003;140:1201–10.
-
(2003)
Br J Pharmacol.
, vol.140
, pp. 1201-1210
-
-
Erdlenbruch, B.1
Alipour, M.2
Fricker, G.3
-
230
-
-
0033679101
-
Transient and controllable opening of the blood–brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats
-
COI: 1:CAS:528:DC%2BD3cXotVynurw%3D, PID: 11146820
-
Erdlenbruch B, Jendrossek V, Eibl H, Lakomek M. Transient and controllable opening of the blood–brain barrier to cytostatic and antibiotic agents by alkylglycerols in rats. Exp Brain Res. 2000;135:417–22.
-
(2000)
Exp Brain Res.
, vol.135
, pp. 417-422
-
-
Erdlenbruch, B.1
Jendrossek, V.2
Eibl, H.3
Lakomek, M.4
-
231
-
-
84880259537
-
Acute effects of short-chain alkylglycerols on blood–brain barrier properties of cultured brain endothelial cells
-
PID: 23617601
-
Hülper P, Veszelka S, Walter FR, et al. Acute effects of short-chain alkylglycerols on blood–brain barrier properties of cultured brain endothelial cells. Br J Pharmacol. 2013;169:1561–73.
-
(2013)
Br J Pharmacol.
, vol.169
, pp. 1561-1573
-
-
Hülper, P.1
Veszelka, S.2
Walter, F.R.3
-
232
-
-
0034876083
-
Noninvasive MR imagingguided focal opening of the blood–brain barrier in rabbits
-
COI: 1:STN:280:DC%2BD3MvotlahsA%3D%3D, PID: 11526261
-
Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imagingguided focal opening of the blood–brain barrier in rabbits. Radiology. 2001;220(3):640–6.
-
(2001)
Radiology.
, vol.220
, Issue.3
, pp. 640-646
-
-
Hynynen, K.1
McDannold, N.2
Vykhodtseva, N.3
Jolesz, F.A.4
-
233
-
-
84901589724
-
Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system
-
COI: 1:CAS:528:DC%2BC2cXitV2is7g%3D, PID: 24462453
-
Aryal M, Arvanitis CD, Alexander PM, McDannold N. Ultrasound-mediated blood–brain barrier disruption for targeted drug delivery in the central nervous system. Adv Drug Deliv Rev. 2014;72:94–109.
-
(2014)
Adv Drug Deliv Rev.
, vol.72
, pp. 94-109
-
-
Aryal, M.1
Arvanitis, C.D.2
Alexander, P.M.3
McDannold, N.4
-
234
-
-
84903281195
-
Pharmacokinetics of BPA in gliomas with ultrasound induced blood–brain barrier disruption as measured by microdialysis
-
PID: 24936788
-
Yang FY, Lin YL, Chou FI, et al. Pharmacokinetics of BPA in gliomas with ultrasound induced blood–brain barrier disruption as measured by microdialysis. PLoS One. 2014;9:e100104.
-
(2014)
PLoS One.
, vol.9
-
-
Yang, F.Y.1
Lin, Y.L.2
Chou, F.I.3
-
235
-
-
84864653876
-
The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound
-
COI: 1:CAS:528:DC%2BC38XhtFClsLfE, PID: 22709590
-
Park J, Zhang Y, Vykhodtseva N, et al. The kinetics of blood brain barrier permeability and targeted doxorubicin delivery into brain induced by focused ultrasound. J Control Release. 2012;162:134–42.
-
(2012)
J Control Release.
, vol.162
, pp. 134-142
-
-
Park, J.1
Zhang, Y.2
Vykhodtseva, N.3
-
236
-
-
79551632443
-
Noninvasive and localized blood–brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies
-
PID: 20842160
-
Choi JJ, Selert K, Gao Z, et al. Noninvasive and localized blood–brain barrier disruption using focused ultrasound can be achieved at short pulse lengths and low pulse repetition frequencies. J Cereb Blood Flow Metab. 2011;31:725–37.
-
(2011)
J Cereb Blood Flow Metab.
, vol.31
, pp. 725-737
-
-
Choi, J.J.1
Selert, K.2
Gao, Z.3
-
237
-
-
84856212147
-
Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption
-
COI: 1:CAS:528:DC%2BC38XhsVersr4%3D, PID: 22079586
-
Huang Q, Deng J, Wang F, et al. Targeted gene delivery to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption. Exp Neurol. 2012;233:350–6.
-
(2012)
Exp Neurol.
, vol.233
, pp. 350-356
-
-
Huang, Q.1
Deng, J.2
Wang, F.3
-
238
-
-
84861882656
-
Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood–brain barrier
-
PID: 22677255
-
Huang Q, Deng J, Xie Z, et al. Effective gene transfer into central nervous system following ultrasound-microbubbles-induced opening of the blood–brain barrier. Ultrasound Med Biol. 2012;38:1234–43.
-
(2012)
Ultrasound Med Biol.
, vol.38
, pp. 1234-1243
-
-
Huang, Q.1
Deng, J.2
Xie, Z.3
-
239
-
-
84866556662
-
Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression
-
COI: 1:CAS:528:DC%2BC38XhsFans7zO, PID: 22921802
-
Burgess A, Huang Y, Querbes W, et al. Focused ultrasound for targeted delivery of siRNA and efficient knockdown of Htt expression. J Control Release. 2012;163:125–9.
-
(2012)
J Control Release.
, vol.163
, pp. 125-129
-
-
Burgess, A.1
Huang, Y.2
Querbes, W.3
-
240
-
-
84878848911
-
Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB Opening
-
PID: 23423361
-
Alonso A, Reinz E, Leuchs B, et al. Focal delivery of AAV2/1-transgenes into the rat brain by localized ultrasound-induced BBB Opening. Mol Ther Nucleic Acids. 2013;2:e73.
-
(2013)
Mol Ther Nucleic Acids.
, vol.2
-
-
Alonso, A.1
Reinz, E.2
Leuchs, B.3
-
241
-
-
84874529633
-
Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound
-
COI: 1:CAS:528:DC%2BC3sXjvV2gtrw%3D, PID: 23460893
-
Hsu PH, Wei KC, Huang CY, et al. Noninvasive and targeted gene delivery into the brain using microbubble-facilitated focused ultrasound. PLoS One. 2013;8:e57682.
-
(2013)
PLoS One.
, vol.8
-
-
Hsu, P.H.1
Wei, K.C.2
Huang, C.Y.3
-
242
-
-
79952737915
-
Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate
-
PID: 21376455
-
O’Reilly MA, Waspe AC, Ganguly M, Hynynen K. Focused-ultrasound disruption of the blood–brain barrier using closely-timed short pulses: influence of sonication parameters and injection rate. Ultrasound Med Biol. 2011;37:587–94.
-
(2011)
Ultrasound Med Biol.
, vol.37
, pp. 587-594
-
-
O’Reilly, M.A.1
Waspe, A.C.2
Ganguly, M.3
Hynynen, K.4
-
243
-
-
78149298723
-
The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model
-
PID: 20720286
-
O’Reilly MA, Huang Y, Hynynen K. The impact of standing wave effects on transcranial focused ultrasound disruption of the blood–brain barrier in a rat model. Phys Med Biol. 2010;55:5251–67.
-
(2010)
Phys Med Biol.
, vol.55
, pp. 5251-5267
-
-
O’Reilly, M.A.1
Huang, Y.2
Hynynen, K.3
-
244
-
-
84887283837
-
Dependence of the reversibility of focused ultrasound induced blood–brain barrier opening on pressure and pulse length in vivo
-
PID: 24158283
-
Samiotaki G, Konofagou EE. Dependence of the reversibility of focused ultrasound induced blood–brain barrier opening on pressure and pulse length in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:2257–65.
-
(2013)
IEEE Trans Ultrason Ferroelectr Freq Control.
, vol.60
, pp. 2257-2265
-
-
Samiotaki, G.1
Konofagou, E.E.2
-
245
-
-
79957856748
-
Pulsed high intensity focused ultrasound enhances the relative permeability of the blood tumor barrier in a glioma-bearing rat model
-
PID: 21622052
-
Yang FY, Lin GL, Horng SC, et al. Pulsed high intensity focused ultrasound enhances the relative permeability of the blood tumor barrier in a glioma-bearing rat model. IEEE Trans Ultrason Ferroelectr Freq Control. 2011;58:964–70.
-
(2011)
IEEE Trans Ultrason Ferroelectr Freq Control.
, vol.58
, pp. 964-970
-
-
Yang, F.Y.1
Lin, G.L.2
Horng, S.C.3
-
246
-
-
85006235034
-
Progress and perspectives on targeting nanoparticles for brain drug delivery
-
PID: 27471668
-
Gao H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm Sin B. 2016;6:268–86.
-
(2016)
Acta Pharm Sin B.
, vol.6
, pp. 268-286
-
-
Gao, H.1
-
247
-
-
84924351678
-
Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study
-
COI: 1:CAS:528:DC%2BC2MXjsVantrg%3D, PID: 25724272
-
Aryal M, Vykhodtseva N, Zhang YZ, McDannold N. Multiple sessions of liposomal doxorubicin delivery via focused ultrasound mediated blood–brain barrier disruption: a safety study. J Control Release. 2015;204:60–9.
-
(2015)
J Control Release.
, vol.204
, pp. 60-69
-
-
Aryal, M.1
Vykhodtseva, N.2
Zhang, Y.Z.3
McDannold, N.4
-
248
-
-
48149101439
-
Progress and problems in the application of focused ultrasound for blood–brain barrier disruption
-
COI: 1:CAS:528:DC%2BD1cXpsVKlsr8%3D, PID: 18511095
-
Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood–brain barrier disruption. Ultrasonics. 2008;48(4):279–96.
-
(2008)
Ultrasonics.
, vol.48
, Issue.4
, pp. 279-296
-
-
Vykhodtseva, N.1
McDannold, N.2
Hynynen, K.3
|