메뉴 건너뛰기




Volumn 99, Issue , 2016, Pages 544-556

An overview of chemical inhibitors of the Nrf2-ARE signaling pathway and their potential applications in cancer therapy

Author keywords

ARE; Cancer therapy; Chemoresistance; Inhibitor; Nrf2

Indexed keywords

2 AMINO ISONICOTINAMIDE; 2 FUROIC HYDRAZIDE; 4 (AMINOMETHYL)PIPERIDINE; 4 AMINOBENZOIC HYDRAZIDE; 4 METHOXYCHALCONE; 4 TOLUIC HYDRAZIDE; AMINOPYRAZINE; ANTIOXIDANT RESPONSE ELEMENT EXPRESSION MODULATOR 1; APIGENIN; ASCORBIC ACID; BRUSATOL; CHALCONE DERIVATIVE; CHRYSIN; CRYPTOTANSHINONE; CYCLOHEXANECARBOXAMIDE; ETHIONAMIDE; IM 3829; ISONIAZID; ISONICOTINAMIDE; LUTEOLIN; METFORMIN; OCHRATOXIN; PHENYLACETIC HYDRAZIDE; PHENYLHYDRAZINE; PROTEIN INHIBITOR; PYRAZINAMIDE; RETINOIC ACID; TRANSCRIPTION FACTOR NRF2; UNCLASSIFIED DRUG; UNINDEXED DRUG; WOGONIN; ANTIDIABETIC AGENT; ANTINEOPLASTIC AGENT; CUL3 PROTEIN, HUMAN; CULLIN; FLAVONOID; KEAP1 PROTEIN, HUMAN; KELCH LIKE ECH ASSOCIATED PROTEIN 1; NFE2L2 PROTEIN, HUMAN; TUBERCULOSTATIC AGENT; VITAMIN;

EID: 84988358996     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2016.09.010     Document Type: Review
Times cited : (147)

References (197)
  • 1
    • 0028061444 scopus 로고
    • Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region
    • [1] Moi, P., Chan, K., Asunis, I., et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 91:21 (1994), 9926–9930.
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , Issue.21 , pp. 9926-9930
    • Moi, P.1    Chan, K.2    Asunis, I.3
  • 2
    • 0031577292 scopus 로고    scopus 로고
    • An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
    • [2] Itoh, K., Chiba, T., Takahashi, S., et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:2 (1997), 313–322.
    • (1997) Biochem. Biophys. Res. Commun. , vol.236 , Issue.2 , pp. 313-322
    • Itoh, K.1    Chiba, T.2    Takahashi, S.3
  • 3
    • 0032953192 scopus 로고    scopus 로고
    • Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
    • [3] Itoh, K., Wakabayashi, N., Katoh, Y., et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:1 (1999), 76–86.
    • (1999) Genes Dev. , vol.13 , Issue.1 , pp. 76-86
    • Itoh, K.1    Wakabayashi, N.2    Katoh, Y.3
  • 4
    • 0037055265 scopus 로고    scopus 로고
    • Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors
    • [4] Motohashi, H., O'Connor, T., Katsuoka, F., et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–2 (2002), 1–12.
    • (2002) Gene , vol.294 , Issue.1-2 , pp. 1-12
    • Motohashi, H.1    O'Connor, T.2    Katsuoka, F.3
  • 5
    • 77649271223 scopus 로고    scopus 로고
    • The rise of antioxidant signaling–the evolution and hormetic actions of Nrf2
    • [5] Maher, J., Yamamoto, M., The rise of antioxidant signaling–the evolution and hormetic actions of Nrf2. Toxicol. Appl. Pharmacol. 244:1 (2010), 4–15.
    • (2010) Toxicol. Appl. Pharmacol. , vol.244 , Issue.1 , pp. 4-15
    • Maher, J.1    Yamamoto, M.2
  • 6
    • 0032827002 scopus 로고    scopus 로고
    • Regulatory mechanisms of cellular response to oxidative stress
    • [6] Itoh, K., Ishii, T., Wakabayashi, N., et al. Regulatory mechanisms of cellular response to oxidative stress. Free Radic. Res. 31:4 (1999), 319–324.
    • (1999) Free Radic. Res. , vol.31 , Issue.4 , pp. 319-324
    • Itoh, K.1    Ishii, T.2    Wakabayashi, N.3
  • 7
    • 84971281708 scopus 로고    scopus 로고
    • Role of Nrf2 in the pathogenesis of atherosclerosis
    • [7] Mimura, J., Itoh, K., Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic. Biol. Med. 88:Pt B (2015), 221–232.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 221-232
    • Mimura, J.1    Itoh, K.2
  • 8
    • 84944384115 scopus 로고    scopus 로고
    • Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2
    • [8] Tao, S., Park, S.L., de la Vega, M.R., et al. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic. Biol. Med. 89 (2015), 690–700.
    • (2015) Free Radic. Biol. Med. , vol.89 , pp. 690-700
    • Tao, S.1    Park, S.L.2    de la Vega, M.R.3
  • 9
    • 84897421970 scopus 로고    scopus 로고
    • The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
    • [9] Hayes, J.D., Dinkova-Kostova, A.T., The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39:4 (2014), 199–218.
    • (2014) Trends Biochem. Sci. , vol.39 , Issue.4 , pp. 199-218
    • Hayes, J.D.1    Dinkova-Kostova, A.T.2
  • 10
    • 84929614470 scopus 로고    scopus 로고
    • Targeting nrf2 signaling to combat chemoresistance
    • [10] No, J.H., Kim, Y.B., Song, Y.S., Targeting nrf2 signaling to combat chemoresistance. J. Cancer Prev. 19:2 (2014), 111–117.
    • (2014) J. Cancer Prev. , vol.19 , Issue.2 , pp. 111-117
    • No, J.H.1    Kim, Y.B.2    Song, Y.S.3
  • 11
    • 33644649421 scopus 로고    scopus 로고
    • Nrf2: a potential molecular target for cancer chemoprevention by natural compounds
    • [11] Jeong, W.S., Jun, M., Kong, A.N., Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox Signal. 8:1–2 (2006), 99–106.
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.1-2 , pp. 99-106
    • Jeong, W.S.1    Jun, M.2    Kong, A.N.3
  • 12
    • 84905218117 scopus 로고    scopus 로고
    • The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer
    • [12] Hayden, A., Douglas, J., Sommerlad, M., et al. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol. Oncol. 32:6 (2014), 806–814.
    • (2014) Urol. Oncol. , vol.32 , Issue.6 , pp. 806-814
    • Hayden, A.1    Douglas, J.2    Sommerlad, M.3
  • 13
    • 85027913464 scopus 로고    scopus 로고
    • Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?
    • [13] Wu, T., Harder, B.G., Wong, P.K., et al. Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?. Mol. Carcinog., 2014.
    • (2014) Mol. Carcinog.
    • Wu, T.1    Harder, B.G.2    Wong, P.K.3
  • 14
    • 79960958309 scopus 로고    scopus 로고
    • Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer
    • [14] Konstantinopoulos, P.A., Spentzos, D., Fountzilas, E., et al. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res. 71:15 (2011), 5081–5089.
    • (2011) Cancer Res. , vol.71 , Issue.15 , pp. 5081-5089
    • Konstantinopoulos, P.A.1    Spentzos, D.2    Fountzilas, E.3
  • 15
    • 77954351631 scopus 로고    scopus 로고
    • High levels of Nrf2 determine chemoresistance in type II endometrial cancer
    • [15] Jiang, T., Chen, N., Zhao, F., et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70:13 (2010), 5486–5496.
    • (2010) Cancer Res. , vol.70 , Issue.13 , pp. 5486-5496
    • Jiang, T.1    Chen, N.2    Zhao, F.3
  • 16
    • 38149003106 scopus 로고    scopus 로고
    • Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance
    • [16] Cho, J.M., Manandhar, S., Lee, H.R., et al. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett. 260:1–2 (2008), 96–108.
    • (2008) Cancer Lett. , vol.260 , Issue.1-2 , pp. 96-108
    • Cho, J.M.1    Manandhar, S.2    Lee, H.R.3
  • 17
    • 84861389705 scopus 로고    scopus 로고
    • E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells
    • [17] Kim, W.D., Kim, Y.W., Cho, I.J., et al. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J. Cell Sci. 125:Pt 5 (2012), 1284–1295.
    • (2012) J. Cell Sci. , vol.125 , pp. 1284-1295
    • Kim, W.D.1    Kim, Y.W.2    Cho, I.J.3
  • 18
    • 76649089973 scopus 로고    scopus 로고
    • Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth
    • [18] Zhang, P., Singh, A., Yegnasubramanian, S., et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:2 (2010), 336–346.
    • (2010) Mol. Cancer Ther. , vol.9 , Issue.2 , pp. 336-346
    • Zhang, P.1    Singh, A.2    Yegnasubramanian, S.3
  • 19
    • 84928228415 scopus 로고    scopus 로고
    • Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells
    • [19] Sukumari-Ramesh, S., Prasad, N., Alleyne, C.H., et al. Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells. BMC Cancer, 15, 2015, 118.
    • (2015) BMC Cancer , vol.15 , pp. 118
    • Sukumari-Ramesh, S.1    Prasad, N.2    Alleyne, C.H.3
  • 20
    • 10044228504 scopus 로고    scopus 로고
    • Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
    • [20] Zhang, D.D., Lo, S.C., Cross, J.V., et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24:24 (2004), 10941–10953.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.24 , pp. 10941-10953
    • Zhang, D.D.1    Lo, S.C.2    Cross, J.V.3
  • 21
    • 3543008924 scopus 로고    scopus 로고
    • Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
    • [21] Kobayashi, A., Kang, M.I., Okawa, H., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:16 (2004), 7130–7139.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.16 , pp. 7130-7139
    • Kobayashi, A.1    Kang, M.I.2    Okawa, H.3
  • 22
    • 4544294365 scopus 로고    scopus 로고
    • The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase
    • [22] Cullinan, S.B., Gordan, J.D., Jin, J., et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24:19 (2004), 8477–8486.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.19 , pp. 8477-8486
    • Cullinan, S.B.1    Gordan, J.D.2    Jin, J.3
  • 23
    • 11144264663 scopus 로고    scopus 로고
    • BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
    • [23] Furukawa, M., Xiong, Y., BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25:1 (2005), 162–171.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.1 , pp. 162-171
    • Furukawa, M.1    Xiong, Y.2
  • 24
    • 84970038593 scopus 로고    scopus 로고
    • Structural basis of Keap1 interactions with Nrf2
    • [24] Canning, P., Sorrell, F.J., Bullock, A.N., Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 88:Pt B (2015), 101–107.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 101-107
    • Canning, P.1    Sorrell, F.J.2    Bullock, A.N.3
  • 25
    • 33845442925 scopus 로고    scopus 로고
    • Mechanistic studies of the Nrf2-Keap1 signaling pathway
    • [25] Zhang, D.D., Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38:4 (2006), 769–789.
    • (2006) Drug Metab. Rev. , vol.38 , Issue.4 , pp. 769-789
    • Zhang, D.D.1
  • 26
    • 84885944468 scopus 로고    scopus 로고
    • The emerging role of the Nrf2-Keap1 signaling pathway in cancer
    • [26] Jaramillo, M.C., Zhang, D.D., The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:20 (2013), 2179–2191.
    • (2013) Genes Dev. , vol.27 , Issue.20 , pp. 2179-2191
    • Jaramillo, M.C.1    Zhang, D.D.2
  • 27
    • 33747728194 scopus 로고    scopus 로고
    • Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex
    • [27] McMahon, M., Thomas, N., Itoh, K., et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281:34 (2006), 24756–24768.
    • (2006) J. Biol. Chem. , vol.281 , Issue.34 , pp. 24756-24768
    • McMahon, M.1    Thomas, N.2    Itoh, K.3
  • 28
    • 33344463325 scopus 로고    scopus 로고
    • Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model
    • [28] Tong, K.I., Katoh, Y., Kusunoki, H., et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26:8 (2006), 2887–2900.
    • (2006) Mol. Cell. Biol. , vol.26 , Issue.8 , pp. 2887-2900
    • Tong, K.I.1    Katoh, Y.2    Kusunoki, H.3
  • 29
    • 0242580049 scopus 로고    scopus 로고
    • Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
    • [29] Zhang, D.D., Hannink, M., Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23:22 (2003), 8137–8151.
    • (2003) Mol. Cell. Biol. , vol.23 , Issue.22 , pp. 8137-8151
    • Zhang, D.D.1    Hannink, M.2
  • 30
    • 84863764614 scopus 로고    scopus 로고
    • Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
    • [30] Mitsuishi, Y., Taguchi, K., Kawatani, Y., et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:1 (2012), 66–79.
    • (2012) Cancer Cell , vol.22 , Issue.1 , pp. 66-79
    • Mitsuishi, Y.1    Taguchi, K.2    Kawatani, Y.3
  • 31
    • 2342511435 scopus 로고    scopus 로고
    • Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway
    • [31] Motohashi, H., Katsuoka, F., Engel, J.D., et al. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA 101:17 (2004), 6379–6384.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.17 , pp. 6379-6384
    • Motohashi, H.1    Katsuoka, F.2    Engel, J.D.3
  • 32
    • 84878572136 scopus 로고    scopus 로고
    • Toward clinical application of the Keap1-Nrf2 pathway
    • [32] Suzuki, T., Motohashi, H., Yamamoto, M., Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34:6 (2013), 340–346.
    • (2013) Trends Pharmacol. Sci. , vol.34 , Issue.6 , pp. 340-346
    • Suzuki, T.1    Motohashi, H.2    Yamamoto, M.3
  • 33
    • 79955442831 scopus 로고    scopus 로고
    • KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response
    • [33] Sun, Z., Wu, T., Zhao, F., et al. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol. Cell. Biol. 31:9 (2011), 1800–1811.
    • (2011) Mol. Cell. Biol. , vol.31 , Issue.9 , pp. 1800-1811
    • Sun, Z.1    Wu, T.2    Zhao, F.3
  • 34
    • 34548772935 scopus 로고    scopus 로고
    • Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2
    • [34] Sun, Z., Zhang, S., Chan, J.Y., et al. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 27:18 (2007), 6334–6349.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.18 , pp. 6334-6349
    • Sun, Z.1    Zhang, S.2    Chan, J.Y.3
  • 35
    • 84884338770 scopus 로고    scopus 로고
    • Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
    • [35] Baird, L., Lleres, D., Swift, S., et al. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc. Natl. Acad. Sci. USA 110:38 (2013), 15259–15264.
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , Issue.38 , pp. 15259-15264
    • Baird, L.1    Lleres, D.2    Swift, S.3
  • 36
    • 84938694329 scopus 로고    scopus 로고
    • Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention
    • [36] Harder, B., Jiang, T., Wu, T., et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem. Soc. Trans. 43:4 (2015), 680–686.
    • (2015) Biochem. Soc. Trans. , vol.43 , Issue.4 , pp. 680-686
    • Harder, B.1    Jiang, T.2    Wu, T.3
  • 37
    • 84969983910 scopus 로고    scopus 로고
    • The emerging role of Nrf2 in mitochondrial function
    • [37] Dinkova-Kostova, A.T., Abramov, A.Y., The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88:Pt B (2015), 179–188.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 179-188
    • Dinkova-Kostova, A.T.1    Abramov, A.Y.2
  • 38
    • 41849146057 scopus 로고    scopus 로고
    • Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3
    • [38] Rachakonda, G., Xiong, Y., Sekhar, K.R., et al. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol. 21:3 (2008), 705–710.
    • (2008) Chem. Res. Toxicol. , vol.21 , Issue.3 , pp. 705-710
    • Rachakonda, G.1    Xiong, Y.2    Sekhar, K.R.3
  • 39
    • 34047273206 scopus 로고    scopus 로고
    • Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3
    • [39] Gao, L., Wang, J., Sekhar, K.R., et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J. Biol. Chem. 282:4 (2007), 2529–2537.
    • (2007) J. Biol. Chem. , vol.282 , Issue.4 , pp. 2529-2537
    • Gao, L.1    Wang, J.2    Sekhar, K.R.3
  • 40
    • 84971291437 scopus 로고    scopus 로고
    • Molecular basis of the Keap1-Nrf2 system
    • [40] Suzuki, T., Yamamoto, M., Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88:Pt B (2015), 93–100.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 93-100
    • Suzuki, T.1    Yamamoto, M.2
  • 41
    • 3843104763 scopus 로고    scopus 로고
    • Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
    • [41] McMahon, M., Thomas, N., Itoh, K., et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279:30 (2004), 31556–31567.
    • (2004) J. Biol. Chem. , vol.279 , Issue.30 , pp. 31556-31567
    • McMahon, M.1    Thomas, N.2    Itoh, K.3
  • 42
    • 79952256187 scopus 로고    scopus 로고
    • SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
    • [42] Rada, P., Rojo, A.I., Chowdhry, S., et al. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell Biol. 31:6 (2011), 1121–1133.
    • (2011) Mol. Cell Biol. , vol.31 , Issue.6 , pp. 1121-1133
    • Rada, P.1    Rojo, A.I.2    Chowdhry, S.3
  • 43
    • 84898874270 scopus 로고    scopus 로고
    • Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
    • [43] Wu, T., Zhao, F., Gao, B., et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28:7 (2014), 708–722.
    • (2014) Genes Dev. , vol.28 , Issue.7 , pp. 708-722
    • Wu, T.1    Zhao, F.2    Gao, B.3
  • 44
    • 84876011848 scopus 로고    scopus 로고
    • Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination
    • [44] Hast, B.E., Goldfarb, D., Mulvaney, K.M., et al. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 73:7 (2013), 2199–2210.
    • (2013) Cancer Res. , vol.73 , Issue.7 , pp. 2199-2210
    • Hast, B.E.1    Goldfarb, D.2    Mulvaney, K.M.3
  • 45
    • 84878963658 scopus 로고    scopus 로고
    • Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner
    • [45] Lau, A., Zheng, Y., Tao, S., et al. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol. Cell. Biol. 33:12 (2013), 2436–2446.
    • (2013) Mol. Cell. Biol. , vol.33 , Issue.12 , pp. 2436-2446
    • Lau, A.1    Zheng, Y.2    Tao, S.3
  • 46
    • 84888858310 scopus 로고    scopus 로고
    • Nrf2 in host defense: over the rainbow
    • [46] Cho, H.Y., Kwak, M.K., Pi, J., Nrf2 in host defense: over the rainbow. Oxid. Med. Cell. Longev., 2013, 2013, 975839.
    • (2013) Oxid. Med. Cell. Longev. , vol.2013 , pp. 975839
    • Cho, H.Y.1    Kwak, M.K.2    Pi, J.3
  • 47
    • 77649273792 scopus 로고    scopus 로고
    • Nrf2 protects against airway disorders
    • [47] Cho, H.Y., Kleeberger, S.R., Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 244:1 (2010), 43–56.
    • (2010) Toxicol. Appl. Pharmacol. , vol.244 , Issue.1 , pp. 43-56
    • Cho, H.Y.1    Kleeberger, S.R.2
  • 48
    • 0035153227 scopus 로고    scopus 로고
    • High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes
    • [48] Enomoto, A., Itoh, K., Nagayoshi, E., et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci.: Off. J. Soc. Toxicol. 59:1 (2001), 169–177.
    • (2001) Toxicol. Sci.: Off. J. Soc. Toxicol. , vol.59 , Issue.1 , pp. 169-177
    • Enomoto, A.1    Itoh, K.2    Nagayoshi, E.3
  • 49
    • 84891561133 scopus 로고    scopus 로고
    • The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice
    • [49] Liu, M., Reddy, N.M., Higbee, E.M., et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int. 85:1 (2014), 134–141.
    • (2014) Kidney Int. , vol.85 , Issue.1 , pp. 134-141
    • Liu, M.1    Reddy, N.M.2    Higbee, E.M.3
  • 50
    • 29244473882 scopus 로고    scopus 로고
    • Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema
    • [50] Iizuka, T., Ishii, Y., Itoh, K., et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells: Devot. Mol. Cell. Mech. 10:12 (2005), 1113–1125.
    • (2005) Genes Cells: Devot. Mol. Cell. Mech. , vol.10 , Issue.12 , pp. 1113-1125
    • Iizuka, T.1    Ishii, Y.2    Itoh, K.3
  • 51
    • 84873336694 scopus 로고    scopus 로고
    • ipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome
    • [51] Xue, P., Hou, Y., Chen, Y., et al. ipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 62:3 (2013), 845–854.
    • (2013) Diabetes , vol.62 , Issue.3 , pp. 845-854
    • Xue, P.1    Hou, Y.2    Chen, Y.3
  • 52
    • 77957604373 scopus 로고    scopus 로고
    • Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene
    • [52] Becks, L., Prince, M., Burson, H., et al. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer, 10, 2010, 540.
    • (2010) BMC Cancer , vol.10 , pp. 540
    • Becks, L.1    Prince, M.2    Burson, H.3
  • 53
    • 54349124273 scopus 로고    scopus 로고
    • Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
    • [53] de Vries, H.E., Witte, M., Hondius, D., et al. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?. Free Radic. Biol. Med. 45:10 (2008), 1375–1383.
    • (2008) Free Radic. Biol. Med. , vol.45 , Issue.10 , pp. 1375-1383
    • de Vries, H.E.1    Witte, M.2    Hondius, D.3
  • 54
    • 56249086316 scopus 로고    scopus 로고
    • Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer
    • [54] Khor, T.O., Huang, M.T., Prawan, A., et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 1:3 (2008), 187–191.
    • (2008) Cancer Prev. Res. , vol.1 , Issue.3 , pp. 187-191
    • Khor, T.O.1    Huang, M.T.2    Prawan, A.3
  • 55
    • 4644328941 scopus 로고    scopus 로고
    • Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis
    • [55] Iida, K., Itoh, K., Kumagai, Y., et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:18 (2004), 6424–6431.
    • (2004) Cancer Res. , vol.64 , Issue.18 , pp. 6424-6431
    • Iida, K.1    Itoh, K.2    Kumagai, Y.3
  • 56
    • 84878620505 scopus 로고    scopus 로고
    • Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels
    • [56] Suzuki, T., Shibata, T., Takaya, K., et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol. Cell. Biol. 33:12 (2013), 2402–2412.
    • (2013) Mol. Cell. Biol. , vol.33 , Issue.12 , pp. 2402-2412
    • Suzuki, T.1    Shibata, T.2    Takaya, K.3
  • 57
    • 7444251509 scopus 로고    scopus 로고
    • Identification of polymorphisms in the promoter region of the human NRF2 gene
    • [57] Yamamoto, T., Yoh, K., Kobayashi, A., et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem. Biophys. Res. Commun. 321:1 (2004), 72–79.
    • (2004) Biochem. Biophys. Res. Commun. , vol.321 , Issue.1 , pp. 72-79
    • Yamamoto, T.1    Yoh, K.2    Kobayashi, A.3
  • 58
    • 84878343958 scopus 로고    scopus 로고
    • Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism
    • [58] Zhao, R., Yang, B., Wang, L., et al. Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxid. Med. Cell. Longev., 2013, 2013, 412576.
    • (2013) Oxid. Med. Cell. Longev. , vol.2013 , pp. 412576
    • Zhao, R.1    Yang, B.2    Wang, L.3
  • 59
    • 84885344699 scopus 로고    scopus 로고
    • Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis
    • [59] Zhou, R., Lin, J., Wu, D., Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim. Biophys. Acta 1840:1 (2014), 209–218.
    • (2014) Biochim. Biophys. Acta , vol.1840 , Issue.1 , pp. 209-218
    • Zhou, R.1    Lin, J.2    Wu, D.3
  • 60
    • 84904299757 scopus 로고    scopus 로고
    • Tert-butylhydroquinone as a phenolic activator of Nrf2 antagonizes arsenic-induced oxidative cytotoxicity but promotes arsenic methylation and detoxication in human hepatocyte cell line
    • [60] Duan, X., Liu, D., Xing, X., et al. Tert-butylhydroquinone as a phenolic activator of Nrf2 antagonizes arsenic-induced oxidative cytotoxicity but promotes arsenic methylation and detoxication in human hepatocyte cell line. Biol. Trace Elem. Res. 160:2 (2014), 294–302.
    • (2014) Biol. Trace Elem. Res. , vol.160 , Issue.2 , pp. 294-302
    • Duan, X.1    Liu, D.2    Xing, X.3
  • 61
    • 84959113081 scopus 로고    scopus 로고
    • Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes
    • [61] Duan, X., Li, J., Li, W., et al. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes. Free Radic. Biol. Med., 2016.
    • (2016) Free Radic. Biol. Med.
    • Duan, X.1    Li, J.2    Li, W.3
  • 62
    • 19444379739 scopus 로고    scopus 로고
    • Nrf2 as a novel molecular target for chemoprevention
    • [62] Lee, J.S., Surh, Y.J., Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224:2 (2005), 171–184.
    • (2005) Cancer Lett. , vol.224 , Issue.2 , pp. 171-184
    • Lee, J.S.1    Surh, Y.J.2
  • 63
    • 77958130983 scopus 로고    scopus 로고
    • Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway
    • [63] Hayes, J.D., McMahon, M., Chowdhry, S., et al. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal. 13:11 (2010), 1713–1748.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.11 , pp. 1713-1748
    • Hayes, J.D.1    McMahon, M.2    Chowdhry, S.3
  • 64
    • 84983150554 scopus 로고    scopus 로고
    • The complexity of the Nrf2 pathway: beyond the antioxidant response
    • [64] Huang, Y., Li, W., Su, Z.Y., et al. The complexity of the Nrf2 pathway: beyond the antioxidant response. J. Nutr. Biochem. 26:12 (2015), 1401–1413.
    • (2015) J. Nutr. Biochem. , vol.26 , Issue.12 , pp. 1401-1413
    • Huang, Y.1    Li, W.2    Su, Z.Y.3
  • 65
    • 84923222319 scopus 로고    scopus 로고
    • Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment
    • [65] Moon, E.J., Giaccia, A., Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic. Biol. Med. 79 (2015), 292–299.
    • (2015) Free Radic. Biol. Med. , vol.79 , pp. 292-299
    • Moon, E.J.1    Giaccia, A.2
  • 66
    • 77958129306 scopus 로고    scopus 로고
    • Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance
    • [66] Singh, A., Bodas, M., Wakabayashi, N., et al. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox Signal. 13:11 (2010), 1627–1637.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.11 , pp. 1627-1637
    • Singh, A.1    Bodas, M.2    Wakabayashi, N.3
  • 67
    • 84887584700 scopus 로고    scopus 로고
    • Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer
    • [67] Hu, X.F., Yao, J., Gao, S.G., et al. Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer. Asian Pac. J. Cancer Prev. 14:9 (2013), 5231–5235.
    • (2013) Asian Pac. J. Cancer Prev. , vol.14 , Issue.9 , pp. 5231-5235
    • Hu, X.F.1    Yao, J.2    Gao, S.G.3
  • 69
    • 54249087596 scopus 로고    scopus 로고
    • RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy
    • [69] Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 68:19 (2008), 7975–7984.
    • (2008) Cancer Res. , vol.68 , Issue.19 , pp. 7975-7984
    • Singh, A.1    Boldin-Adamsky, S.2    Thimmulappa, R.K.3
  • 70
    • 84963799947 scopus 로고    scopus 로고
    • NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
    • [70] Wang, H., Liu, X., Long, M., et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci. Transl. Med., 8(334), 2016, 334ra51.
    • (2016) Sci. Transl. Med. , vol.8 , Issue.334 , pp. 334ra51
    • Wang, H.1    Liu, X.2    Long, M.3
  • 71
    • 84938300316 scopus 로고    scopus 로고
    • Antioxidant responses and cellular adjustments to oxidative stress
    • [71] Espinosa-Diez, C., Miguel, V., Mennerich, D., et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6 (2015), 183–197.
    • (2015) Redox Biol. , vol.6 , pp. 183-197
    • Espinosa-Diez, C.1    Miguel, V.2    Mennerich, D.3
  • 72
    • 53049105119 scopus 로고    scopus 로고
    • Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer
    • 1368.e1-4
    • [72] Shibata, T., Kokubu, A., Gotoh, M., et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135:4 (2008), 1358–1368 1368.e1-4.
    • (2008) Gastroenterology , vol.135 , Issue.4 , pp. 1358-1368
    • Shibata, T.1    Kokubu, A.2    Gotoh, M.3
  • 73
    • 79953181992 scopus 로고    scopus 로고
    • KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma
    • [73] Li, Q.K., Singh, A., Biswal, S., et al. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J. Hum. Genet. 56:3 (2011), 230–234.
    • (2011) J. Hum. Genet. , vol.56 , Issue.3 , pp. 230-234
    • Li, Q.K.1    Singh, A.2    Biswal, S.3
  • 74
    • 51649130168 scopus 로고    scopus 로고
    • Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
    • [74] Shibata, T., Ohta, T., Tong, K.I., et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. USA 105:36 (2008), 13568–13573.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , Issue.36 , pp. 13568-13573
    • Shibata, T.1    Ohta, T.2    Tong, K.I.3
  • 75
    • 84969902466 scopus 로고    scopus 로고
    • Epigenetic regulation of Keap1-Nrf2 signaling
    • [75] Guo, Y., Yu, S., Zhang, C., et al. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med. 88:Pt B (2015), 337–349.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 337-349
    • Guo, Y.1    Yu, S.2    Zhang, C.3
  • 76
    • 84878785993 scopus 로고    scopus 로고
    • The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer
    • [76] Kansanen, E., Kuosmanen, S.M., Leinonen, H., et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 1 (2013), 45–49.
    • (2013) Redox Biol. , vol.1 , pp. 45-49
    • Kansanen, E.1    Kuosmanen, S.M.2    Leinonen, H.3
  • 77
    • 84883736109 scopus 로고    scopus 로고
    • Oncogenic functions of the transcription factor Nrf2
    • [77] Ganan-Gomez, I., Wei, Y., Yang, H., et al. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 65 (2013), 750–764.
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 750-764
    • Ganan-Gomez, I.1    Wei, Y.2    Yang, H.3
  • 78
    • 80051545287 scopus 로고    scopus 로고
    • The Keap1-Nrf2 system as an in vivo sensor for electrophiles
    • [78] Uruno, A., Motohashi, H., The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide: Biol. Chem. 25:2 (2011), 153–160.
    • (2011) Nitric Oxide: Biol. Chem. , vol.25 , Issue.2 , pp. 153-160
    • Uruno, A.1    Motohashi, H.2
  • 79
    • 84869087891 scopus 로고    scopus 로고
    • Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers
    • [79] Yamadori, T., Ishii, Y., Homma, S., et al. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers. Oncogene 31:45 (2012), 4768–4777.
    • (2012) Oncogene , vol.31 , Issue.45 , pp. 4768-4777
    • Yamadori, T.1    Ishii, Y.2    Homma, S.3
  • 80
    • 84941944957 scopus 로고    scopus 로고
    • Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes
    • [80] Jia, Y., Chen, J., Zhu, H., et al. Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncol. Rep. 34:5 (2015), 2296–2304.
    • (2015) Oncol. Rep. , vol.34 , Issue.5 , pp. 2296-2304
    • Jia, Y.1    Chen, J.2    Zhu, H.3
  • 81
    • 84873732409 scopus 로고    scopus 로고
    • Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance
    • [81] Niture, S.K., Jaiswal, A.K., Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic. Biol. Med. 57 (2013), 119–131.
    • (2013) Free Radic. Biol. Med. , vol.57 , pp. 119-131
    • Niture, S.K.1    Jaiswal, A.K.2
  • 82
    • 84901050749 scopus 로고    scopus 로고
    • Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha
    • [82] Ji, X., Wang, H., Zhu, J., et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Int. J. Cancer 135:3 (2014), 574–584.
    • (2014) Int. J. Cancer , vol.135 , Issue.3 , pp. 574-584
    • Ji, X.1    Wang, H.2    Zhu, J.3
  • 83
    • 79952749190 scopus 로고    scopus 로고
    • NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha
    • [83] Kim, T.H., Hur, E.G., Kang, S.J., et al. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res. 71:6 (2011), 2260–2275.
    • (2011) Cancer Res. , vol.71 , Issue.6 , pp. 2260-2275
    • Kim, T.H.1    Hur, E.G.2    Kang, S.J.3
  • 84
    • 78049370987 scopus 로고    scopus 로고
    • Oxidative stress, inflammation, and cancer: how are they linked?
    • [84] Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic. Biol. Med. 49:11 (2010), 1603–1616.
    • (2010) Free Radic. Biol. Med. , vol.49 , Issue.11 , pp. 1603-1616
    • Reuter, S.1    Gupta, S.C.2    Chaturvedi, M.M.3
  • 85
    • 77954624131 scopus 로고    scopus 로고
    • Glutathione transferases and development of new principles to overcome drug resistance
    • [85] Sau, A., Pellizzari Tregno, F., Valentino, F., et al. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 500:2 (2010), 116–122.
    • (2010) Arch. Biochem. Biophys. , vol.500 , Issue.2 , pp. 116-122
    • Sau, A.1    Pellizzari Tregno, F.2    Valentino, F.3
  • 86
    • 84888300793 scopus 로고    scopus 로고
    • Nrf2 is a potential therapeutic target in radioresistance in human cancer
    • [86] Zhou, S., Ye, W., Shao, Q., et al. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol./Hematol. 88:3 (2013), 706–715.
    • (2013) Crit. Rev. Oncol./Hematol. , vol.88 , Issue.3 , pp. 706-715
    • Zhou, S.1    Ye, W.2    Shao, Q.3
  • 87
    • 84893474094 scopus 로고    scopus 로고
    • HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib
    • [87] Furfaro, A.L., Piras, S., Passalacqua, M., et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim. Biophys. Acta 1842:4 (2014), 613–622.
    • (2014) Biochim. Biophys. Acta , vol.1842 , Issue.4 , pp. 613-622
    • Furfaro, A.L.1    Piras, S.2    Passalacqua, M.3
  • 88
    • 84941973678 scopus 로고    scopus 로고
    • Elevated expression of Nrf-2 and ABCG2 Involved in multi-drug resistance of lung cancer SP cells
    • [88] Yang, B., Ma, Y.F., Liu, Y., Elevated expression of Nrf-2 and ABCG2 Involved in multi-drug resistance of lung cancer SP cells. Drug Res., 2014.
    • (2014) Drug Res.
    • Yang, B.1    Ma, Y.F.2    Liu, Y.3
  • 89
    • 84908353712 scopus 로고    scopus 로고
    • Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway
    • [89] Xu, X., Zhang, Y., Li, W., et al. Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway. Biochem. Pharmacol. 92:2 (2014), 220–234.
    • (2014) Biochem. Pharmacol. , vol.92 , Issue.2 , pp. 220-234
    • Xu, X.1    Zhang, Y.2    Li, W.3
  • 90
    • 70449674487 scopus 로고    scopus 로고
    • Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2)
    • [90] Arlt, A., Bauer, I., Schafmayer, C., et al. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28:45 (2009), 3983–3996.
    • (2009) Oncogene , vol.28 , Issue.45 , pp. 3983-3996
    • Arlt, A.1    Bauer, I.2    Schafmayer, C.3
  • 91
    • 84896123587 scopus 로고    scopus 로고
    • Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs
    • [91] Wang, X.J., Li, Y., Luo, L., et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic. Biol. Med. 70 (2014), 68–77.
    • (2014) Free Radic. Biol. Med. , vol.70 , pp. 68-77
    • Wang, X.J.1    Li, Y.2    Luo, L.3
  • 92
    • 84962166023 scopus 로고    scopus 로고
    • Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib
    • [92] Furfaro, A.L., Piras, S., Domenicotti, C., et al. Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib. PLoS One, 11(3), 2016, e0152465.
    • (2016) PLoS One , vol.11 , Issue.3 , pp. e0152465
    • Furfaro, A.L.1    Piras, S.2    Domenicotti, C.3
  • 93
    • 84937560694 scopus 로고    scopus 로고
    • Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma
    • [93] Zhang, M., Zhang, C., Zhang, L., et al. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer, 15, 2015, 531.
    • (2015) BMC Cancer , vol.15 , pp. 531
    • Zhang, M.1    Zhang, C.2    Zhang, L.3
  • 94
    • 84899548389 scopus 로고    scopus 로고
    • Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival
    • [94] Ji, L., Wei, Y., Jiang, T., et al. Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int. J. Clin. Exp. Pathol. 7:3 (2014), 1124–1131.
    • (2014) Int. J. Clin. Exp. Pathol. , vol.7 , Issue.3 , pp. 1124-1131
    • Ji, L.1    Wei, Y.2    Jiang, T.3
  • 95
    • 84937910008 scopus 로고    scopus 로고
    • Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma
    • [95] Liew, P.L., Hsu, C.S., Liu, W.M., et al. Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma. Int. J. Clin. Exp. Pathol. 8:5 (2015), 5642–5649.
    • (2015) Int. J. Clin. Exp. Pathol. , vol.8 , Issue.5 , pp. 5642-5649
    • Liew, P.L.1    Hsu, C.S.2    Liu, W.M.3
  • 96
    • 84902174893 scopus 로고    scopus 로고
    • Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma
    • [96] Kawasaki, Y., Okumura, H., Uchikado, Y., et al. Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma. Ann. Surg. Oncol. 21:7 (2014), 2347–2352.
    • (2014) Ann. Surg. Oncol. , vol.21 , Issue.7 , pp. 2347-2352
    • Kawasaki, Y.1    Okumura, H.2    Uchikado, Y.3
  • 97
    • 84941956168 scopus 로고    scopus 로고
    • NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma
    • [97] Cescon, D.W., She, D., Sakashita, S., et al. NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma. Clin. Cancer Res. 21:11 (2015), 2499–2505.
    • (2015) Clin. Cancer Res. , vol.21 , Issue.11 , pp. 2499-2505
    • Cescon, D.W.1    She, D.2    Sakashita, S.3
  • 98
    • 84948126735 scopus 로고    scopus 로고
    • Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival
    • [98] Qian, Z., Zhou, T., Gurguis, C.I., et al. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival. Sci. Rep., 5, 2015, 16889.
    • (2015) Sci. Rep. , vol.5 , pp. 16889
    • Qian, Z.1    Zhou, T.2    Gurguis, C.I.3
  • 99
    • 84894082280 scopus 로고    scopus 로고
    • SNP (-617C>A) in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women
    • [99] Okano, Y., Nezu, U., Enokida, Y., et al. SNP (-617C>A) in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women. PLoS One, 8(9), 2013, e73794.
    • (2013) PLoS One , vol.8 , Issue.9 , pp. e73794
    • Okano, Y.1    Nezu, U.2    Enokida, Y.3
  • 100
    • 84917670738 scopus 로고    scopus 로고
    • Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy
    • [100] Ishikawa, T., Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy. Front. Genet., 5, 2014, 383.
    • (2014) Front. Genet. , vol.5 , pp. 383
    • Ishikawa, T.1
  • 101
    • 84971003205 scopus 로고    scopus 로고
    • Applications of the Keap1-Nrf2 system for gene and cell therapy
    • [101] Kanninen, K.M., Pomeshchik, Y., Leinonen, H., et al. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic. Biol. Med. 88:Pt B (2015), 350–361.
    • (2015) Free Radic. Biol. Med. , vol.88 , pp. 350-361
    • Kanninen, K.M.1    Pomeshchik, Y.2    Leinonen, H.3
  • 102
    • 84858379476 scopus 로고    scopus 로고
    • MicroRNAs in stress signaling and human disease
    • [102] Mendell, J.T., Olson, E.N., MicroRNAs in stress signaling and human disease. Cell 148:6 (2012), 1172–1187.
    • (2012) Cell , vol.148 , Issue.6 , pp. 1172-1187
    • Mendell, J.T.1    Olson, E.N.2
  • 103
    • 78650624101 scopus 로고    scopus 로고
    • RNA interference in the clinic: challenges and future directions
    • [103] Pecot, C.V., Calin, G.A., Coleman, R.L., et al. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11:1 (2011), 59–67.
    • (2011) Nat. Rev. Cancer , vol.11 , Issue.1 , pp. 59-67
    • Pecot, C.V.1    Calin, G.A.2    Coleman, R.L.3
  • 104
    • 84870316076 scopus 로고    scopus 로고
    • Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment
    • [104] Leinonen, H.M., Ruotsalainen, A.K., Maatta, A.M., et al. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment. Cancer Res. 72:23 (2012), 6227–6235.
    • (2012) Cancer Res. , vol.72 , Issue.23 , pp. 6227-6235
    • Leinonen, H.M.1    Ruotsalainen, A.K.2    Maatta, A.M.3
  • 105
    • 79955612814 scopus 로고    scopus 로고
    • Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
    • [105] Tang, X., Wang, H., Fan, L., et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50:11 (2011), 1599–1609.
    • (2011) Free Radic. Biol. Med. , vol.50 , Issue.11 , pp. 1599-1609
    • Tang, X.1    Wang, H.2    Fan, L.3
  • 106
    • 84899858360 scopus 로고    scopus 로고
    • Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
    • [106] Chian, S., Li, Y.Y., Wang, X.J., et al. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prev. 15:6 (2014), 2911–2916.
    • (2014) Asian Pac. J. Cancer Prev. , vol.15 , Issue.6 , pp. 2911-2916
    • Chian, S.1    Li, Y.Y.2    Wang, X.J.3
  • 107
    • 84900299717 scopus 로고    scopus 로고
    • Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo
    • [107] Chian, S., Thapa, R., Chi, Z., et al. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem. Biophys. Res. Commun. 447:4 (2014), 602–608.
    • (2014) Biochem. Biophys. Res. Commun. , vol.447 , Issue.4 , pp. 602-608
    • Chian, S.1    Thapa, R.2    Chi, Z.3
  • 108
    • 27944442079 scopus 로고    scopus 로고
    • Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells
    • [108] Horinaka, M., Yoshida, T., Shiraishi, T., et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24:48 (2005), 7180–7189.
    • (2005) Oncogene , vol.24 , Issue.48 , pp. 7180-7189
    • Horinaka, M.1    Yoshida, T.2    Shiraishi, T.3
  • 109
    • 84949553757 scopus 로고    scopus 로고
    • Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism
    • [109] Xu, H., Yang, T., Liu, X., et al. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci. 144 (2016), 138–147.
    • (2016) Life Sci. , vol.144 , pp. 138-147
    • Xu, H.1    Yang, T.2    Liu, X.3
  • 110
    • 62749165351 scopus 로고    scopus 로고
    • Distribution and biological activities of the flavonoid luteolin
    • [110] Lopez-Lazaro, M., Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 9:1 (2009), 31–59.
    • (2009) Mini Rev. Med. Chem. , vol.9 , Issue.1 , pp. 31-59
    • Lopez-Lazaro, M.1
  • 111
    • 0031738302 scopus 로고    scopus 로고
    • Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans
    • [111] Shimoi, K., Okada, H., Furugori, M., et al. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett. 438:3 (1998), 220–224.
    • (1998) FEBS Lett. , vol.438 , Issue.3 , pp. 220-224
    • Shimoi, K.1    Okada, H.2    Furugori, M.3
  • 112
    • 0029912852 scopus 로고    scopus 로고
    • Flavonoids activate wild-type p53
    • [112] Plaumann, B., Fritsche, M., Rimpler, H., et al. Flavonoids activate wild-type p53. Oncogene 13:8 (1996), 1605–1614.
    • (1996) Oncogene , vol.13 , Issue.8 , pp. 1605-1614
    • Plaumann, B.1    Fritsche, M.2    Rimpler, H.3
  • 113
    • 84902952122 scopus 로고    scopus 로고
    • Cytotoxicity of dietary flavonoids on different human cancer types
    • [113] Sak, K., Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognit. Rev. 8:16 (2014), 122–146.
    • (2014) Pharmacognit. Rev. , vol.8 , Issue.16 , pp. 122-146
    • Sak, K.1
  • 114
    • 84885960813 scopus 로고    scopus 로고
    • Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway
    • [114] Gao, A.M., Ke, Z.P., Shi, F., et al. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 206:1 (2013), 100–108.
    • (2013) Chem. Biol. Interact. , vol.206 , Issue.1 , pp. 100-108
    • Gao, A.M.1    Ke, Z.P.2    Shi, F.3
  • 115
    • 84881525302 scopus 로고    scopus 로고
    • Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway
    • [115] Gao, A.M., Ke, Z.P., Wang, J.N., et al. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34:8 (2013), 1806–1814.
    • (2013) Carcinogenesis , vol.34 , Issue.8 , pp. 1806-1814
    • Gao, A.M.1    Ke, Z.P.2    Wang, J.N.3
  • 116
    • 34248226610 scopus 로고    scopus 로고
    • Apigenin and cancer chemoprevention: progress, potential and promise (review)
    • [116] Patel, D., Shukla, S., Gupta, S., Apigenin and cancer chemoprevention: progress, potential and promise (review). Int. J. Oncol. 30:1 (2007), 233–245.
    • (2007) Int. J. Oncol. , vol.30 , Issue.1 , pp. 233-245
    • Patel, D.1    Shukla, S.2    Gupta, S.3
  • 117
    • 84922226829 scopus 로고    scopus 로고
    • Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
    • [117] Kasala, E.R., Bodduluru, L.N., Madana, R.M., et al. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett. 233:2 (2015), 214–225.
    • (2015) Toxicol. Lett. , vol.233 , Issue.2 , pp. 214-225
    • Kasala, E.R.1    Bodduluru, L.N.2    Madana, R.M.3
  • 118
    • 20344372446 scopus 로고    scopus 로고
    • PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling
    • [118] Weldon, C.B., McKee, A., Collins-Burow, B.M., et al. PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int. J. Oncol. 26:3 (2005), 763–768.
    • (2005) Int. J. Oncol. , vol.26 , Issue.3 , pp. 763-768
    • Weldon, C.B.1    McKee, A.2    Collins-Burow, B.M.3
  • 119
    • 34250017387 scopus 로고    scopus 로고
    • Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells
    • [119] Lee, S.J., Yoon, J.H., Song, K.S., Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochem. Pharmacol. 74:2 (2007), 215–225.
    • (2007) Biochem. Pharmacol. , vol.74 , Issue.2 , pp. 215-225
    • Lee, S.J.1    Yoon, J.H.2    Song, K.S.3
  • 120
    • 0035812747 scopus 로고    scopus 로고
    • Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells
    • [120] Gupta, S., Afaq, F., Mukhtar, H., Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem. Biophys. Res. Commun. 287:4 (2001), 914–920.
    • (2001) Biochem. Biophys. Res. Commun. , vol.287 , Issue.4 , pp. 914-920
    • Gupta, S.1    Afaq, F.2    Mukhtar, H.3
  • 121
    • 2142711101 scopus 로고    scopus 로고
    • Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport
    • [121] Zhang, S., Yang, X., Morris, M.E., Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 65:5 (2004), 1208–1216.
    • (2004) Mol. Pharmacol. , vol.65 , Issue.5 , pp. 1208-1216
    • Zhang, S.1    Yang, X.2    Morris, M.E.3
  • 122
    • 77950632985 scopus 로고    scopus 로고
    • Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression
    • [122] Lin, C.W., Wu, M.J., Liu, I.Y., et al. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J. Agric. Food Chem. 58:7 (2010), 4477–4486.
    • (2010) J. Agric. Food Chem. , vol.58 , Issue.7 , pp. 4477-4486
    • Lin, C.W.1    Wu, M.J.2    Liu, I.Y.3
  • 123
    • 84945181944 scopus 로고    scopus 로고
    • Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin
    • [123] Paredes-Gonzalez, X., Fuentes, F., Jeffery, S., et al. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm. Drug Dispos., 2015.
    • (2015) Biopharm. Drug Dispos.
    • Paredes-Gonzalez, X.1    Fuentes, F.2    Jeffery, S.3
  • 124
    • 84872333308 scopus 로고    scopus 로고
    • Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes
    • [124] Huang, C.S., Lii, C.K., Lin, A.H., et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 87:1 (2013), 167–178.
    • (2013) Arch. Toxicol. , vol.87 , Issue.1 , pp. 167-178
    • Huang, C.S.1    Lii, C.K.2    Lin, A.H.3
  • 125
    • 84890331521 scopus 로고    scopus 로고
    • Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling
    • [125] Pandurangan, A.K., Ananda Sadagopan, S.K., Dharmalingam, P., et al. Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling. Toxicol. Mech. Methods 24:1 (2014), 13–20.
    • (2014) Toxicol. Mech. Methods , vol.24 , Issue.1 , pp. 13-20
    • Pandurangan, A.K.1    Ananda Sadagopan, S.K.2    Dharmalingam, P.3
  • 126
    • 24644435394 scopus 로고    scopus 로고
    • Therapeutic potential of wogonin: a naturally occurring flavonoid
    • [126] Tai, M.C., Tsang, S.Y., Chang, L.Y., et al. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev. 11:2 (2005), 141–150.
    • (2005) CNS Drug Rev. , vol.11 , Issue.2 , pp. 141-150
    • Tai, M.C.1    Tsang, S.Y.2    Chang, L.Y.3
  • 127
    • 84884815897 scopus 로고    scopus 로고
    • Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response
    • [127] Zhong, Y., Zhang, F., Sun, Z., et al. Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol. Carcinog. 52:10 (2013), 824–834.
    • (2013) Mol. Carcinog. , vol.52 , Issue.10 , pp. 824-834
    • Zhong, Y.1    Zhang, F.2    Sun, Z.3
  • 128
    • 84897497463 scopus 로고    scopus 로고
    • Wogonin-enhanced reactive oxygen species-induced apoptosis and potentiated cytotoxic effects of chemotherapeutic agents by suppression Nrf2-mediated signaling in HepG2 cells
    • [128] Qian, C., Wang, Y., Zhong, Y., et al. Wogonin-enhanced reactive oxygen species-induced apoptosis and potentiated cytotoxic effects of chemotherapeutic agents by suppression Nrf2-mediated signaling in HepG2 cells. Free Radic. Res. 48:5 (2014), 607–621.
    • (2014) Free Radic. Res. , vol.48 , Issue.5 , pp. 607-621
    • Qian, C.1    Wang, Y.2    Zhong, Y.3
  • 129
    • 84903760264 scopus 로고    scopus 로고
    • NF-kappaB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis
    • [129] Yao, J., Zhao, L., Zhao, Q., et al. NF-kappaB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis., 5, 2014, e1283.
    • (2014) Cell Death Dis. , vol.5 , pp. e1283
    • Yao, J.1    Zhao, L.2    Zhao, Q.3
  • 130
    • 84888427700 scopus 로고    scopus 로고
    • 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells
    • [130] Lim, J., Lee, S.H., Cho, S., et al. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells 36:4 (2013), 340–346.
    • (2013) Mol. Cells , vol.36 , Issue.4 , pp. 340-346
    • Lim, J.1    Lee, S.H.2    Cho, S.3
  • 131
    • 0034736107 scopus 로고    scopus 로고
    • Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities
    • [131] Tomazela, D.M., Pupo, M.T., Passador, E.A., et al. Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities. Phytochemistry 55:6 (2000), 643–651.
    • (2000) Phytochemistry , vol.55 , Issue.6 , pp. 643-651
    • Tomazela, D.M.1    Pupo, M.T.2    Passador, E.A.3
  • 132
    • 84946403169 scopus 로고    scopus 로고
    • 3’,4’,5’,5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway
    • [132] Hou, X., Bai, X., Gou, X., et al. 3’,4’,5’,5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway. Mol. Cells 38:5 (2015), 396–401.
    • (2015) Mol. Cells , vol.38 , Issue.5 , pp. 396-401
    • Hou, X.1    Bai, X.2    Gou, X.3
  • 133
    • 70350014642 scopus 로고    scopus 로고
    • Flavones as colorectal cancer chemopreventive agents–phenol-o-methylation enhances efficacy
    • [133] Cai, H., Sale, S., Schmid, R., et al. Flavones as colorectal cancer chemopreventive agents–phenol-o-methylation enhances efficacy. Cancer Prev. Res. 2:8 (2009), 743–750.
    • (2009) Cancer Prev. Res. , vol.2 , Issue.8 , pp. 743-750
    • Cai, H.1    Sale, S.2    Schmid, R.3
  • 134
    • 79952254710 scopus 로고    scopus 로고
    • Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3’,4’,5’,5,7-pentamethoxyflavone and tricin (4’,5,7-trihydroxy-3’,5’-dimethoxyflavone)
    • [134] Cai, H., Sale, S., Britton, R.G., et al. Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3’,4’,5’,5,7-pentamethoxyflavone and tricin (4’,5,7-trihydroxy-3’,5’-dimethoxyflavone). Cancer Chemother. Pharm. 67:2 (2011), 255–263.
    • (2011) Cancer Chemother. Pharm. , vol.67 , Issue.2 , pp. 255-263
    • Cai, H.1    Sale, S.2    Britton, R.G.3
  • 135
    • 33845964413 scopus 로고    scopus 로고
    • Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate
    • [135] Kweon, M.H., Adhami, V.M., Lee, J.S., et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281:44 (2006), 33761–33772.
    • (2006) J. Biol. Chem. , vol.281 , Issue.44 , pp. 33761-33772
    • Kweon, M.H.1    Adhami, V.M.2    Lee, J.S.3
  • 136
    • 84928673826 scopus 로고    scopus 로고
    • Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways
    • [136] Yang, G.Z., Wang, Z.J., Bai, F., et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 20:4 (2015), 6626–6639.
    • (2015) Molecules , vol.20 , Issue.4 , pp. 6626-6639
    • Yang, G.Z.1    Wang, Z.J.2    Bai, F.3
  • 137
    • 84988443152 scopus 로고    scopus 로고
    • Enhancement of Cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate
    • [137] Kilic, U., Sahin, K., Tuzcu, M., et al. Enhancement of Cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate. Front. Nutr., 1, 2014, 28.
    • (2014) Front. Nutr. , vol.1 , pp. 28
    • Kilic, U.1    Sahin, K.2    Tuzcu, M.3
  • 138
    • 84861014606 scopus 로고    scopus 로고
    • EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes
    • [138] Han, S.G., Han, S.S., Toborek, M., et al. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol. 261:2 (2012), 181–188.
    • (2012) Toxicol. Appl. Pharmacol. , vol.261 , Issue.2 , pp. 181-188
    • Han, S.G.1    Han, S.S.2    Toborek, M.3
  • 139
    • 84887623713 scopus 로고    scopus 로고
    • Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy
    • [139] Lecumberri, E., Dupertuis, Y.M., Miralbell, R., et al. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 32:6 (2013), 894–903.
    • (2013) Clin. Nutr. , vol.32 , Issue.6 , pp. 894-903
    • Lecumberri, E.1    Dupertuis, Y.M.2    Miralbell, R.3
  • 140
    • 79959925166 scopus 로고    scopus 로고
    • Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability
    • [140] Ge, J., Tan, B.X., Chen, Y., et al. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J. Mol. Med. 89:6 (2011), 595–602.
    • (2011) J. Mol. Med. , vol.89 , Issue.6 , pp. 595-602
    • Ge, J.1    Tan, B.X.2    Chen, Y.3
  • 141
    • 83255192527 scopus 로고    scopus 로고
    • Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis
    • [141] Kilani-Jaziri, S., Frachet, V., Bhouri, W., et al. Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug Chem. Toxicol. 35:1 (2012), 1–10.
    • (2012) Drug Chem. Toxicol. , vol.35 , Issue.1 , pp. 1-10
    • Kilani-Jaziri, S.1    Frachet, V.2    Bhouri, W.3
  • 142
    • 7444272077 scopus 로고    scopus 로고
    • Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3’-kinase activity
    • [142] Bagli, E., Stefaniotou, M., Morbidelli, L., et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3’-kinase activity. Cancer Res. 64:21 (2004), 7936–7946.
    • (2004) Cancer Res. , vol.64 , Issue.21 , pp. 7936-7946
    • Bagli, E.1    Stefaniotou, M.2    Morbidelli, L.3
  • 143
    • 34247512973 scopus 로고    scopus 로고
    • A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells
    • [143] Ju, W., Wang, X., Shi, H., et al. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol. Pharm. 71:5 (2007), 1381–1388.
    • (2007) Mol. Pharm. , vol.71 , Issue.5 , pp. 1381-1388
    • Ju, W.1    Wang, X.2    Shi, H.3
  • 144
    • 55249085887 scopus 로고    scopus 로고
    • Anti-carcinogenic effects of the flavonoid luteolin
    • [144] Seelinger, G., Merfort, I., Wolfle, U., et al. Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:10 (2008), 2628–2651.
    • (2008) Molecules , vol.13 , Issue.10 , pp. 2628-2651
    • Seelinger, G.1    Merfort, I.2    Wolfle, U.3
  • 145
    • 84864989279 scopus 로고    scopus 로고
    • Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells
    • [145] Tsai, C.F., Yeh, W.L., Huang, S.M., et al. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int. J. Mol. Sci. 13:8 (2012), 9877–9892.
    • (2012) Int. J. Mol. Sci. , vol.13 , Issue.8 , pp. 9877-9892
    • Tsai, C.F.1    Yeh, W.L.2    Huang, S.M.3
  • 146
    • 84888881746 scopus 로고    scopus 로고
    • Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes
    • [146] Chen, Y., Xue, P., Hou, Y., et al. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol. Appl. Pharmacol. 273:3 (2013), 435–441.
    • (2013) Toxicol. Appl. Pharmacol. , vol.273 , Issue.3 , pp. 435-441
    • Chen, Y.1    Xue, P.2    Hou, Y.3
  • 147
    • 84937128067 scopus 로고    scopus 로고
    • Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis
    • [147] Verma, A.K., Yadav, A., Dewangan, J., et al. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox Biol. 6 (2015), 80–92.
    • (2015) Redox Biol. , vol.6 , pp. 80-92
    • Verma, A.K.1    Yadav, A.2    Dewangan, J.3
  • 148
    • 84952665733 scopus 로고    scopus 로고
    • Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells
    • [148] Peng, H., Wang, H., Xue, P., et al. Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells. Toxicol. Appl. Pharmacol., 2015.
    • (2015) Toxicol. Appl. Pharmacol.
    • Peng, H.1    Wang, H.2    Xue, P.3
  • 149
    • 79953225194 scopus 로고    scopus 로고
    • Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization
    • [149] Kawai, Y., Garduno, L., Theodore, M., et al. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286:9 (2011), 7629–7640.
    • (2011) J. Biol. Chem. , vol.286 , Issue.9 , pp. 7629-7640
    • Kawai, Y.1    Garduno, L.2    Theodore, M.3
  • 150
    • 84988363295 scopus 로고    scopus 로고
    • Compositions for Modulating NRF2-ARE Activity and their Methods of Use. International Publication Number: WO2015/009879A1, USA
    • [150] J. Pi, M.E. Andersen, P. Xue, et al., Compositions for Modulating NRF2-ARE Activity and their Methods of Use. International Publication Number: WO2015/009879A1, USA, 2015.
    • (2015)
    • Pi, J.1    Andersen, M.E.2    Xue, P.3
  • 151
    • 84988402989 scopus 로고    scopus 로고
    • NRF2 Inhibitors and Compositions for Treating Mycobacterial Infections. International Publication Number: WO2015/009881A1, USA
    • [151] B. Nelson, J. Pi, M.E. Andersen, NRF2 Inhibitors and Compositions for Treating Mycobacterial Infections. International Publication Number: WO2015/009881A1, USA, 2015.
    • (2015)
    • Nelson, B.1    Pi, J.2    Andersen, M.E.3
  • 152
    • 12144289484 scopus 로고    scopus 로고
    • Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
    • [152] Tarumoto, T., Nagai, T., Ohmine, K., et al. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp. Hematol. 32:4 (2004), 375–381.
    • (2004) Exp. Hematol. , vol.32 , Issue.4 , pp. 375-381
    • Tarumoto, T.1    Nagai, T.2    Ohmine, K.3
  • 153
    • 78650738673 scopus 로고    scopus 로고
    • Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2
    • [153] Wagner, A.E., Boesch-Saadatmandi, C., Breckwoldt, D., et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2. BMC Complement. Altern. Med., 11, 2011, 1.
    • (2011) BMC Complement. Altern. Med. , vol.11 , pp. 1
    • Wagner, A.E.1    Boesch-Saadatmandi, C.2    Breckwoldt, D.3
  • 154
    • 84929708263 scopus 로고    scopus 로고
    • Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals
    • [154] Kim, S.R., Ha, Y.M., Kim, Y.M., et al. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem. Pharmacol. 95:4 (2015), 279–289.
    • (2015) Biochem. Pharmacol. , vol.95 , Issue.4 , pp. 279-289
    • Kim, S.R.1    Ha, Y.M.2    Kim, Y.M.3
  • 155
    • 0029986515 scopus 로고    scopus 로고
    • Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro
    • [155] Kurbacher, C.M., Wagner, U., Kolster, B., et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 103:2 (1996), 183–189.
    • (1996) Cancer Lett. , vol.103 , Issue.2 , pp. 183-189
    • Kurbacher, C.M.1    Wagner, U.2    Kolster, B.3
  • 156
    • 0032722620 scopus 로고    scopus 로고
    • Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells
    • [156] Witenberg, B., Kletter, Y., Kalir, H.H., et al. Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells. Radiat. Res. 152:5 (1999), 468–478.
    • (1999) Radiat. Res. , vol.152 , Issue.5 , pp. 468-478
    • Witenberg, B.1    Kletter, Y.2    Kalir, H.H.3
  • 157
    • 84894059298 scopus 로고    scopus 로고
    • Review of high-dose intravenous vitamin C as an anticancer agent
    • [157] Wilson, M.K., Baguley, B.C., Wall, C., et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia-Pac. J. Clin. Oncol. 10:1 (2014), 22–37.
    • (2014) Asia-Pac. J. Clin. Oncol. , vol.10 , Issue.1 , pp. 22-37
    • Wilson, M.K.1    Baguley, B.C.2    Wall, C.3
  • 158
    • 84877846556 scopus 로고    scopus 로고
    • RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
    • [158] Wang, H., Liu, K., Geng, M., et al. RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73:10 (2013), 3097–3108.
    • (2013) Cancer Res. , vol.73 , Issue.10 , pp. 3097-3108
    • Wang, H.1    Liu, K.2    Geng, M.3
  • 159
    • 37649017714 scopus 로고    scopus 로고
    • Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha
    • [159] Wang, X.J., Hayes, J.D., Henderson, C.J., et al. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc. Natl. Acad. Sci. USA 104:49 (2007), 19589–19594.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , Issue.49 , pp. 19589-19594
    • Wang, X.J.1    Hayes, J.D.2    Henderson, C.J.3
  • 160
    • 84906939255 scopus 로고    scopus 로고
    • Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
    • [160] Valenzuela, M., Glorieux, C., Stockis, J., et al. Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells. Br. J. Cancer 111:5 (2014), 874–882.
    • (2014) Br. J. Cancer , vol.111 , Issue.5 , pp. 874-882
    • Valenzuela, M.1    Glorieux, C.2    Stockis, J.3
  • 161
    • 84927175614 scopus 로고    scopus 로고
    • Unlocking the potential of retinoic acid in anticancer therapy
    • [161] Schenk, T., Stengel, S., Zelent, A., Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer 111:11 (2014), 2039–2045.
    • (2014) Br. J. Cancer , vol.111 , Issue.11 , pp. 2039-2045
    • Schenk, T.1    Stengel, S.2    Zelent, A.3
  • 162
    • 34347384854 scopus 로고    scopus 로고
    • Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy
    • [162] Zhou, G.B., Zhang, J., Wang, Z.Y., et al. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 362:1482 (2007), 959–971.
    • (2007) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. , vol.362 , Issue.1482 , pp. 959-971
    • Zhou, G.B.1    Zhang, J.2    Wang, Z.Y.3
  • 163
    • 84951923640 scopus 로고    scopus 로고
    • Combination therapies improve the anticancer activities of retinoids in neuroblastoma
    • [163] Cheung, B.B., Combination therapies improve the anticancer activities of retinoids in neuroblastoma. World J. Clin. Oncol. 6:6 (2015), 212–215.
    • (2015) World J. Clin. Oncol. , vol.6 , Issue.6 , pp. 212-215
    • Cheung, B.B.1
  • 164
    • 84944730962 scopus 로고    scopus 로고
    • A small molecule inhibits deregulated NRF2 transcriptional activity in cancer
    • [164] Bollong, M.J., Yun, H., Sherwood, L., et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem. Biol., 2015.
    • (2015) ACS Chem. Biol.
    • Bollong, M.J.1    Yun, H.2    Sherwood, L.3
  • 165
    • 79952122321 scopus 로고    scopus 로고
    • Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
    • [165] Ren, D., Villeneuve, N.F., Jiang, T., et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 108:4 (2011), 1433–1438.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , Issue.4 , pp. 1433-1438
    • Ren, D.1    Villeneuve, N.F.2    Jiang, T.3
  • 166
    • 84918576027 scopus 로고    scopus 로고
    • Oncogenic KRAS confers chemoresistance by upregulating NRF2
    • [166] Tao, S., Wang, S., Moghaddam, S.J., et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 74:24 (2014), 7430–7441.
    • (2014) Cancer Res. , vol.74 , Issue.24 , pp. 7430-7441
    • Tao, S.1    Wang, S.2    Moghaddam, S.J.3
  • 167
    • 84919663660 scopus 로고    scopus 로고
    • Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2
    • [167] Olayanju, A., Copple, I.M., Bryan, H.K., et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 78 (2015), 202–212.
    • (2015) Free Radic. Biol. Med. , vol.78 , pp. 202-212
    • Olayanju, A.1    Copple, I.M.2    Bryan, H.K.3
  • 168
    • 84882770622 scopus 로고    scopus 로고
    • Molecular evidence of cryptotanshinone for treatment and prevention of human cancer
    • [168] Chen, W., Lu, Y., Chen, G., et al. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anti-Cancer Agents Med. Chem. 13:7 (2013), 979–987.
    • (2013) Anti-Cancer Agents Med. Chem. , vol.13 , Issue.7 , pp. 979-987
    • Chen, W.1    Lu, Y.2    Chen, G.3
  • 169
    • 84945950271 scopus 로고    scopus 로고
    • Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro
    • [169] Li, W., Saud, S.M., Young, M.R., et al. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol. Cell. Biochem. 406:1–2 (2015), 63–73.
    • (2015) Mol. Cell. Biochem. , vol.406 , Issue.1-2 , pp. 63-73
    • Li, W.1    Saud, S.M.2    Young, M.R.3
  • 170
    • 84946711784 scopus 로고    scopus 로고
    • Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling
    • [170] Li, S., Wang, H., Hong, L., et al. Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling. Cancer Biol. Ther. 16:1 (2015), 176–184.
    • (2015) Cancer Biol. Ther. , vol.16 , Issue.1 , pp. 176-184
    • Li, S.1    Wang, H.2    Hong, L.3
  • 171
    • 84986260311 scopus 로고    scopus 로고
    • Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells
    • [171] Wu, C.F., Klauck, S.M., Efferth, T., Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells. Arch. Toxicol., 2015.
    • (2015) Arch. Toxicol.
    • Wu, C.F.1    Klauck, S.M.2    Efferth, T.3
  • 172
    • 84941553293 scopus 로고    scopus 로고
    • Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 Pathway [J], Cellular physiology and biochemistry
    • [172] Xia, C., Bai, X., Hou, X., et al. Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 Pathway [J], Cellular physiology and biochemistry. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 37:2 (2015), 816–824.
    • (2015) Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. , vol.37 , Issue.2 , pp. 816-824
    • Xia, C.1    Bai, X.2    Hou, X.3
  • 173
    • 84864405467 scopus 로고    scopus 로고
    • An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses
    • [173] Lee, S., Lim, M.J., Kim, M.H., et al. An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic. Biol. Med. 53:4 (2012), 807–816.
    • (2012) Free Radic. Biol. Med. , vol.53 , Issue.4 , pp. 807-816
    • Lee, S.1    Lim, M.J.2    Kim, M.H.3
  • 174
    • 84880396632 scopus 로고    scopus 로고
    • Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways
    • [174] Do, M.T., Kim, H.G., Khanal, T., et al. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol. 271:2 (2013), 229–238.
    • (2013) Toxicol. Appl. Pharmacol. , vol.271 , Issue.2 , pp. 229-238
    • Do, M.T.1    Kim, H.G.2    Khanal, T.3
  • 175
    • 84904157844 scopus 로고    scopus 로고
    • Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
    • [175] Do, M.T., Kim, H.G., Choi, J.H., et al. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 74 (2014), 21–34.
    • (2014) Free Radic. Biol. Med. , vol.74 , pp. 21-34
    • Do, M.T.1    Kim, H.G.2    Choi, J.H.3
  • 176
    • 84939977745 scopus 로고    scopus 로고
    • Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia
    • [176] Ashabi, G., Khalaj, L., Khodagholi, F., et al. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab. Brain Dis. 30:3 (2015), 747–754.
    • (2015) Metab. Brain Dis. , vol.30 , Issue.3 , pp. 747-754
    • Ashabi, G.1    Khalaj, L.2    Khodagholi, F.3
  • 177
    • 84982074226 scopus 로고    scopus 로고
    • Repurposing metformin for cancer treatment: current clinical studies
    • [177] Chae, Y.K., Arya, A., Malecek, M.K., et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget, 2016.
    • (2016) Oncotarget
    • Chae, Y.K.1    Arya, A.2    Malecek, M.K.3
  • 178
    • 84978304034 scopus 로고    scopus 로고
    • Combinational strategies of metformin and chemotherapy in cancers
    • [178] Zhang, H.H., Guo, X.L., Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother. Pharm., 2016.
    • (2016) Cancer Chemother. Pharm.
    • Zhang, H.H.1    Guo, X.L.2
  • 179
    • 80053417028 scopus 로고    scopus 로고
    • Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
    • [179] Tomic, T., Botton, T., Cerezo, M., et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis., 2, 2011, e199.
    • (2011) Cell Death Dis. , vol.2 , pp. e199
    • Tomic, T.1    Botton, T.2    Cerezo, M.3
  • 180
    • 84859360525 scopus 로고    scopus 로고
    • Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
    • [180] Shi, W.Y., Xiao, D., Wang, L., et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis., 3, 2012, e275.
    • (2012) Cell Death Dis. , vol.3 , pp. e275
    • Shi, W.Y.1    Xiao, D.2    Wang, L.3
  • 182
    • 84958825037 scopus 로고    scopus 로고
    • Stress management by autophagy: Implications for chemoresistance
    • [182] Huang, Z., Zhou, L., Chen, Z., et al. Stress management by autophagy: Implications for chemoresistance. Int. J. Cancer 139:1 (2016), 23–32.
    • (2016) Int. J. Cancer , vol.139 , Issue.1 , pp. 23-32
    • Huang, Z.1    Zhou, L.2    Chen, Z.3
  • 183
    • 84893139463 scopus 로고    scopus 로고
    • A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity
    • [183] Limonciel, A., Jennings, P., A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins 6:1 (2014), 371–379.
    • (2014) Toxins , vol.6 , Issue.1 , pp. 371-379
    • Limonciel, A.1    Jennings, P.2
  • 184
    • 29544433884 scopus 로고    scopus 로고
    • A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat
    • [184] Marin-Kuan, M., Nestler, S., Verguet, C., et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol. Sci.: Off. J. Soc. Toxicol. 89:1 (2006), 120–134.
    • (2006) Toxicol. Sci.: Off. J. Soc. Toxicol. , vol.89 , Issue.1 , pp. 120-134
    • Marin-Kuan, M.1    Nestler, S.2    Verguet, C.3
  • 185
    • 67649208209 scopus 로고    scopus 로고
    • Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses
    • [185] Cavin, C., Delatour, T., Marin-Kuan, M., et al. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol. Sci.: Off. J. Soc. Toxicol. 110:1 (2009), 84–94.
    • (2009) Toxicol. Sci.: Off. J. Soc. Toxicol. , vol.110 , Issue.1 , pp. 84-94
    • Cavin, C.1    Delatour, T.2    Marin-Kuan, M.3
  • 186
    • 70349157178 scopus 로고    scopus 로고
    • Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells
    • [186] Boesch-Saadatmandi, C., Wagner, A.E., Graeser, A.C., et al. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93:5 (2009), 547–554.
    • (2009) J. Anim. Physiol. Anim. Nutr. , vol.93 , Issue.5 , pp. 547-554
    • Boesch-Saadatmandi, C.1    Wagner, A.E.2    Graeser, A.C.3
  • 187
    • 84885177241 scopus 로고    scopus 로고
    • Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity
    • [187] Arlt, A., Sebens, S., Krebs, S., et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:40 (2013), 4825–4835.
    • (2013) Oncogene , vol.32 , Issue.40 , pp. 4825-4835
    • Arlt, A.1    Sebens, S.2    Krebs, S.3
  • 188
    • 79954610780 scopus 로고    scopus 로고
    • Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression
    • [188] Boettler, U., Sommerfeld, K., Volz, N., et al. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J. Nutr. Biochem. 22:5 (2011), 426–440.
    • (2011) J. Nutr. Biochem. , vol.22 , Issue.5 , pp. 426-440
    • Boettler, U.1    Sommerfeld, K.2    Volz, N.3
  • 189
    • 84958567964 scopus 로고    scopus 로고
    • Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration
    • [189] Liao, J.C., Lee, K.T., You, B.J., et al. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr. Res., 59, 2015, 29884.
    • (2015) Food Nutr. Res. , vol.59 , pp. 29884
    • Liao, J.C.1    Lee, K.T.2    You, B.J.3
  • 190
    • 84946474228 scopus 로고    scopus 로고
    • Triptolide inhibits lung cancer cell migration, invasion, and metastasis
    • discussion 1824-5
    • [190] Reno, T.A., Kim, J.Y., Raz, D.J., Triptolide inhibits lung cancer cell migration, invasion, and metastasis. Ann. Thorac. Surg. 100:5 (2015), 1817–1824 discussion 1824-5.
    • (2015) Ann. Thorac. Surg. , vol.100 , Issue.5 , pp. 1817-1824
    • Reno, T.A.1    Kim, J.Y.2    Raz, D.J.3
  • 191
    • 84929088527 scopus 로고    scopus 로고
    • Triptolide inhibits human breast cancer MCF-7 cell growth via downregulation of the ERalpha-mediated signaling pathway
    • [191] Li, H., Pan, G.F., Jiang, Z.Z., et al. Triptolide inhibits human breast cancer MCF-7 cell growth via downregulation of the ERalpha-mediated signaling pathway. Acta Pharmacol. Sin. 36:5 (2015), 606–613.
    • (2015) Acta Pharmacol. Sin. , vol.36 , Issue.5 , pp. 606-613
    • Li, H.1    Pan, G.F.2    Jiang, Z.Z.3
  • 192
    • 84919924742 scopus 로고    scopus 로고
    • Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2
    • [192] Wang, B.Y., Cao, J., Chen, J.W., et al. Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2. Med. Oncol., 31(11), 2014, 270.
    • (2014) Med. Oncol. , vol.31 , Issue.11 , pp. 270
    • Wang, B.Y.1    Cao, J.2    Chen, J.W.3
  • 193
    • 84937440147 scopus 로고    scopus 로고
    • Targets and molecular mechanisms of triptolide in cancer therapy
    • [193] Meng, C., Zhu, H., Song, H., et al. Targets and molecular mechanisms of triptolide in cancer therapy. Chin. J. Cancer Res. 26:5 (2014), 622–626.
    • (2014) Chin. J. Cancer Res. , vol.26 , Issue.5 , pp. 622-626
    • Meng, C.1    Zhu, H.2    Song, H.3
  • 194
    • 84922634432 scopus 로고    scopus 로고
    • Synergistic antitumor effect of triptolide and cisplatin in cisplatin resistant human bladder cancer cells
    • [194] Ho, J.N., Byun, S.S., Lee, S., et al. Synergistic antitumor effect of triptolide and cisplatin in cisplatin resistant human bladder cancer cells. J. Urol. 193:3 (2015), 1016–1022.
    • (2015) J. Urol. , vol.193 , Issue.3 , pp. 1016-1022
    • Ho, J.N.1    Byun, S.S.2    Lee, S.3
  • 195
    • 84891798669 scopus 로고    scopus 로고
    • Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors
    • [195] Liu, Y., Chen, F., Wang, S., et al. Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors. Cell Death Dis., 4, 2013, e948.
    • (2013) Cell Death Dis. , vol.4 , pp. e948
    • Liu, Y.1    Chen, F.2    Wang, S.3
  • 196
    • 84988577805 scopus 로고    scopus 로고
    • Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway
    • [196] Yu, H., Shi, L., Zhao, S., et al. Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc. Toxicol., 2015.
    • (2015) Cardiovasc. Toxicol.
    • Yu, H.1    Shi, L.2    Zhao, S.3
  • 197
    • 84861144099 scopus 로고    scopus 로고
    • Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms
    • [197] Zhou, Z.L., Yang, Y.X., Ding, J., et al. Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms. Nat. Prod. Rep. 29:4 (2012), 457–475.
    • (2012) Nat. Prod. Rep. , vol.29 , Issue.4 , pp. 457-475
    • Zhou, Z.L.1    Yang, Y.X.2    Ding, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.