-
1
-
-
0028061444
-
Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region
-
[1] Moi, P., Chan, K., Asunis, I., et al. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 91:21 (1994), 9926–9930.
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, Issue.21
, pp. 9926-9930
-
-
Moi, P.1
Chan, K.2
Asunis, I.3
-
2
-
-
0031577292
-
An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
-
[2] Itoh, K., Chiba, T., Takahashi, S., et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:2 (1997), 313–322.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.236
, Issue.2
, pp. 313-322
-
-
Itoh, K.1
Chiba, T.2
Takahashi, S.3
-
3
-
-
0032953192
-
Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
-
[3] Itoh, K., Wakabayashi, N., Katoh, Y., et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13:1 (1999), 76–86.
-
(1999)
Genes Dev.
, vol.13
, Issue.1
, pp. 76-86
-
-
Itoh, K.1
Wakabayashi, N.2
Katoh, Y.3
-
4
-
-
0037055265
-
Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors
-
[4] Motohashi, H., O'Connor, T., Katsuoka, F., et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–2 (2002), 1–12.
-
(2002)
Gene
, vol.294
, Issue.1-2
, pp. 1-12
-
-
Motohashi, H.1
O'Connor, T.2
Katsuoka, F.3
-
5
-
-
77649271223
-
The rise of antioxidant signaling–the evolution and hormetic actions of Nrf2
-
[5] Maher, J., Yamamoto, M., The rise of antioxidant signaling–the evolution and hormetic actions of Nrf2. Toxicol. Appl. Pharmacol. 244:1 (2010), 4–15.
-
(2010)
Toxicol. Appl. Pharmacol.
, vol.244
, Issue.1
, pp. 4-15
-
-
Maher, J.1
Yamamoto, M.2
-
6
-
-
0032827002
-
Regulatory mechanisms of cellular response to oxidative stress
-
[6] Itoh, K., Ishii, T., Wakabayashi, N., et al. Regulatory mechanisms of cellular response to oxidative stress. Free Radic. Res. 31:4 (1999), 319–324.
-
(1999)
Free Radic. Res.
, vol.31
, Issue.4
, pp. 319-324
-
-
Itoh, K.1
Ishii, T.2
Wakabayashi, N.3
-
7
-
-
84971281708
-
Role of Nrf2 in the pathogenesis of atherosclerosis
-
[7] Mimura, J., Itoh, K., Role of Nrf2 in the pathogenesis of atherosclerosis. Free Radic. Biol. Med. 88:Pt B (2015), 221–232.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 221-232
-
-
Mimura, J.1
Itoh, K.2
-
8
-
-
84944384115
-
Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2
-
[8] Tao, S., Park, S.L., de la Vega, M.R., et al. Systemic administration of the apocarotenoid bixin protects skin against solar UV-induced damage through activation of NRF2. Free Radic. Biol. Med. 89 (2015), 690–700.
-
(2015)
Free Radic. Biol. Med.
, vol.89
, pp. 690-700
-
-
Tao, S.1
Park, S.L.2
de la Vega, M.R.3
-
9
-
-
84897421970
-
The Nrf2 regulatory network provides an interface between redox and intermediary metabolism
-
[9] Hayes, J.D., Dinkova-Kostova, A.T., The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 39:4 (2014), 199–218.
-
(2014)
Trends Biochem. Sci.
, vol.39
, Issue.4
, pp. 199-218
-
-
Hayes, J.D.1
Dinkova-Kostova, A.T.2
-
10
-
-
84929614470
-
Targeting nrf2 signaling to combat chemoresistance
-
[10] No, J.H., Kim, Y.B., Song, Y.S., Targeting nrf2 signaling to combat chemoresistance. J. Cancer Prev. 19:2 (2014), 111–117.
-
(2014)
J. Cancer Prev.
, vol.19
, Issue.2
, pp. 111-117
-
-
No, J.H.1
Kim, Y.B.2
Song, Y.S.3
-
11
-
-
33644649421
-
Nrf2: a potential molecular target for cancer chemoprevention by natural compounds
-
[11] Jeong, W.S., Jun, M., Kong, A.N., Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid. Redox Signal. 8:1–2 (2006), 99–106.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, Issue.1-2
, pp. 99-106
-
-
Jeong, W.S.1
Jun, M.2
Kong, A.N.3
-
12
-
-
84905218117
-
The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer
-
[12] Hayden, A., Douglas, J., Sommerlad, M., et al. The Nrf2 transcription factor contributes to resistance to cisplatin in bladder cancer. Urol. Oncol. 32:6 (2014), 806–814.
-
(2014)
Urol. Oncol.
, vol.32
, Issue.6
, pp. 806-814
-
-
Hayden, A.1
Douglas, J.2
Sommerlad, M.3
-
13
-
-
85027913464
-
Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?
-
[13] Wu, T., Harder, B.G., Wong, P.K., et al. Oxidative stress, mammospheres and Nrf2-new implication for breast cancer therapy?. Mol. Carcinog., 2014.
-
(2014)
Mol. Carcinog.
-
-
Wu, T.1
Harder, B.G.2
Wong, P.K.3
-
14
-
-
79960958309
-
Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer
-
[14] Konstantinopoulos, P.A., Spentzos, D., Fountzilas, E., et al. Keap1 mutations and Nrf2 pathway activation in epithelial ovarian cancer. Cancer Res. 71:15 (2011), 5081–5089.
-
(2011)
Cancer Res.
, vol.71
, Issue.15
, pp. 5081-5089
-
-
Konstantinopoulos, P.A.1
Spentzos, D.2
Fountzilas, E.3
-
15
-
-
77954351631
-
High levels of Nrf2 determine chemoresistance in type II endometrial cancer
-
[15] Jiang, T., Chen, N., Zhao, F., et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 70:13 (2010), 5486–5496.
-
(2010)
Cancer Res.
, vol.70
, Issue.13
, pp. 5486-5496
-
-
Jiang, T.1
Chen, N.2
Zhao, F.3
-
16
-
-
38149003106
-
Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance
-
[16] Cho, J.M., Manandhar, S., Lee, H.R., et al. Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer Lett. 260:1–2 (2008), 96–108.
-
(2008)
Cancer Lett.
, vol.260
, Issue.1-2
, pp. 96-108
-
-
Cho, J.M.1
Manandhar, S.2
Lee, H.R.3
-
17
-
-
84861389705
-
E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells
-
[17] Kim, W.D., Kim, Y.W., Cho, I.J., et al. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J. Cell Sci. 125:Pt 5 (2012), 1284–1295.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 1284-1295
-
-
Kim, W.D.1
Kim, Y.W.2
Cho, I.J.3
-
18
-
-
76649089973
-
Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth
-
[18] Zhang, P., Singh, A., Yegnasubramanian, S., et al. Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Mol. Cancer Ther. 9:2 (2010), 336–346.
-
(2010)
Mol. Cancer Ther.
, vol.9
, Issue.2
, pp. 336-346
-
-
Zhang, P.1
Singh, A.2
Yegnasubramanian, S.3
-
19
-
-
84928228415
-
Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells
-
[19] Sukumari-Ramesh, S., Prasad, N., Alleyne, C.H., et al. Overexpression of Nrf2 attenuates Carmustine-induced cytotoxicity in U87MG human glioma cells. BMC Cancer, 15, 2015, 118.
-
(2015)
BMC Cancer
, vol.15
, pp. 118
-
-
Sukumari-Ramesh, S.1
Prasad, N.2
Alleyne, C.H.3
-
20
-
-
10044228504
-
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
-
[20] Zhang, D.D., Lo, S.C., Cross, J.V., et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24:24 (2004), 10941–10953.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.24
, pp. 10941-10953
-
-
Zhang, D.D.1
Lo, S.C.2
Cross, J.V.3
-
21
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
[21] Kobayashi, A., Kang, M.I., Okawa, H., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:16 (2004), 7130–7139.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.16
, pp. 7130-7139
-
-
Kobayashi, A.1
Kang, M.I.2
Okawa, H.3
-
22
-
-
4544294365
-
The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase
-
[22] Cullinan, S.B., Gordan, J.D., Jin, J., et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24:19 (2004), 8477–8486.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.19
, pp. 8477-8486
-
-
Cullinan, S.B.1
Gordan, J.D.2
Jin, J.3
-
23
-
-
11144264663
-
BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
-
[23] Furukawa, M., Xiong, Y., BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25:1 (2005), 162–171.
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.1
, pp. 162-171
-
-
Furukawa, M.1
Xiong, Y.2
-
24
-
-
84970038593
-
Structural basis of Keap1 interactions with Nrf2
-
[24] Canning, P., Sorrell, F.J., Bullock, A.N., Structural basis of Keap1 interactions with Nrf2. Free Radic. Biol. Med. 88:Pt B (2015), 101–107.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 101-107
-
-
Canning, P.1
Sorrell, F.J.2
Bullock, A.N.3
-
25
-
-
33845442925
-
Mechanistic studies of the Nrf2-Keap1 signaling pathway
-
[25] Zhang, D.D., Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38:4 (2006), 769–789.
-
(2006)
Drug Metab. Rev.
, vol.38
, Issue.4
, pp. 769-789
-
-
Zhang, D.D.1
-
26
-
-
84885944468
-
The emerging role of the Nrf2-Keap1 signaling pathway in cancer
-
[26] Jaramillo, M.C., Zhang, D.D., The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:20 (2013), 2179–2191.
-
(2013)
Genes Dev.
, vol.27
, Issue.20
, pp. 2179-2191
-
-
Jaramillo, M.C.1
Zhang, D.D.2
-
27
-
-
33747728194
-
Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex
-
[27] McMahon, M., Thomas, N., Itoh, K., et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “tethering” mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281:34 (2006), 24756–24768.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.34
, pp. 24756-24768
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
-
28
-
-
33344463325
-
Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model
-
[28] Tong, K.I., Katoh, Y., Kusunoki, H., et al. Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol. Cell. Biol. 26:8 (2006), 2887–2900.
-
(2006)
Mol. Cell. Biol.
, vol.26
, Issue.8
, pp. 2887-2900
-
-
Tong, K.I.1
Katoh, Y.2
Kusunoki, H.3
-
29
-
-
0242580049
-
Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
-
[29] Zhang, D.D., Hannink, M., Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23:22 (2003), 8137–8151.
-
(2003)
Mol. Cell. Biol.
, vol.23
, Issue.22
, pp. 8137-8151
-
-
Zhang, D.D.1
Hannink, M.2
-
30
-
-
84863764614
-
Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming
-
[30] Mitsuishi, Y., Taguchi, K., Kawatani, Y., et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22:1 (2012), 66–79.
-
(2012)
Cancer Cell
, vol.22
, Issue.1
, pp. 66-79
-
-
Mitsuishi, Y.1
Taguchi, K.2
Kawatani, Y.3
-
31
-
-
2342511435
-
Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway
-
[31] Motohashi, H., Katsuoka, F., Engel, J.D., et al. Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc. Natl. Acad. Sci. USA 101:17 (2004), 6379–6384.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.17
, pp. 6379-6384
-
-
Motohashi, H.1
Katsuoka, F.2
Engel, J.D.3
-
32
-
-
84878572136
-
Toward clinical application of the Keap1-Nrf2 pathway
-
[32] Suzuki, T., Motohashi, H., Yamamoto, M., Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol. Sci. 34:6 (2013), 340–346.
-
(2013)
Trends Pharmacol. Sci.
, vol.34
, Issue.6
, pp. 340-346
-
-
Suzuki, T.1
Motohashi, H.2
Yamamoto, M.3
-
33
-
-
79955442831
-
KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response
-
[33] Sun, Z., Wu, T., Zhao, F., et al. KPNA6 (Importin {alpha}7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol. Cell. Biol. 31:9 (2011), 1800–1811.
-
(2011)
Mol. Cell. Biol.
, vol.31
, Issue.9
, pp. 1800-1811
-
-
Sun, Z.1
Wu, T.2
Zhao, F.3
-
34
-
-
34548772935
-
Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2
-
[34] Sun, Z., Zhang, S., Chan, J.Y., et al. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 27:18 (2007), 6334–6349.
-
(2007)
Mol. Cell. Biol.
, vol.27
, Issue.18
, pp. 6334-6349
-
-
Sun, Z.1
Zhang, S.2
Chan, J.Y.3
-
35
-
-
84884338770
-
Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex
-
[35] Baird, L., Lleres, D., Swift, S., et al. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc. Natl. Acad. Sci. USA 110:38 (2013), 15259–15264.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, Issue.38
, pp. 15259-15264
-
-
Baird, L.1
Lleres, D.2
Swift, S.3
-
36
-
-
84938694329
-
Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention
-
[36] Harder, B., Jiang, T., Wu, T., et al. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem. Soc. Trans. 43:4 (2015), 680–686.
-
(2015)
Biochem. Soc. Trans.
, vol.43
, Issue.4
, pp. 680-686
-
-
Harder, B.1
Jiang, T.2
Wu, T.3
-
37
-
-
84969983910
-
The emerging role of Nrf2 in mitochondrial function
-
[37] Dinkova-Kostova, A.T., Abramov, A.Y., The emerging role of Nrf2 in mitochondrial function. Free Radic. Biol. Med. 88:Pt B (2015), 179–188.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 179-188
-
-
Dinkova-Kostova, A.T.1
Abramov, A.Y.2
-
38
-
-
41849146057
-
Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3
-
[38] Rachakonda, G., Xiong, Y., Sekhar, K.R., et al. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol. 21:3 (2008), 705–710.
-
(2008)
Chem. Res. Toxicol.
, vol.21
, Issue.3
, pp. 705-710
-
-
Rachakonda, G.1
Xiong, Y.2
Sekhar, K.R.3
-
39
-
-
34047273206
-
Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3
-
[39] Gao, L., Wang, J., Sekhar, K.R., et al. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J. Biol. Chem. 282:4 (2007), 2529–2537.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.4
, pp. 2529-2537
-
-
Gao, L.1
Wang, J.2
Sekhar, K.R.3
-
40
-
-
84971291437
-
Molecular basis of the Keap1-Nrf2 system
-
[40] Suzuki, T., Yamamoto, M., Molecular basis of the Keap1-Nrf2 system. Free Radic. Biol. Med. 88:Pt B (2015), 93–100.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 93-100
-
-
Suzuki, T.1
Yamamoto, M.2
-
41
-
-
3843104763
-
Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
-
[41] McMahon, M., Thomas, N., Itoh, K., et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279:30 (2004), 31556–31567.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.30
, pp. 31556-31567
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
-
42
-
-
79952256187
-
SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner
-
[42] Rada, P., Rojo, A.I., Chowdhry, S., et al. SCF/{beta}-TrCP promotes glycogen synthase kinase 3-dependent degradation of the Nrf2 transcription factor in a Keap1-independent manner. Mol. Cell Biol. 31:6 (2011), 1121–1133.
-
(2011)
Mol. Cell Biol.
, vol.31
, Issue.6
, pp. 1121-1133
-
-
Rada, P.1
Rojo, A.I.2
Chowdhry, S.3
-
43
-
-
84898874270
-
Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis
-
[43] Wu, T., Zhao, F., Gao, B., et al. Hrd1 suppresses Nrf2-mediated cellular protection during liver cirrhosis. Genes Dev. 28:7 (2014), 708–722.
-
(2014)
Genes Dev.
, vol.28
, Issue.7
, pp. 708-722
-
-
Wu, T.1
Zhao, F.2
Gao, B.3
-
44
-
-
84876011848
-
Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination
-
[44] Hast, B.E., Goldfarb, D., Mulvaney, K.M., et al. Proteomic analysis of ubiquitin ligase KEAP1 reveals associated proteins that inhibit NRF2 ubiquitination. Cancer Res. 73:7 (2013), 2199–2210.
-
(2013)
Cancer Res.
, vol.73
, Issue.7
, pp. 2199-2210
-
-
Hast, B.E.1
Goldfarb, D.2
Mulvaney, K.M.3
-
45
-
-
84878963658
-
Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner
-
[45] Lau, A., Zheng, Y., Tao, S., et al. Arsenic inhibits autophagic flux, activating the Nrf2-Keap1 pathway in a p62-dependent manner. Mol. Cell. Biol. 33:12 (2013), 2436–2446.
-
(2013)
Mol. Cell. Biol.
, vol.33
, Issue.12
, pp. 2436-2446
-
-
Lau, A.1
Zheng, Y.2
Tao, S.3
-
46
-
-
84888858310
-
Nrf2 in host defense: over the rainbow
-
[46] Cho, H.Y., Kwak, M.K., Pi, J., Nrf2 in host defense: over the rainbow. Oxid. Med. Cell. Longev., 2013, 2013, 975839.
-
(2013)
Oxid. Med. Cell. Longev.
, vol.2013
, pp. 975839
-
-
Cho, H.Y.1
Kwak, M.K.2
Pi, J.3
-
47
-
-
77649273792
-
Nrf2 protects against airway disorders
-
[47] Cho, H.Y., Kleeberger, S.R., Nrf2 protects against airway disorders. Toxicol. Appl. Pharmacol. 244:1 (2010), 43–56.
-
(2010)
Toxicol. Appl. Pharmacol.
, vol.244
, Issue.1
, pp. 43-56
-
-
Cho, H.Y.1
Kleeberger, S.R.2
-
48
-
-
0035153227
-
High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes
-
[48] Enomoto, A., Itoh, K., Nagayoshi, E., et al. High sensitivity of Nrf2 knockout mice to acetaminophen hepatotoxicity associated with decreased expression of ARE-regulated drug metabolizing enzymes and antioxidant genes. Toxicol. Sci.: Off. J. Soc. Toxicol. 59:1 (2001), 169–177.
-
(2001)
Toxicol. Sci.: Off. J. Soc. Toxicol.
, vol.59
, Issue.1
, pp. 169-177
-
-
Enomoto, A.1
Itoh, K.2
Nagayoshi, E.3
-
49
-
-
84891561133
-
The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice
-
[49] Liu, M., Reddy, N.M., Higbee, E.M., et al. The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int. 85:1 (2014), 134–141.
-
(2014)
Kidney Int.
, vol.85
, Issue.1
, pp. 134-141
-
-
Liu, M.1
Reddy, N.M.2
Higbee, E.M.3
-
50
-
-
29244473882
-
Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema
-
[50] Iizuka, T., Ishii, Y., Itoh, K., et al. Nrf2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells: Devot. Mol. Cell. Mech. 10:12 (2005), 1113–1125.
-
(2005)
Genes Cells: Devot. Mol. Cell. Mech.
, vol.10
, Issue.12
, pp. 1113-1125
-
-
Iizuka, T.1
Ishii, Y.2
Itoh, K.3
-
51
-
-
84873336694
-
ipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome
-
[51] Xue, P., Hou, Y., Chen, Y., et al. ipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes 62:3 (2013), 845–854.
-
(2013)
Diabetes
, vol.62
, Issue.3
, pp. 845-854
-
-
Xue, P.1
Hou, Y.2
Chen, Y.3
-
52
-
-
77957604373
-
Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene
-
[52] Becks, L., Prince, M., Burson, H., et al. Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. BMC Cancer, 10, 2010, 540.
-
(2010)
BMC Cancer
, vol.10
, pp. 540
-
-
Becks, L.1
Prince, M.2
Burson, H.3
-
53
-
-
54349124273
-
Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
-
[53] de Vries, H.E., Witte, M., Hondius, D., et al. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?. Free Radic. Biol. Med. 45:10 (2008), 1375–1383.
-
(2008)
Free Radic. Biol. Med.
, vol.45
, Issue.10
, pp. 1375-1383
-
-
de Vries, H.E.1
Witte, M.2
Hondius, D.3
-
54
-
-
56249086316
-
Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer
-
[54] Khor, T.O., Huang, M.T., Prawan, A., et al. Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev. Res. 1:3 (2008), 187–191.
-
(2008)
Cancer Prev. Res.
, vol.1
, Issue.3
, pp. 187-191
-
-
Khor, T.O.1
Huang, M.T.2
Prawan, A.3
-
55
-
-
4644328941
-
Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis
-
[55] Iida, K., Itoh, K., Kumagai, Y., et al. Nrf2 is essential for the chemopreventive efficacy of oltipraz against urinary bladder carcinogenesis. Cancer Res. 64:18 (2004), 6424–6431.
-
(2004)
Cancer Res.
, vol.64
, Issue.18
, pp. 6424-6431
-
-
Iida, K.1
Itoh, K.2
Kumagai, Y.3
-
56
-
-
84878620505
-
Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels
-
[56] Suzuki, T., Shibata, T., Takaya, K., et al. Regulatory nexus of synthesis and degradation deciphers cellular Nrf2 expression levels. Mol. Cell. Biol. 33:12 (2013), 2402–2412.
-
(2013)
Mol. Cell. Biol.
, vol.33
, Issue.12
, pp. 2402-2412
-
-
Suzuki, T.1
Shibata, T.2
Takaya, K.3
-
57
-
-
7444251509
-
Identification of polymorphisms in the promoter region of the human NRF2 gene
-
[57] Yamamoto, T., Yoh, K., Kobayashi, A., et al. Identification of polymorphisms in the promoter region of the human NRF2 gene. Biochem. Biophys. Res. Commun. 321:1 (2004), 72–79.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.321
, Issue.1
, pp. 72-79
-
-
Yamamoto, T.1
Yoh, K.2
Kobayashi, A.3
-
58
-
-
84878343958
-
Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism
-
[58] Zhao, R., Yang, B., Wang, L., et al. Curcumin protects human keratinocytes against inorganic arsenite-induced acute cytotoxicity through an NRF2-dependent mechanism. Oxid. Med. Cell. Longev., 2013, 2013, 412576.
-
(2013)
Oxid. Med. Cell. Longev.
, vol.2013
, pp. 412576
-
-
Zhao, R.1
Yang, B.2
Wang, L.3
-
59
-
-
84885344699
-
Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis
-
[59] Zhou, R., Lin, J., Wu, D., Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis. Biochim. Biophys. Acta 1840:1 (2014), 209–218.
-
(2014)
Biochim. Biophys. Acta
, vol.1840
, Issue.1
, pp. 209-218
-
-
Zhou, R.1
Lin, J.2
Wu, D.3
-
60
-
-
84904299757
-
Tert-butylhydroquinone as a phenolic activator of Nrf2 antagonizes arsenic-induced oxidative cytotoxicity but promotes arsenic methylation and detoxication in human hepatocyte cell line
-
[60] Duan, X., Liu, D., Xing, X., et al. Tert-butylhydroquinone as a phenolic activator of Nrf2 antagonizes arsenic-induced oxidative cytotoxicity but promotes arsenic methylation and detoxication in human hepatocyte cell line. Biol. Trace Elem. Res. 160:2 (2014), 294–302.
-
(2014)
Biol. Trace Elem. Res.
, vol.160
, Issue.2
, pp. 294-302
-
-
Duan, X.1
Liu, D.2
Xing, X.3
-
61
-
-
84959113081
-
Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes
-
[61] Duan, X., Li, J., Li, W., et al. Antioxidant tert-butylhydroquinone ameliorates arsenic-induced intracellular damages and apoptosis through induction of Nrf2-dependent antioxidant responses as well as stabilization of anti-apoptotic factor Bcl-2 in human keratinocytes. Free Radic. Biol. Med., 2016.
-
(2016)
Free Radic. Biol. Med.
-
-
Duan, X.1
Li, J.2
Li, W.3
-
62
-
-
19444379739
-
Nrf2 as a novel molecular target for chemoprevention
-
[62] Lee, J.S., Surh, Y.J., Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224:2 (2005), 171–184.
-
(2005)
Cancer Lett.
, vol.224
, Issue.2
, pp. 171-184
-
-
Lee, J.S.1
Surh, Y.J.2
-
63
-
-
77958130983
-
Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway
-
[63] Hayes, J.D., McMahon, M., Chowdhry, S., et al. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal. 13:11 (2010), 1713–1748.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, Issue.11
, pp. 1713-1748
-
-
Hayes, J.D.1
McMahon, M.2
Chowdhry, S.3
-
64
-
-
84983150554
-
The complexity of the Nrf2 pathway: beyond the antioxidant response
-
[64] Huang, Y., Li, W., Su, Z.Y., et al. The complexity of the Nrf2 pathway: beyond the antioxidant response. J. Nutr. Biochem. 26:12 (2015), 1401–1413.
-
(2015)
J. Nutr. Biochem.
, vol.26
, Issue.12
, pp. 1401-1413
-
-
Huang, Y.1
Li, W.2
Su, Z.Y.3
-
65
-
-
84923222319
-
Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment
-
[65] Moon, E.J., Giaccia, A., Dual roles of NRF2 in tumor prevention and progression: possible implications in cancer treatment. Free Radic. Biol. Med. 79 (2015), 292–299.
-
(2015)
Free Radic. Biol. Med.
, vol.79
, pp. 292-299
-
-
Moon, E.J.1
Giaccia, A.2
-
66
-
-
77958129306
-
Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance
-
[66] Singh, A., Bodas, M., Wakabayashi, N., et al. Gain of Nrf2 function in non-small-cell lung cancer cells confers radioresistance. Antioxid. Redox Signal. 13:11 (2010), 1627–1637.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, Issue.11
, pp. 1627-1637
-
-
Singh, A.1
Bodas, M.2
Wakabayashi, N.3
-
67
-
-
84887584700
-
Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer
-
[67] Hu, X.F., Yao, J., Gao, S.G., et al. Nrf2 overexpression predicts prognosis and 5-FU resistance in gastric cancer. Asian Pac. J. Cancer Prev. 14:9 (2013), 5231–5235.
-
(2013)
Asian Pac. J. Cancer Prev.
, vol.14
, Issue.9
, pp. 5231-5235
-
-
Hu, X.F.1
Yao, J.2
Gao, S.G.3
-
68
-
-
84936934546
-
Keap1-Nrf2 signalling in pancreatic cancer
-
[68] Hayes, A.J., Skouras, C., Haugk, B., et al. Keap1-Nrf2 signalling in pancreatic cancer. Int. J. Biochem. Cell Biol. 65 (2015), 288–299.
-
(2015)
Int. J. Biochem. Cell Biol.
, vol.65
, pp. 288-299
-
-
Hayes, A.J.1
Skouras, C.2
Haugk, B.3
-
69
-
-
54249087596
-
RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy
-
[69] Singh, A., Boldin-Adamsky, S., Thimmulappa, R.K., et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 68:19 (2008), 7975–7984.
-
(2008)
Cancer Res.
, vol.68
, Issue.19
, pp. 7975-7984
-
-
Singh, A.1
Boldin-Adamsky, S.2
Thimmulappa, R.K.3
-
70
-
-
84963799947
-
NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis
-
[70] Wang, H., Liu, X., Long, M., et al. NRF2 activation by antioxidant antidiabetic agents accelerates tumor metastasis. Sci. Transl. Med., 8(334), 2016, 334ra51.
-
(2016)
Sci. Transl. Med.
, vol.8
, Issue.334
, pp. 334ra51
-
-
Wang, H.1
Liu, X.2
Long, M.3
-
71
-
-
84938300316
-
Antioxidant responses and cellular adjustments to oxidative stress
-
[71] Espinosa-Diez, C., Miguel, V., Mennerich, D., et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6 (2015), 183–197.
-
(2015)
Redox Biol.
, vol.6
, pp. 183-197
-
-
Espinosa-Diez, C.1
Miguel, V.2
Mennerich, D.3
-
72
-
-
53049105119
-
Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer
-
1368.e1-4
-
[72] Shibata, T., Kokubu, A., Gotoh, M., et al. Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135:4 (2008), 1358–1368 1368.e1-4.
-
(2008)
Gastroenterology
, vol.135
, Issue.4
, pp. 1358-1368
-
-
Shibata, T.1
Kokubu, A.2
Gotoh, M.3
-
73
-
-
79953181992
-
KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma
-
[73] Li, Q.K., Singh, A., Biswal, S., et al. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J. Hum. Genet. 56:3 (2011), 230–234.
-
(2011)
J. Hum. Genet.
, vol.56
, Issue.3
, pp. 230-234
-
-
Li, Q.K.1
Singh, A.2
Biswal, S.3
-
74
-
-
51649130168
-
Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
-
[74] Shibata, T., Ohta, T., Tong, K.I., et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. USA 105:36 (2008), 13568–13573.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, Issue.36
, pp. 13568-13573
-
-
Shibata, T.1
Ohta, T.2
Tong, K.I.3
-
75
-
-
84969902466
-
Epigenetic regulation of Keap1-Nrf2 signaling
-
[75] Guo, Y., Yu, S., Zhang, C., et al. Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med. 88:Pt B (2015), 337–349.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 337-349
-
-
Guo, Y.1
Yu, S.2
Zhang, C.3
-
76
-
-
84878785993
-
The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer
-
[76] Kansanen, E., Kuosmanen, S.M., Leinonen, H., et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 1 (2013), 45–49.
-
(2013)
Redox Biol.
, vol.1
, pp. 45-49
-
-
Kansanen, E.1
Kuosmanen, S.M.2
Leinonen, H.3
-
77
-
-
84883736109
-
Oncogenic functions of the transcription factor Nrf2
-
[77] Ganan-Gomez, I., Wei, Y., Yang, H., et al. Oncogenic functions of the transcription factor Nrf2. Free Radic. Biol. Med. 65 (2013), 750–764.
-
(2013)
Free Radic. Biol. Med.
, vol.65
, pp. 750-764
-
-
Ganan-Gomez, I.1
Wei, Y.2
Yang, H.3
-
78
-
-
80051545287
-
The Keap1-Nrf2 system as an in vivo sensor for electrophiles
-
[78] Uruno, A., Motohashi, H., The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide: Biol. Chem. 25:2 (2011), 153–160.
-
(2011)
Nitric Oxide: Biol. Chem.
, vol.25
, Issue.2
, pp. 153-160
-
-
Uruno, A.1
Motohashi, H.2
-
79
-
-
84869087891
-
Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers
-
[79] Yamadori, T., Ishii, Y., Homma, S., et al. Molecular mechanisms for the regulation of Nrf2-mediated cell proliferation in non-small-cell lung cancers. Oncogene 31:45 (2012), 4768–4777.
-
(2012)
Oncogene
, vol.31
, Issue.45
, pp. 4768-4777
-
-
Yamadori, T.1
Ishii, Y.2
Homma, S.3
-
80
-
-
84941944957
-
Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes
-
[80] Jia, Y., Chen, J., Zhu, H., et al. Aberrantly elevated redox sensing factor Nrf2 promotes cancer stem cell survival via enhanced transcriptional regulation of ABCG2 and Bcl-2/Bmi-1 genes. Oncol. Rep. 34:5 (2015), 2296–2304.
-
(2015)
Oncol. Rep.
, vol.34
, Issue.5
, pp. 2296-2304
-
-
Jia, Y.1
Chen, J.2
Zhu, H.3
-
81
-
-
84873732409
-
Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance
-
[81] Niture, S.K., Jaiswal, A.K., Nrf2-induced antiapoptotic Bcl-xL protein enhances cell survival and drug resistance. Free Radic. Biol. Med. 57 (2013), 119–131.
-
(2013)
Free Radic. Biol. Med.
, vol.57
, pp. 119-131
-
-
Niture, S.K.1
Jaiswal, A.K.2
-
82
-
-
84901050749
-
Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha
-
[82] Ji, X., Wang, H., Zhu, J., et al. Knockdown of Nrf2 suppresses glioblastoma angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Int. J. Cancer 135:3 (2014), 574–584.
-
(2014)
Int. J. Cancer
, vol.135
, Issue.3
, pp. 574-584
-
-
Ji, X.1
Wang, H.2
Zhu, J.3
-
83
-
-
79952749190
-
NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha
-
[83] Kim, T.H., Hur, E.G., Kang, S.J., et al. NRF2 blockade suppresses colon tumor angiogenesis by inhibiting hypoxia-induced activation of HIF-1alpha. Cancer Res. 71:6 (2011), 2260–2275.
-
(2011)
Cancer Res.
, vol.71
, Issue.6
, pp. 2260-2275
-
-
Kim, T.H.1
Hur, E.G.2
Kang, S.J.3
-
84
-
-
78049370987
-
Oxidative stress, inflammation, and cancer: how are they linked?
-
[84] Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic. Biol. Med. 49:11 (2010), 1603–1616.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, Issue.11
, pp. 1603-1616
-
-
Reuter, S.1
Gupta, S.C.2
Chaturvedi, M.M.3
-
85
-
-
77954624131
-
Glutathione transferases and development of new principles to overcome drug resistance
-
[85] Sau, A., Pellizzari Tregno, F., Valentino, F., et al. Glutathione transferases and development of new principles to overcome drug resistance. Arch. Biochem. Biophys. 500:2 (2010), 116–122.
-
(2010)
Arch. Biochem. Biophys.
, vol.500
, Issue.2
, pp. 116-122
-
-
Sau, A.1
Pellizzari Tregno, F.2
Valentino, F.3
-
86
-
-
84888300793
-
Nrf2 is a potential therapeutic target in radioresistance in human cancer
-
[86] Zhou, S., Ye, W., Shao, Q., et al. Nrf2 is a potential therapeutic target in radioresistance in human cancer. Crit. Rev. Oncol./Hematol. 88:3 (2013), 706–715.
-
(2013)
Crit. Rev. Oncol./Hematol.
, vol.88
, Issue.3
, pp. 706-715
-
-
Zhou, S.1
Ye, W.2
Shao, Q.3
-
87
-
-
84893474094
-
HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib
-
[87] Furfaro, A.L., Piras, S., Passalacqua, M., et al. HO-1 up-regulation: a key point in high-risk neuroblastoma resistance to bortezomib. Biochim. Biophys. Acta 1842:4 (2014), 613–622.
-
(2014)
Biochim. Biophys. Acta
, vol.1842
, Issue.4
, pp. 613-622
-
-
Furfaro, A.L.1
Piras, S.2
Passalacqua, M.3
-
88
-
-
84941973678
-
Elevated expression of Nrf-2 and ABCG2 Involved in multi-drug resistance of lung cancer SP cells
-
[88] Yang, B., Ma, Y.F., Liu, Y., Elevated expression of Nrf-2 and ABCG2 Involved in multi-drug resistance of lung cancer SP cells. Drug Res., 2014.
-
(2014)
Drug Res.
-
-
Yang, B.1
Ma, Y.F.2
Liu, Y.3
-
89
-
-
84908353712
-
Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway
-
[89] Xu, X., Zhang, Y., Li, W., et al. Wogonin reverses multi-drug resistance of human myelogenous leukemia K562/A02 cells via downregulation of MRP1 expression by inhibiting Nrf2/ARE signaling pathway. Biochem. Pharmacol. 92:2 (2014), 220–234.
-
(2014)
Biochem. Pharmacol.
, vol.92
, Issue.2
, pp. 220-234
-
-
Xu, X.1
Zhang, Y.2
Li, W.3
-
90
-
-
70449674487
-
Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2)
-
[90] Arlt, A., Bauer, I., Schafmayer, C., et al. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene 28:45 (2009), 3983–3996.
-
(2009)
Oncogene
, vol.28
, Issue.45
, pp. 3983-3996
-
-
Arlt, A.1
Bauer, I.2
Schafmayer, C.3
-
91
-
-
84896123587
-
Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs
-
[91] Wang, X.J., Li, Y., Luo, L., et al. Oxaliplatin activates the Keap1/Nrf2 antioxidant system conferring protection against the cytotoxicity of anticancer drugs. Free Radic. Biol. Med. 70 (2014), 68–77.
-
(2014)
Free Radic. Biol. Med.
, vol.70
, pp. 68-77
-
-
Wang, X.J.1
Li, Y.2
Luo, L.3
-
92
-
-
84962166023
-
Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib
-
[92] Furfaro, A.L., Piras, S., Domenicotti, C., et al. Role of Nrf2, HO-1 and GSH in Neuroblastoma Cell Resistance to Bortezomib. PLoS One, 11(3), 2016, e0152465.
-
(2016)
PLoS One
, vol.11
, Issue.3
, pp. e0152465
-
-
Furfaro, A.L.1
Piras, S.2
Domenicotti, C.3
-
93
-
-
84937560694
-
Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma
-
[93] Zhang, M., Zhang, C., Zhang, L., et al. Nrf2 is a potential prognostic marker and promotes proliferation and invasion in human hepatocellular carcinoma. BMC Cancer, 15, 2015, 531.
-
(2015)
BMC Cancer
, vol.15
, pp. 531
-
-
Zhang, M.1
Zhang, C.2
Zhang, L.3
-
94
-
-
84899548389
-
Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival
-
[94] Ji, L., Wei, Y., Jiang, T., et al. Correlation of Nrf2, NQO1, MRP1, cmyc and p53 in colorectal cancer and their relationships to clinicopathologic features and survival. Int. J. Clin. Exp. Pathol. 7:3 (2014), 1124–1131.
-
(2014)
Int. J. Clin. Exp. Pathol.
, vol.7
, Issue.3
, pp. 1124-1131
-
-
Ji, L.1
Wei, Y.2
Jiang, T.3
-
95
-
-
84937910008
-
Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma
-
[95] Liew, P.L., Hsu, C.S., Liu, W.M., et al. Prognostic and predictive values of Nrf2, Keap1, p16 and E-cadherin expression in ovarian epithelial carcinoma. Int. J. Clin. Exp. Pathol. 8:5 (2015), 5642–5649.
-
(2015)
Int. J. Clin. Exp. Pathol.
, vol.8
, Issue.5
, pp. 5642-5649
-
-
Liew, P.L.1
Hsu, C.S.2
Liu, W.M.3
-
96
-
-
84902174893
-
Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma
-
[96] Kawasaki, Y., Okumura, H., Uchikado, Y., et al. Nrf2 is useful for predicting the effect of chemoradiation therapy on esophageal squamous cell carcinoma. Ann. Surg. Oncol. 21:7 (2014), 2347–2352.
-
(2014)
Ann. Surg. Oncol.
, vol.21
, Issue.7
, pp. 2347-2352
-
-
Kawasaki, Y.1
Okumura, H.2
Uchikado, Y.3
-
97
-
-
84941956168
-
NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma
-
[97] Cescon, D.W., She, D., Sakashita, S., et al. NRF2 pathway activation and adjuvant chemotherapy benefit in lung squamous cell carcinoma. Clin. Cancer Res. 21:11 (2015), 2499–2505.
-
(2015)
Clin. Cancer Res.
, vol.21
, Issue.11
, pp. 2499-2505
-
-
Cescon, D.W.1
She, D.2
Sakashita, S.3
-
98
-
-
84948126735
-
Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival
-
[98] Qian, Z., Zhou, T., Gurguis, C.I., et al. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival. Sci. Rep., 5, 2015, 16889.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16889
-
-
Qian, Z.1
Zhou, T.2
Gurguis, C.I.3
-
99
-
-
84894082280
-
SNP (-617C>A) in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women
-
[99] Okano, Y., Nezu, U., Enokida, Y., et al. SNP (-617C>A) in ARE-like loci of the NRF2 gene: a new biomarker for prognosis of lung adenocarcinoma in Japanese non-smoking women. PLoS One, 8(9), 2013, e73794.
-
(2013)
PLoS One
, vol.8
, Issue.9
, pp. e73794
-
-
Okano, Y.1
Nezu, U.2
Enokida, Y.3
-
100
-
-
84917670738
-
Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy
-
[100] Ishikawa, T., Genetic polymorphism in the NRF2 gene as a prognosis marker for cancer chemotherapy. Front. Genet., 5, 2014, 383.
-
(2014)
Front. Genet.
, vol.5
, pp. 383
-
-
Ishikawa, T.1
-
101
-
-
84971003205
-
Applications of the Keap1-Nrf2 system for gene and cell therapy
-
[101] Kanninen, K.M., Pomeshchik, Y., Leinonen, H., et al. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic. Biol. Med. 88:Pt B (2015), 350–361.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 350-361
-
-
Kanninen, K.M.1
Pomeshchik, Y.2
Leinonen, H.3
-
102
-
-
84858379476
-
MicroRNAs in stress signaling and human disease
-
[102] Mendell, J.T., Olson, E.N., MicroRNAs in stress signaling and human disease. Cell 148:6 (2012), 1172–1187.
-
(2012)
Cell
, vol.148
, Issue.6
, pp. 1172-1187
-
-
Mendell, J.T.1
Olson, E.N.2
-
103
-
-
78650624101
-
RNA interference in the clinic: challenges and future directions
-
[103] Pecot, C.V., Calin, G.A., Coleman, R.L., et al. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer 11:1 (2011), 59–67.
-
(2011)
Nat. Rev. Cancer
, vol.11
, Issue.1
, pp. 59-67
-
-
Pecot, C.V.1
Calin, G.A.2
Coleman, R.L.3
-
104
-
-
84870316076
-
Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment
-
[104] Leinonen, H.M., Ruotsalainen, A.K., Maatta, A.M., et al. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment. Cancer Res. 72:23 (2012), 6227–6235.
-
(2012)
Cancer Res.
, vol.72
, Issue.23
, pp. 6227-6235
-
-
Leinonen, H.M.1
Ruotsalainen, A.K.2
Maatta, A.M.3
-
105
-
-
79955612814
-
Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs
-
[105] Tang, X., Wang, H., Fan, L., et al. Luteolin inhibits Nrf2 leading to negative regulation of the Nrf2/ARE pathway and sensitization of human lung carcinoma A549 cells to therapeutic drugs. Free Radic. Biol. Med. 50:11 (2011), 1599–1609.
-
(2011)
Free Radic. Biol. Med.
, vol.50
, Issue.11
, pp. 1599-1609
-
-
Tang, X.1
Wang, H.2
Fan, L.3
-
106
-
-
84899858360
-
Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway
-
[106] Chian, S., Li, Y.Y., Wang, X.J., et al. Luteolin sensitizes two oxaliplatin-resistant colorectal cancer cell lines to chemotherapeutic drugs via inhibition of the Nrf2 pathway. Asian Pac. J. Cancer Prev. 15:6 (2014), 2911–2916.
-
(2014)
Asian Pac. J. Cancer Prev.
, vol.15
, Issue.6
, pp. 2911-2916
-
-
Chian, S.1
Li, Y.Y.2
Wang, X.J.3
-
107
-
-
84900299717
-
Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo
-
[107] Chian, S., Thapa, R., Chi, Z., et al. Luteolin inhibits the Nrf2 signaling pathway and tumor growth in vivo. Biochem. Biophys. Res. Commun. 447:4 (2014), 602–608.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.447
, Issue.4
, pp. 602-608
-
-
Chian, S.1
Thapa, R.2
Chi, Z.3
-
108
-
-
27944442079
-
Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells
-
[108] Horinaka, M., Yoshida, T., Shiraishi, T., et al. Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene 24:48 (2005), 7180–7189.
-
(2005)
Oncogene
, vol.24
, Issue.48
, pp. 7180-7189
-
-
Horinaka, M.1
Yoshida, T.2
Shiraishi, T.3
-
109
-
-
84949553757
-
Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism
-
[109] Xu, H., Yang, T., Liu, X., et al. Luteolin synergizes the antitumor effects of 5-fluorouracil against human hepatocellular carcinoma cells through apoptosis induction and metabolism. Life Sci. 144 (2016), 138–147.
-
(2016)
Life Sci.
, vol.144
, pp. 138-147
-
-
Xu, H.1
Yang, T.2
Liu, X.3
-
110
-
-
62749165351
-
Distribution and biological activities of the flavonoid luteolin
-
[110] Lopez-Lazaro, M., Distribution and biological activities of the flavonoid luteolin. Mini Rev. Med. Chem. 9:1 (2009), 31–59.
-
(2009)
Mini Rev. Med. Chem.
, vol.9
, Issue.1
, pp. 31-59
-
-
Lopez-Lazaro, M.1
-
111
-
-
0031738302
-
Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans
-
[111] Shimoi, K., Okada, H., Furugori, M., et al. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett. 438:3 (1998), 220–224.
-
(1998)
FEBS Lett.
, vol.438
, Issue.3
, pp. 220-224
-
-
Shimoi, K.1
Okada, H.2
Furugori, M.3
-
112
-
-
0029912852
-
Flavonoids activate wild-type p53
-
[112] Plaumann, B., Fritsche, M., Rimpler, H., et al. Flavonoids activate wild-type p53. Oncogene 13:8 (1996), 1605–1614.
-
(1996)
Oncogene
, vol.13
, Issue.8
, pp. 1605-1614
-
-
Plaumann, B.1
Fritsche, M.2
Rimpler, H.3
-
113
-
-
84902952122
-
Cytotoxicity of dietary flavonoids on different human cancer types
-
[113] Sak, K., Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognit. Rev. 8:16 (2014), 122–146.
-
(2014)
Pharmacognit. Rev.
, vol.8
, Issue.16
, pp. 122-146
-
-
Sak, K.1
-
114
-
-
84885960813
-
Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway
-
[114] Gao, A.M., Ke, Z.P., Shi, F., et al. Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem. Biol. Interact. 206:1 (2013), 100–108.
-
(2013)
Chem. Biol. Interact.
, vol.206
, Issue.1
, pp. 100-108
-
-
Gao, A.M.1
Ke, Z.P.2
Shi, F.3
-
115
-
-
84881525302
-
Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway
-
[115] Gao, A.M., Ke, Z.P., Wang, J.N., et al. Apigenin sensitizes doxorubicin-resistant hepatocellular carcinoma BEL-7402/ADM cells to doxorubicin via inhibiting PI3K/Akt/Nrf2 pathway. Carcinogenesis 34:8 (2013), 1806–1814.
-
(2013)
Carcinogenesis
, vol.34
, Issue.8
, pp. 1806-1814
-
-
Gao, A.M.1
Ke, Z.P.2
Wang, J.N.3
-
116
-
-
34248226610
-
Apigenin and cancer chemoprevention: progress, potential and promise (review)
-
[116] Patel, D., Shukla, S., Gupta, S., Apigenin and cancer chemoprevention: progress, potential and promise (review). Int. J. Oncol. 30:1 (2007), 233–245.
-
(2007)
Int. J. Oncol.
, vol.30
, Issue.1
, pp. 233-245
-
-
Patel, D.1
Shukla, S.2
Gupta, S.3
-
117
-
-
84922226829
-
Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives
-
[117] Kasala, E.R., Bodduluru, L.N., Madana, R.M., et al. Chemopreventive and therapeutic potential of chrysin in cancer: mechanistic perspectives. Toxicol. Lett. 233:2 (2015), 214–225.
-
(2015)
Toxicol. Lett.
, vol.233
, Issue.2
, pp. 214-225
-
-
Kasala, E.R.1
Bodduluru, L.N.2
Madana, R.M.3
-
118
-
-
20344372446
-
PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling
-
[118] Weldon, C.B., McKee, A., Collins-Burow, B.M., et al. PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int. J. Oncol. 26:3 (2005), 763–768.
-
(2005)
Int. J. Oncol.
, vol.26
, Issue.3
, pp. 763-768
-
-
Weldon, C.B.1
McKee, A.2
Collins-Burow, B.M.3
-
119
-
-
34250017387
-
Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells
-
[119] Lee, S.J., Yoon, J.H., Song, K.S., Chrysin inhibited stem cell factor (SCF)/c-Kit complex-induced cell proliferation in human myeloid leukemia cells. Biochem. Pharmacol. 74:2 (2007), 215–225.
-
(2007)
Biochem. Pharmacol.
, vol.74
, Issue.2
, pp. 215-225
-
-
Lee, S.J.1
Yoon, J.H.2
Song, K.S.3
-
120
-
-
0035812747
-
Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells
-
[120] Gupta, S., Afaq, F., Mukhtar, H., Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem. Biophys. Res. Commun. 287:4 (2001), 914–920.
-
(2001)
Biochem. Biophys. Res. Commun.
, vol.287
, Issue.4
, pp. 914-920
-
-
Gupta, S.1
Afaq, F.2
Mukhtar, H.3
-
121
-
-
2142711101
-
Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport
-
[121] Zhang, S., Yang, X., Morris, M.E., Flavonoids are inhibitors of breast cancer resistance protein (ABCG2)-mediated transport. Mol. Pharmacol. 65:5 (2004), 1208–1216.
-
(2004)
Mol. Pharmacol.
, vol.65
, Issue.5
, pp. 1208-1216
-
-
Zhang, S.1
Yang, X.2
Morris, M.E.3
-
122
-
-
77950632985
-
Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression
-
[122] Lin, C.W., Wu, M.J., Liu, I.Y., et al. Neurotrophic and cytoprotective action of luteolin in PC12 cells through ERK-dependent induction of Nrf2-driven HO-1 expression. J. Agric. Food Chem. 58:7 (2010), 4477–4486.
-
(2010)
J. Agric. Food Chem.
, vol.58
, Issue.7
, pp. 4477-4486
-
-
Lin, C.W.1
Wu, M.J.2
Liu, I.Y.3
-
123
-
-
84945181944
-
Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin
-
[123] Paredes-Gonzalez, X., Fuentes, F., Jeffery, S., et al. Induction of NRF2-mediated gene expression by dietary phytochemical flavones apigenin and luteolin. Biopharm. Drug Dispos., 2015.
-
(2015)
Biopharm. Drug Dispos.
-
-
Paredes-Gonzalez, X.1
Fuentes, F.2
Jeffery, S.3
-
124
-
-
84872333308
-
Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes
-
[124] Huang, C.S., Lii, C.K., Lin, A.H., et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol. 87:1 (2013), 167–178.
-
(2013)
Arch. Toxicol.
, vol.87
, Issue.1
, pp. 167-178
-
-
Huang, C.S.1
Lii, C.K.2
Lin, A.H.3
-
125
-
-
84890331521
-
Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling
-
[125] Pandurangan, A.K., Ananda Sadagopan, S.K., Dharmalingam, P., et al. Luteolin, a bioflavonoid inhibits Azoxymethane-induced colorectal cancer through activation of Nrf2 signaling. Toxicol. Mech. Methods 24:1 (2014), 13–20.
-
(2014)
Toxicol. Mech. Methods
, vol.24
, Issue.1
, pp. 13-20
-
-
Pandurangan, A.K.1
Ananda Sadagopan, S.K.2
Dharmalingam, P.3
-
126
-
-
24644435394
-
Therapeutic potential of wogonin: a naturally occurring flavonoid
-
[126] Tai, M.C., Tsang, S.Y., Chang, L.Y., et al. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev. 11:2 (2005), 141–150.
-
(2005)
CNS Drug Rev.
, vol.11
, Issue.2
, pp. 141-150
-
-
Tai, M.C.1
Tsang, S.Y.2
Chang, L.Y.3
-
127
-
-
84884815897
-
Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response
-
[127] Zhong, Y., Zhang, F., Sun, Z., et al. Drug resistance associates with activation of Nrf2 in MCF-7/DOX cells, and wogonin reverses it by down-regulating Nrf2-mediated cellular defense response. Mol. Carcinog. 52:10 (2013), 824–834.
-
(2013)
Mol. Carcinog.
, vol.52
, Issue.10
, pp. 824-834
-
-
Zhong, Y.1
Zhang, F.2
Sun, Z.3
-
128
-
-
84897497463
-
Wogonin-enhanced reactive oxygen species-induced apoptosis and potentiated cytotoxic effects of chemotherapeutic agents by suppression Nrf2-mediated signaling in HepG2 cells
-
[128] Qian, C., Wang, Y., Zhong, Y., et al. Wogonin-enhanced reactive oxygen species-induced apoptosis and potentiated cytotoxic effects of chemotherapeutic agents by suppression Nrf2-mediated signaling in HepG2 cells. Free Radic. Res. 48:5 (2014), 607–621.
-
(2014)
Free Radic. Res.
, vol.48
, Issue.5
, pp. 607-621
-
-
Qian, C.1
Wang, Y.2
Zhong, Y.3
-
129
-
-
84903760264
-
NF-kappaB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis
-
[129] Yao, J., Zhao, L., Zhao, Q., et al. NF-kappaB and Nrf2 signaling pathways contribute to wogonin-mediated inhibition of inflammation-associated colorectal carcinogenesis. Cell Death Dis., 5, 2014, e1283.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e1283
-
-
Yao, J.1
Zhao, L.2
Zhao, Q.3
-
130
-
-
84888427700
-
4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells
-
[130] Lim, J., Lee, S.H., Cho, S., et al. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells 36:4 (2013), 340–346.
-
(2013)
Mol. Cells
, vol.36
, Issue.4
, pp. 340-346
-
-
Lim, J.1
Lee, S.H.2
Cho, S.3
-
131
-
-
0034736107
-
Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities
-
[131] Tomazela, D.M., Pupo, M.T., Passador, E.A., et al. Pyrano chalcones and a flavone from Neoraputia magnifica and their Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase-inhibitory activities. Phytochemistry 55:6 (2000), 643–651.
-
(2000)
Phytochemistry
, vol.55
, Issue.6
, pp. 643-651
-
-
Tomazela, D.M.1
Pupo, M.T.2
Passador, E.A.3
-
132
-
-
84946403169
-
3’,4’,5’,5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway
-
[132] Hou, X., Bai, X., Gou, X., et al. 3’,4’,5’,5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway. Mol. Cells 38:5 (2015), 396–401.
-
(2015)
Mol. Cells
, vol.38
, Issue.5
, pp. 396-401
-
-
Hou, X.1
Bai, X.2
Gou, X.3
-
133
-
-
70350014642
-
Flavones as colorectal cancer chemopreventive agents–phenol-o-methylation enhances efficacy
-
[133] Cai, H., Sale, S., Schmid, R., et al. Flavones as colorectal cancer chemopreventive agents–phenol-o-methylation enhances efficacy. Cancer Prev. Res. 2:8 (2009), 743–750.
-
(2009)
Cancer Prev. Res.
, vol.2
, Issue.8
, pp. 743-750
-
-
Cai, H.1
Sale, S.2
Schmid, R.3
-
134
-
-
79952254710
-
Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3’,4’,5’,5,7-pentamethoxyflavone and tricin (4’,5,7-trihydroxy-3’,5’-dimethoxyflavone)
-
[134] Cai, H., Sale, S., Britton, R.G., et al. Pharmacokinetics in mice and metabolism in murine and human liver fractions of the putative cancer chemopreventive agents 3’,4’,5’,5,7-pentamethoxyflavone and tricin (4’,5,7-trihydroxy-3’,5’-dimethoxyflavone). Cancer Chemother. Pharm. 67:2 (2011), 255–263.
-
(2011)
Cancer Chemother. Pharm.
, vol.67
, Issue.2
, pp. 255-263
-
-
Cai, H.1
Sale, S.2
Britton, R.G.3
-
135
-
-
33845964413
-
Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate
-
[135] Kweon, M.H., Adhami, V.M., Lee, J.S., et al. Constitutive overexpression of Nrf2-dependent heme oxygenase-1 in A549 cells contributes to resistance to apoptosis induced by epigallocatechin 3-gallate. J. Biol. Chem. 281:44 (2006), 33761–33772.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.44
, pp. 33761-33772
-
-
Kweon, M.H.1
Adhami, V.M.2
Lee, J.S.3
-
136
-
-
84928673826
-
Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways
-
[136] Yang, G.Z., Wang, Z.J., Bai, F., et al. Epigallocatechin-3-gallate protects HUVECs from PM2.5-induced oxidative stress injury by activating critical antioxidant pathways. Molecules 20:4 (2015), 6626–6639.
-
(2015)
Molecules
, vol.20
, Issue.4
, pp. 6626-6639
-
-
Yang, G.Z.1
Wang, Z.J.2
Bai, F.3
-
137
-
-
84988443152
-
Enhancement of Cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate
-
[137] Kilic, U., Sahin, K., Tuzcu, M., et al. Enhancement of Cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate. Front. Nutr., 1, 2014, 28.
-
(2014)
Front. Nutr.
, vol.1
, pp. 28
-
-
Kilic, U.1
Sahin, K.2
Tuzcu, M.3
-
138
-
-
84861014606
-
EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes
-
[138] Han, S.G., Han, S.S., Toborek, M., et al. EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol. Appl. Pharmacol. 261:2 (2012), 181–188.
-
(2012)
Toxicol. Appl. Pharmacol.
, vol.261
, Issue.2
, pp. 181-188
-
-
Han, S.G.1
Han, S.S.2
Toborek, M.3
-
139
-
-
84887623713
-
Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy
-
[139] Lecumberri, E., Dupertuis, Y.M., Miralbell, R., et al. Green tea polyphenol epigallocatechin-3-gallate (EGCG) as adjuvant in cancer therapy. Clin. Nutr. 32:6 (2013), 894–903.
-
(2013)
Clin. Nutr.
, vol.32
, Issue.6
, pp. 894-903
-
-
Lecumberri, E.1
Dupertuis, Y.M.2
Miralbell, R.3
-
140
-
-
79959925166
-
Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability
-
[140] Ge, J., Tan, B.X., Chen, Y., et al. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J. Mol. Med. 89:6 (2011), 595–602.
-
(2011)
J. Mol. Med.
, vol.89
, Issue.6
, pp. 595-602
-
-
Ge, J.1
Tan, B.X.2
Chen, Y.3
-
141
-
-
83255192527
-
Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis
-
[141] Kilani-Jaziri, S., Frachet, V., Bhouri, W., et al. Flavones inhibit the proliferation of human tumor cancer cell lines by inducing apoptosis. Drug Chem. Toxicol. 35:1 (2012), 1–10.
-
(2012)
Drug Chem. Toxicol.
, vol.35
, Issue.1
, pp. 1-10
-
-
Kilani-Jaziri, S.1
Frachet, V.2
Bhouri, W.3
-
142
-
-
7444272077
-
Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3’-kinase activity
-
[142] Bagli, E., Stefaniotou, M., Morbidelli, L., et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3’-kinase activity. Cancer Res. 64:21 (2004), 7936–7946.
-
(2004)
Cancer Res.
, vol.64
, Issue.21
, pp. 7936-7946
-
-
Bagli, E.1
Stefaniotou, M.2
Morbidelli, L.3
-
143
-
-
34247512973
-
A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells
-
[143] Ju, W., Wang, X., Shi, H., et al. A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol. Pharm. 71:5 (2007), 1381–1388.
-
(2007)
Mol. Pharm.
, vol.71
, Issue.5
, pp. 1381-1388
-
-
Ju, W.1
Wang, X.2
Shi, H.3
-
144
-
-
55249085887
-
Anti-carcinogenic effects of the flavonoid luteolin
-
[144] Seelinger, G., Merfort, I., Wolfle, U., et al. Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:10 (2008), 2628–2651.
-
(2008)
Molecules
, vol.13
, Issue.10
, pp. 2628-2651
-
-
Seelinger, G.1
Merfort, I.2
Wolfle, U.3
-
145
-
-
84864989279
-
Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells
-
[145] Tsai, C.F., Yeh, W.L., Huang, S.M., et al. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int. J. Mol. Sci. 13:8 (2012), 9877–9892.
-
(2012)
Int. J. Mol. Sci.
, vol.13
, Issue.8
, pp. 9877-9892
-
-
Tsai, C.F.1
Yeh, W.L.2
Huang, S.M.3
-
146
-
-
84888881746
-
Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes
-
[146] Chen, Y., Xue, P., Hou, Y., et al. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes. Toxicol. Appl. Pharmacol. 273:3 (2013), 435–441.
-
(2013)
Toxicol. Appl. Pharmacol.
, vol.273
, Issue.3
, pp. 435-441
-
-
Chen, Y.1
Xue, P.2
Hou, Y.3
-
147
-
-
84937128067
-
Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis
-
[147] Verma, A.K., Yadav, A., Dewangan, J., et al. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox Biol. 6 (2015), 80–92.
-
(2015)
Redox Biol.
, vol.6
, pp. 80-92
-
-
Verma, A.K.1
Yadav, A.2
Dewangan, J.3
-
148
-
-
84952665733
-
Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells
-
[148] Peng, H., Wang, H., Xue, P., et al. Suppression of NRF2-ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells. Toxicol. Appl. Pharmacol., 2015.
-
(2015)
Toxicol. Appl. Pharmacol.
-
-
Peng, H.1
Wang, H.2
Xue, P.3
-
149
-
-
79953225194
-
Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization
-
[149] Kawai, Y., Garduno, L., Theodore, M., et al. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286:9 (2011), 7629–7640.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.9
, pp. 7629-7640
-
-
Kawai, Y.1
Garduno, L.2
Theodore, M.3
-
150
-
-
84988363295
-
-
Compositions for Modulating NRF2-ARE Activity and their Methods of Use. International Publication Number: WO2015/009879A1, USA
-
[150] J. Pi, M.E. Andersen, P. Xue, et al., Compositions for Modulating NRF2-ARE Activity and their Methods of Use. International Publication Number: WO2015/009879A1, USA, 2015.
-
(2015)
-
-
Pi, J.1
Andersen, M.E.2
Xue, P.3
-
151
-
-
84988402989
-
-
NRF2 Inhibitors and Compositions for Treating Mycobacterial Infections. International Publication Number: WO2015/009881A1, USA
-
[151] B. Nelson, J. Pi, M.E. Andersen, NRF2 Inhibitors and Compositions for Treating Mycobacterial Infections. International Publication Number: WO2015/009881A1, USA, 2015.
-
(2015)
-
-
Nelson, B.1
Pi, J.2
Andersen, M.E.3
-
152
-
-
12144289484
-
Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line
-
[152] Tarumoto, T., Nagai, T., Ohmine, K., et al. Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp. Hematol. 32:4 (2004), 375–381.
-
(2004)
Exp. Hematol.
, vol.32
, Issue.4
, pp. 375-381
-
-
Tarumoto, T.1
Nagai, T.2
Ohmine, K.3
-
153
-
-
78650738673
-
Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2
-
[153] Wagner, A.E., Boesch-Saadatmandi, C., Breckwoldt, D., et al. Ascorbic acid partly antagonizes resveratrol mediated heme oxygenase-1 but not paraoxonase-1 induction in cultured hepatocytes - role of the redox-regulated transcription factor Nrf2. BMC Complement. Altern. Med., 11, 2011, 1.
-
(2011)
BMC Complement. Altern. Med.
, vol.11
, pp. 1
-
-
Wagner, A.E.1
Boesch-Saadatmandi, C.2
Breckwoldt, D.3
-
154
-
-
84929708263
-
Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals
-
[154] Kim, S.R., Ha, Y.M., Kim, Y.M., et al. Ascorbic acid reduces HMGB1 secretion in lipopolysaccharide-activated RAW 264.7 cells and improves survival rate in septic mice by activation of Nrf2/HO-1 signals. Biochem. Pharmacol. 95:4 (2015), 279–289.
-
(2015)
Biochem. Pharmacol.
, vol.95
, Issue.4
, pp. 279-289
-
-
Kim, S.R.1
Ha, Y.M.2
Kim, Y.M.3
-
155
-
-
0029986515
-
Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro
-
[155] Kurbacher, C.M., Wagner, U., Kolster, B., et al. Ascorbic acid (vitamin C) improves the antineoplastic activity of doxorubicin, cisplatin, and paclitaxel in human breast carcinoma cells in vitro. Cancer Lett. 103:2 (1996), 183–189.
-
(1996)
Cancer Lett.
, vol.103
, Issue.2
, pp. 183-189
-
-
Kurbacher, C.M.1
Wagner, U.2
Kolster, B.3
-
156
-
-
0032722620
-
Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells
-
[156] Witenberg, B., Kletter, Y., Kalir, H.H., et al. Ascorbic acid inhibits apoptosis induced by X irradiation in HL60 myeloid leukemia cells. Radiat. Res. 152:5 (1999), 468–478.
-
(1999)
Radiat. Res.
, vol.152
, Issue.5
, pp. 468-478
-
-
Witenberg, B.1
Kletter, Y.2
Kalir, H.H.3
-
157
-
-
84894059298
-
Review of high-dose intravenous vitamin C as an anticancer agent
-
[157] Wilson, M.K., Baguley, B.C., Wall, C., et al. Review of high-dose intravenous vitamin C as an anticancer agent. Asia-Pac. J. Clin. Oncol. 10:1 (2014), 22–37.
-
(2014)
Asia-Pac. J. Clin. Oncol.
, vol.10
, Issue.1
, pp. 22-37
-
-
Wilson, M.K.1
Baguley, B.C.2
Wall, C.3
-
158
-
-
84877846556
-
RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2
-
[158] Wang, H., Liu, K., Geng, M., et al. RXRalpha inhibits the NRF2-ARE signaling pathway through a direct interaction with the Neh7 domain of NRF2. Cancer Res. 73:10 (2013), 3097–3108.
-
(2013)
Cancer Res.
, vol.73
, Issue.10
, pp. 3097-3108
-
-
Wang, H.1
Liu, K.2
Geng, M.3
-
159
-
-
37649017714
-
Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha
-
[159] Wang, X.J., Hayes, J.D., Henderson, C.J., et al. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc. Natl. Acad. Sci. USA 104:49 (2007), 19589–19594.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, Issue.49
, pp. 19589-19594
-
-
Wang, X.J.1
Hayes, J.D.2
Henderson, C.J.3
-
160
-
-
84906939255
-
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells
-
[160] Valenzuela, M., Glorieux, C., Stockis, J., et al. Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells. Br. J. Cancer 111:5 (2014), 874–882.
-
(2014)
Br. J. Cancer
, vol.111
, Issue.5
, pp. 874-882
-
-
Valenzuela, M.1
Glorieux, C.2
Stockis, J.3
-
161
-
-
84927175614
-
Unlocking the potential of retinoic acid in anticancer therapy
-
[161] Schenk, T., Stengel, S., Zelent, A., Unlocking the potential of retinoic acid in anticancer therapy. Br. J. Cancer 111:11 (2014), 2039–2045.
-
(2014)
Br. J. Cancer
, vol.111
, Issue.11
, pp. 2039-2045
-
-
Schenk, T.1
Stengel, S.2
Zelent, A.3
-
162
-
-
34347384854
-
Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy
-
[162] Zhou, G.B., Zhang, J., Wang, Z.Y., et al. Treatment of acute promyelocytic leukaemia with all-trans retinoic acid and arsenic trioxide: a paradigm of synergistic molecular targeting therapy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 362:1482 (2007), 959–971.
-
(2007)
Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
, vol.362
, Issue.1482
, pp. 959-971
-
-
Zhou, G.B.1
Zhang, J.2
Wang, Z.Y.3
-
163
-
-
84951923640
-
Combination therapies improve the anticancer activities of retinoids in neuroblastoma
-
[163] Cheung, B.B., Combination therapies improve the anticancer activities of retinoids in neuroblastoma. World J. Clin. Oncol. 6:6 (2015), 212–215.
-
(2015)
World J. Clin. Oncol.
, vol.6
, Issue.6
, pp. 212-215
-
-
Cheung, B.B.1
-
164
-
-
84944730962
-
A small molecule inhibits deregulated NRF2 transcriptional activity in cancer
-
[164] Bollong, M.J., Yun, H., Sherwood, L., et al. A small molecule inhibits deregulated NRF2 transcriptional activity in cancer. ACS Chem. Biol., 2015.
-
(2015)
ACS Chem. Biol.
-
-
Bollong, M.J.1
Yun, H.2
Sherwood, L.3
-
165
-
-
79952122321
-
Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism
-
[165] Ren, D., Villeneuve, N.F., Jiang, T., et al. Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. USA 108:4 (2011), 1433–1438.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, Issue.4
, pp. 1433-1438
-
-
Ren, D.1
Villeneuve, N.F.2
Jiang, T.3
-
166
-
-
84918576027
-
Oncogenic KRAS confers chemoresistance by upregulating NRF2
-
[166] Tao, S., Wang, S., Moghaddam, S.J., et al. Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 74:24 (2014), 7430–7441.
-
(2014)
Cancer Res.
, vol.74
, Issue.24
, pp. 7430-7441
-
-
Tao, S.1
Wang, S.2
Moghaddam, S.J.3
-
167
-
-
84919663660
-
Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2
-
[167] Olayanju, A., Copple, I.M., Bryan, H.K., et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic. Biol. Med. 78 (2015), 202–212.
-
(2015)
Free Radic. Biol. Med.
, vol.78
, pp. 202-212
-
-
Olayanju, A.1
Copple, I.M.2
Bryan, H.K.3
-
168
-
-
84882770622
-
Molecular evidence of cryptotanshinone for treatment and prevention of human cancer
-
[168] Chen, W., Lu, Y., Chen, G., et al. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anti-Cancer Agents Med. Chem. 13:7 (2013), 979–987.
-
(2013)
Anti-Cancer Agents Med. Chem.
, vol.13
, Issue.7
, pp. 979-987
-
-
Chen, W.1
Lu, Y.2
Chen, G.3
-
169
-
-
84945950271
-
Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro
-
[169] Li, W., Saud, S.M., Young, M.R., et al. Cryptotanshinone, a Stat3 inhibitor, suppresses colorectal cancer proliferation and growth in vitro. Mol. Cell. Biochem. 406:1–2 (2015), 63–73.
-
(2015)
Mol. Cell. Biochem.
, vol.406
, Issue.1-2
, pp. 63-73
-
-
Li, W.1
Saud, S.M.2
Young, M.R.3
-
170
-
-
84946711784
-
Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling
-
[170] Li, S., Wang, H., Hong, L., et al. Cryptotanshinone inhibits breast cancer cell growth by suppressing estrogen receptor signaling. Cancer Biol. Ther. 16:1 (2015), 176–184.
-
(2015)
Cancer Biol. Ther.
, vol.16
, Issue.1
, pp. 176-184
-
-
Li, S.1
Wang, H.2
Hong, L.3
-
171
-
-
84986260311
-
Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells
-
[171] Wu, C.F., Klauck, S.M., Efferth, T., Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells. Arch. Toxicol., 2015.
-
(2015)
Arch. Toxicol.
-
-
Wu, C.F.1
Klauck, S.M.2
Efferth, T.3
-
172
-
-
84941553293
-
Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 Pathway [J], Cellular physiology and biochemistry
-
[172] Xia, C., Bai, X., Hou, X., et al. Cryptotanshinone reverses cisplatin resistance of human lung carcinoma A549 cells through down-regulating Nrf2 Pathway [J], Cellular physiology and biochemistry. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 37:2 (2015), 816–824.
-
(2015)
Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol.
, vol.37
, Issue.2
, pp. 816-824
-
-
Xia, C.1
Bai, X.2
Hou, X.3
-
173
-
-
84864405467
-
An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses
-
[173] Lee, S., Lim, M.J., Kim, M.H., et al. An effective strategy for increasing the radiosensitivity of human lung cancer cells by blocking Nrf2-dependent antioxidant responses. Free Radic. Biol. Med. 53:4 (2012), 807–816.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, Issue.4
, pp. 807-816
-
-
Lee, S.1
Lim, M.J.2
Kim, M.H.3
-
174
-
-
84880396632
-
Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways
-
[174] Do, M.T., Kim, H.G., Khanal, T., et al. Metformin inhibits heme oxygenase-1 expression in cancer cells through inactivation of Raf-ERK-Nrf2 signaling and AMPK-independent pathways. Toxicol. Appl. Pharmacol. 271:2 (2013), 229–238.
-
(2013)
Toxicol. Appl. Pharmacol.
, vol.271
, Issue.2
, pp. 229-238
-
-
Do, M.T.1
Kim, H.G.2
Khanal, T.3
-
175
-
-
84904157844
-
Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
-
[175] Do, M.T., Kim, H.G., Choi, J.H., et al. Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 74 (2014), 21–34.
-
(2014)
Free Radic. Biol. Med.
, vol.74
, pp. 21-34
-
-
Do, M.T.1
Kim, H.G.2
Choi, J.H.3
-
176
-
-
84939977745
-
Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia
-
[176] Ashabi, G., Khalaj, L., Khodagholi, F., et al. Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab. Brain Dis. 30:3 (2015), 747–754.
-
(2015)
Metab. Brain Dis.
, vol.30
, Issue.3
, pp. 747-754
-
-
Ashabi, G.1
Khalaj, L.2
Khodagholi, F.3
-
177
-
-
84982074226
-
Repurposing metformin for cancer treatment: current clinical studies
-
[177] Chae, Y.K., Arya, A., Malecek, M.K., et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget, 2016.
-
(2016)
Oncotarget
-
-
Chae, Y.K.1
Arya, A.2
Malecek, M.K.3
-
178
-
-
84978304034
-
Combinational strategies of metformin and chemotherapy in cancers
-
[178] Zhang, H.H., Guo, X.L., Combinational strategies of metformin and chemotherapy in cancers. Cancer Chemother. Pharm., 2016.
-
(2016)
Cancer Chemother. Pharm.
-
-
Zhang, H.H.1
Guo, X.L.2
-
179
-
-
80053417028
-
Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
-
[179] Tomic, T., Botton, T., Cerezo, M., et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis., 2, 2011, e199.
-
(2011)
Cell Death Dis.
, vol.2
, pp. e199
-
-
Tomic, T.1
Botton, T.2
Cerezo, M.3
-
180
-
-
84859360525
-
Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
-
[180] Shi, W.Y., Xiao, D., Wang, L., et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis., 3, 2012, e275.
-
(2012)
Cell Death Dis.
, vol.3
, pp. e275
-
-
Shi, W.Y.1
Xiao, D.2
Wang, L.3
-
181
-
-
84970954340
-
p62 links autophagy and Nrf2 signaling
-
[181] Jiang, T., Harder, B., Rojo de la Vega, M., et al. p62 links autophagy and Nrf2 signaling. Free Radic. Biol. Med. 88:Pt B (2015), 199–204.
-
(2015)
Free Radic. Biol. Med.
, vol.88
, pp. 199-204
-
-
Jiang, T.1
Harder, B.2
Rojo de la Vega, M.3
-
182
-
-
84958825037
-
Stress management by autophagy: Implications for chemoresistance
-
[182] Huang, Z., Zhou, L., Chen, Z., et al. Stress management by autophagy: Implications for chemoresistance. Int. J. Cancer 139:1 (2016), 23–32.
-
(2016)
Int. J. Cancer
, vol.139
, Issue.1
, pp. 23-32
-
-
Huang, Z.1
Zhou, L.2
Chen, Z.3
-
183
-
-
84893139463
-
A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity
-
[183] Limonciel, A., Jennings, P., A review of the evidence that ochratoxin A is an Nrf2 inhibitor: implications for nephrotoxicity and renal carcinogenicity. Toxins 6:1 (2014), 371–379.
-
(2014)
Toxins
, vol.6
, Issue.1
, pp. 371-379
-
-
Limonciel, A.1
Jennings, P.2
-
184
-
-
29544433884
-
A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat
-
[184] Marin-Kuan, M., Nestler, S., Verguet, C., et al. A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat. Toxicol. Sci.: Off. J. Soc. Toxicol. 89:1 (2006), 120–134.
-
(2006)
Toxicol. Sci.: Off. J. Soc. Toxicol.
, vol.89
, Issue.1
, pp. 120-134
-
-
Marin-Kuan, M.1
Nestler, S.2
Verguet, C.3
-
185
-
-
67649208209
-
Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses
-
[185] Cavin, C., Delatour, T., Marin-Kuan, M., et al. Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol. Sci.: Off. J. Soc. Toxicol. 110:1 (2009), 84–94.
-
(2009)
Toxicol. Sci.: Off. J. Soc. Toxicol.
, vol.110
, Issue.1
, pp. 84-94
-
-
Cavin, C.1
Delatour, T.2
Marin-Kuan, M.3
-
186
-
-
70349157178
-
Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells
-
[186] Boesch-Saadatmandi, C., Wagner, A.E., Graeser, A.C., et al. Ochratoxin A impairs Nrf2-dependent gene expression in porcine kidney tubulus cells. J. Anim. Physiol. Anim. Nutr. 93:5 (2009), 547–554.
-
(2009)
J. Anim. Physiol. Anim. Nutr.
, vol.93
, Issue.5
, pp. 547-554
-
-
Boesch-Saadatmandi, C.1
Wagner, A.E.2
Graeser, A.C.3
-
187
-
-
84885177241
-
Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity
-
[187] Arlt, A., Sebens, S., Krebs, S., et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene 32:40 (2013), 4825–4835.
-
(2013)
Oncogene
, vol.32
, Issue.40
, pp. 4825-4835
-
-
Arlt, A.1
Sebens, S.2
Krebs, S.3
-
188
-
-
79954610780
-
Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression
-
[188] Boettler, U., Sommerfeld, K., Volz, N., et al. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J. Nutr. Biochem. 22:5 (2011), 426–440.
-
(2011)
J. Nutr. Biochem.
, vol.22
, Issue.5
, pp. 426-440
-
-
Boettler, U.1
Sommerfeld, K.2
Volz, N.3
-
189
-
-
84958567964
-
Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration
-
[189] Liao, J.C., Lee, K.T., You, B.J., et al. Raf/ERK/Nrf2 signaling pathway and MMP-7 expression involvement in the trigonelline-mediated inhibition of hepatocarcinoma cell migration. Food Nutr. Res., 59, 2015, 29884.
-
(2015)
Food Nutr. Res.
, vol.59
, pp. 29884
-
-
Liao, J.C.1
Lee, K.T.2
You, B.J.3
-
190
-
-
84946474228
-
Triptolide inhibits lung cancer cell migration, invasion, and metastasis
-
discussion 1824-5
-
[190] Reno, T.A., Kim, J.Y., Raz, D.J., Triptolide inhibits lung cancer cell migration, invasion, and metastasis. Ann. Thorac. Surg. 100:5 (2015), 1817–1824 discussion 1824-5.
-
(2015)
Ann. Thorac. Surg.
, vol.100
, Issue.5
, pp. 1817-1824
-
-
Reno, T.A.1
Kim, J.Y.2
Raz, D.J.3
-
191
-
-
84929088527
-
Triptolide inhibits human breast cancer MCF-7 cell growth via downregulation of the ERalpha-mediated signaling pathway
-
[191] Li, H., Pan, G.F., Jiang, Z.Z., et al. Triptolide inhibits human breast cancer MCF-7 cell growth via downregulation of the ERalpha-mediated signaling pathway. Acta Pharmacol. Sin. 36:5 (2015), 606–613.
-
(2015)
Acta Pharmacol. Sin.
, vol.36
, Issue.5
, pp. 606-613
-
-
Li, H.1
Pan, G.F.2
Jiang, Z.Z.3
-
192
-
-
84919924742
-
Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2
-
[192] Wang, B.Y., Cao, J., Chen, J.W., et al. Triptolide induces apoptosis of gastric cancer cells via inhibiting the overexpression of MDM2. Med. Oncol., 31(11), 2014, 270.
-
(2014)
Med. Oncol.
, vol.31
, Issue.11
, pp. 270
-
-
Wang, B.Y.1
Cao, J.2
Chen, J.W.3
-
193
-
-
84937440147
-
Targets and molecular mechanisms of triptolide in cancer therapy
-
[193] Meng, C., Zhu, H., Song, H., et al. Targets and molecular mechanisms of triptolide in cancer therapy. Chin. J. Cancer Res. 26:5 (2014), 622–626.
-
(2014)
Chin. J. Cancer Res.
, vol.26
, Issue.5
, pp. 622-626
-
-
Meng, C.1
Zhu, H.2
Song, H.3
-
194
-
-
84922634432
-
Synergistic antitumor effect of triptolide and cisplatin in cisplatin resistant human bladder cancer cells
-
[194] Ho, J.N., Byun, S.S., Lee, S., et al. Synergistic antitumor effect of triptolide and cisplatin in cisplatin resistant human bladder cancer cells. J. Urol. 193:3 (2015), 1016–1022.
-
(2015)
J. Urol.
, vol.193
, Issue.3
, pp. 1016-1022
-
-
Ho, J.N.1
Byun, S.S.2
Lee, S.3
-
195
-
-
84891798669
-
Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors
-
[195] Liu, Y., Chen, F., Wang, S., et al. Low-dose triptolide in combination with idarubicin induces apoptosis in AML leukemic stem-like KG1a cell line by modulation of the intrinsic and extrinsic factors. Cell Death Dis., 4, 2013, e948.
-
(2013)
Cell Death Dis.
, vol.4
, pp. e948
-
-
Liu, Y.1
Chen, F.2
Wang, S.3
-
196
-
-
84988577805
-
Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway
-
[196] Yu, H., Shi, L., Zhao, S., et al. Triptolide attenuates myocardial ischemia/reperfusion injuries in rats by inducing the activation of Nrf2/HO-1 defense pathway. Cardiovasc. Toxicol., 2015.
-
(2015)
Cardiovasc. Toxicol.
-
-
Yu, H.1
Shi, L.2
Zhao, S.3
-
197
-
-
84861144099
-
Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms
-
[197] Zhou, Z.L., Yang, Y.X., Ding, J., et al. Triptolide: structural modifications, structure-activity relationships, bioactivities, clinical development and mechanisms. Nat. Prod. Rep. 29:4 (2012), 457–475.
-
(2012)
Nat. Prod. Rep.
, vol.29
, Issue.4
, pp. 457-475
-
-
Zhou, Z.L.1
Yang, Y.X.2
Ding, J.3
|