메뉴 건너뛰기




Volumn 6, Issue , 2015, Pages 183-197

Antioxidant responses and cellular adjustments to oxidative stress

Author keywords

Antioxidants; ER stress; Ischemia reperfusion; Redox signaling; Transcription factors

Indexed keywords

GLUTATHIONE; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; KELCH LIKE ECH ASSOCIATED PROTEIN 1; MICRORNA; NUCLEOPHILE; OXIDIZING AGENT; PEROXIREDOXIN; THIOL; TRANSCRIPTION FACTOR AP 1; TRANSCRIPTION FACTOR NRF2; ANTIOXIDANT; KEAP1 PROTEIN, HUMAN; NFE2L2 PROTEIN, HUMAN; SIGNAL PEPTIDE;

EID: 84938300316     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2015.07.008     Document Type: Review
Times cited : (882)

References (253)
  • 1
    • 0026698060 scopus 로고
    • Oxidized redox state of glutathione in the endoplasmic reticulum
    • Hwang C., Sinskey A.J., Lodish H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992, 257(5076):1496-1502.
    • (1992) Science , vol.257 , Issue.5076 , pp. 1496-1502
    • Hwang, C.1    Sinskey, A.J.2    Lodish, H.F.3
  • 2
    • 84861182619 scopus 로고    scopus 로고
    • S-glutathionylation signaling in cell biology: progress and prospects
    • Pastore A., Piemonte F. S-glutathionylation signaling in cell biology: progress and prospects. Eur. J. Pharm. Sci. 2012, 46(5):279-292.
    • (2012) Eur. J. Pharm. Sci. , vol.46 , Issue.5 , pp. 279-292
    • Pastore, A.1    Piemonte, F.2
  • 3
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24(5):981-990.
    • (2012) Cell Signal. , vol.24 , Issue.5 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 4
    • 13244269755 scopus 로고    scopus 로고
    • Glutathione, stress responses, and redox signaling in lung inflammation
    • Rahman I., et al. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid. Redox Signal. 2005, 7(1-2):42-59.
    • (2005) Antioxid. Redox Signal. , vol.7 , Issue.1-2 , pp. 42-59
    • Rahman, I.1
  • 5
    • 17044395507 scopus 로고    scopus 로고
    • L-gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    • Haddad J.J., Harb H.L. L-gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?. Mol. Immunol. 2005, 42(9):987-1014.
    • (2005) Mol. Immunol. , vol.42 , Issue.9 , pp. 987-1014
    • Haddad, J.J.1    Harb, H.L.2
  • 6
    • 84875744148 scopus 로고    scopus 로고
    • Glutathione synthesis
    • Lu S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830(5):3143-3153.
    • (2013) Biochim. Biophys. Acta , vol.1830 , Issue.5 , pp. 3143-3153
    • Lu, S.C.1
  • 7
    • 65049089113 scopus 로고    scopus 로고
    • Regulation of glutathione synthesis
    • Lu S.C. Regulation of glutathione synthesis. Mol. Aspects Med. 2009, 30(1-2):42-59.
    • (2009) Mol. Aspects Med. , vol.30 , Issue.1-2 , pp. 42-59
    • Lu, S.C.1
  • 8
    • 84892369382 scopus 로고    scopus 로고
    • How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
    • Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66:24-35.
    • (2014) Free Radic. Biol. Med. , vol.66 , pp. 24-35
    • Forman, H.J.1    Davies, K.J.2    Ursini, F.3
  • 9
    • 84892916146 scopus 로고    scopus 로고
    • Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging
    • Oelze M., et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 2014, 63(2):390-396.
    • (2014) Hypertension , vol.63 , Issue.2 , pp. 390-396
    • Oelze, M.1
  • 10
    • 34548163922 scopus 로고    scopus 로고
    • Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
    • Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7(4):381-391.
    • (2007) Curr. Opin. Pharmacol. , vol.7 , Issue.4 , pp. 381-391
    • Gallogly, M.M.1    Mieyal, J.J.2
  • 11
    • 34250738347 scopus 로고    scopus 로고
    • Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences
    • Martinez-Ruiz A., Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc. Res. 2007, 75(2):220-228.
    • (2007) Cardiovasc. Res. , vol.75 , Issue.2 , pp. 220-228
    • Martinez-Ruiz, A.1    Lamas, S.2
  • 12
    • 84884179149 scopus 로고    scopus 로고
    • Causes and consequences of cysteine S-glutathionylation
    • Grek C.L., et al. Causes and consequences of cysteine S-glutathionylation. J. Biol. Chem. 2013, 288(37):26497-26504.
    • (2013) J. Biol. Chem. , vol.288 , Issue.37 , pp. 26497-26504
    • Grek, C.L.1
  • 13
    • 78650810596 scopus 로고    scopus 로고
    • S-glutathionylation uncouples eNOS and regulates its cellular and vascular function
    • Chen C.A., et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 2010, 468(7327):1115-1118.
    • (2010) Nature , vol.468 , Issue.7327 , pp. 1115-1118
    • Chen, C.A.1
  • 14
    • 84891586833 scopus 로고    scopus 로고
    • Inborn defects in the antioxidant systems of human red blood cells
    • van Zwieten R., Verhoeven A.J., Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radic. Biol. Med. 2014, 67:377-386.
    • (2014) Free Radic. Biol. Med. , vol.67 , pp. 377-386
    • van Zwieten, R.1    Verhoeven, A.J.2    Roos, D.3
  • 15
    • 80052000670 scopus 로고    scopus 로고
    • Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities
    • Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15(7):1957-1997.
    • (2011) Antioxid. Redox Signal. , vol.15 , Issue.7 , pp. 1957-1997
    • Lubos, E.1    Loscalzo, J.2    Handy, D.E.3
  • 16
    • 0037438730 scopus 로고    scopus 로고
    • Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells
    • Imai H., Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 2003, 34(2):145-169.
    • (2003) Free Radic. Biol. Med. , vol.34 , Issue.2 , pp. 145-169
    • Imai, H.1    Nakagawa, Y.2
  • 17
    • 84859211841 scopus 로고    scopus 로고
    • Selenium and human health
    • Rayman M.P. Selenium and human health. Lancet 2012, 379(9822):1256-1268.
    • (2012) Lancet , vol.379 , Issue.9822 , pp. 1256-1268
    • Rayman, M.P.1
  • 18
    • 0028922827 scopus 로고
    • Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo
    • Chen H., Tappel A.L. Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo. Free Radic. Biol. Med. 1995, 18(5):949-953.
    • (1995) Free Radic. Biol. Med. , vol.18 , Issue.5 , pp. 949-953
    • Chen, H.1    Tappel, A.L.2
  • 19
    • 0031410089 scopus 로고    scopus 로고
    • Inhibition of 2-nitropropane-induced rat liver DNA and RNA damage by benzyl selenocyanate
    • Fiala E.S., et al. Inhibition of 2-nitropropane-induced rat liver DNA and RNA damage by benzyl selenocyanate. Carcinogenesis 1997, 18(9):1809-1815.
    • (1997) Carcinogenesis , vol.18 , Issue.9 , pp. 1809-1815
    • Fiala, E.S.1
  • 20
    • 0025021058 scopus 로고
    • Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices
    • Leibovitz B., Hu M.L., Tappel A.L. Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. J. Nutr. 1990, 120(1):97-104.
    • (1990) J. Nutr. , vol.120 , Issue.1 , pp. 97-104
    • Leibovitz, B.1    Hu, M.L.2    Tappel, A.L.3
  • 21
    • 0348230942 scopus 로고    scopus 로고
    • Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system
    • Fernandes A.P., Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal. 2004, 6(1):63-74.
    • (2004) Antioxid. Redox Signal. , vol.6 , Issue.1 , pp. 63-74
    • Fernandes, A.P.1    Holmgren, A.2
  • 22
    • 0037222255 scopus 로고    scopus 로고
    • Structure, mechanism and regulation of peroxiredoxins
    • Wood Z.A., et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28(1):32-40.
    • (2003) Trends Biochem. Sci. , vol.28 , Issue.1 , pp. 32-40
    • Wood, Z.A.1
  • 23
    • 0242668686 scopus 로고    scopus 로고
    • Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
    • Wood Z.A., Poole L.B., Karplus P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300(5619):650-653.
    • (2003) Science , vol.300 , Issue.5619 , pp. 650-653
    • Wood, Z.A.1    Poole, L.B.2    Karplus, P.A.3
  • 25
    • 0036287739 scopus 로고    scopus 로고
    • Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein
    • Fujii J., Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 2002, 7(3):123-130.
    • (2002) Redox Rep. , vol.7 , Issue.3 , pp. 123-130
    • Fujii, J.1    Ikeda, Y.2
  • 26
    • 0035865858 scopus 로고    scopus 로고
    • Localization of the thioredoxin system in normal rat kidney
    • Oberley T.D., et al. Localization of the thioredoxin system in normal rat kidney. Free Radic. Biol. Med. 2001, 30(4):412-424.
    • (2001) Free Radic. Biol. Med. , vol.30 , Issue.4 , pp. 412-424
    • Oberley, T.D.1
  • 27
    • 0344862115 scopus 로고    scopus 로고
    • Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver
    • Immenschuh S., et al. Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J. Histochem. Cytochem. 2003, 51(12):1621-1631.
    • (2003) J. Histochem. Cytochem. , vol.51 , Issue.12 , pp. 1621-1631
    • Immenschuh, S.1
  • 28
    • 0001015125 scopus 로고    scopus 로고
    • Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate
    • Seo M.S., et al. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 2000, 275(27):20346-20354.
    • (2000) J. Biol. Chem. , vol.275 , Issue.27 , pp. 20346-20354
    • Seo, M.S.1
  • 29
    • 0028114890 scopus 로고
    • The reaction of superoxide with reduced glutathione
    • Winterbourn C.C., Metodiewa D. The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys. 1994, 314(2):284-290.
    • (1994) Arch. Biochem. Biophys. , vol.314 , Issue.2 , pp. 284-290
    • Winterbourn, C.C.1    Metodiewa, D.2
  • 30
    • 42249088093 scopus 로고    scopus 로고
    • Reconciling the chemistry and biology of reactive oxygen species
    • Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4(5):278-286.
    • (2008) Nat. Chem. Biol. , vol.4 , Issue.5 , pp. 278-286
    • Winterbourn, C.C.1
  • 31
    • 84901741434 scopus 로고    scopus 로고
    • Hydrogen peroxide sensing, signaling and regulation of transcription factors
    • Marinho H.S., et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2:535-562.
    • (2014) Redox Biol. , vol.2 , pp. 535-562
    • Marinho, H.S.1
  • 32
    • 28844480498 scopus 로고    scopus 로고
    • Thiol redox control via thioredoxin and glutaredoxin systems
    • Holmgren A., et al. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 2005, 33(6):1375-1377.
    • (2005) Biochem. Soc. Trans. , vol.33 , Issue.6 , pp. 1375-1377
    • Holmgren, A.1
  • 33
    • 77954509272 scopus 로고    scopus 로고
    • Redox control systems in the nucleus: mechanisms and functions
    • Go Y.M., Jones D.P. Redox control systems in the nucleus: mechanisms and functions. Antioxid. Redox Signal. 2010, 13(4):489-509.
    • (2010) Antioxid. Redox Signal. , vol.13 , Issue.4 , pp. 489-509
    • Go, Y.M.1    Jones, D.P.2
  • 34
    • 84895457867 scopus 로고    scopus 로고
    • Superoxide dismutases: you've come a long way, baby
    • McCord J.M., Fridovich I. Superoxide dismutases: you've come a long way, baby. Antioxid. Redox Signal. 2014, 20(10):1548-1549.
    • (2014) Antioxid. Redox Signal. , vol.20 , Issue.10 , pp. 1548-1549
    • McCord, J.M.1    Fridovich, I.2
  • 35
    • 33748518966 scopus 로고    scopus 로고
    • Superoxide dismutase: an emerging target for cancer therapeutics
    • Hileman E.A., Achanta G., Huang P. Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opin. Ther. Targets 2001, 5(6):697-710.
    • (2001) Expert Opin. Ther. Targets , vol.5 , Issue.6 , pp. 697-710
    • Hileman, E.A.1    Achanta, G.2    Huang, P.3
  • 36
    • 84905820955 scopus 로고    scopus 로고
    • Manganese superoxide dismutase in carcinogenesis: friend or foe?
    • Konzack A., Kietzmann T. Manganese superoxide dismutase in carcinogenesis: friend or foe?. Biochem. Soc. Trans. 2014, 42(4):1012-1016.
    • (2014) Biochem. Soc. Trans. , vol.42 , Issue.4 , pp. 1012-1016
    • Konzack, A.1    Kietzmann, T.2
  • 37
    • 33747404190 scopus 로고    scopus 로고
    • Role of extracellular superoxide dismutase in hypertension
    • Gongora M.C., et al. Role of extracellular superoxide dismutase in hypertension. Hypertension 2006, 48(3):473-481.
    • (2006) Hypertension , vol.48 , Issue.3 , pp. 473-481
    • Gongora, M.C.1
  • 38
    • 7244253081 scopus 로고    scopus 로고
    • Nrf2-Keap1 defines a physiologically important stress response mechanism
    • Motohashi H., Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004, 10(11):549-557.
    • (2004) Trends Mol. Med. , vol.10 , Issue.11 , pp. 549-557
    • Motohashi, H.1    Yamamoto, M.2
  • 39
    • 79954416526 scopus 로고    scopus 로고
    • The cytoprotective role of the Keap1-Nrf2 pathway
    • Baird L., Dinkova-Kostova A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85(4):241-272.
    • (2011) Arch. Toxicol. , vol.85 , Issue.4 , pp. 241-272
    • Baird, L.1    Dinkova-Kostova, A.T.2
  • 40
    • 0037055265 scopus 로고    scopus 로고
    • Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors
    • Motohashi H., et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 2002, 294(1-2):1-12.
    • (2002) Gene , vol.294 , Issue.1-2 , pp. 1-12
    • Motohashi, H.1
  • 41
    • 10044228504 scopus 로고    scopus 로고
    • Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
    • Zhang D.D., et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 2004, 24(24):10941-10953.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.24 , pp. 10941-10953
    • Zhang, D.D.1
  • 42
    • 33747728194 scopus 로고    scopus 로고
    • Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex
    • McMahon M., et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 2006, 281(34):24756-24768.
    • (2006) J. Biol. Chem. , vol.281 , Issue.34 , pp. 24756-24768
    • McMahon, M.1
  • 43
    • 33750613056 scopus 로고    scopus 로고
    • Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
    • Tong K.I., et al. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 2006, 387(10-11):1311-1320.
    • (2006) Biol. Chem. , vol.387 , Issue.10-11 , pp. 1311-1320
    • Tong, K.I.1
  • 44
    • 3843104763 scopus 로고    scopus 로고
    • Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
    • McMahon M., et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 2004, 279(30):31556-31567.
    • (2004) J. Biol. Chem. , vol.279 , Issue.30 , pp. 31556-31567
    • McMahon, M.1
  • 45
    • 0013282861 scopus 로고    scopus 로고
    • Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26S proteasome
    • Nguyen T., et al. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26S proteasome. J. Biol. Chem. 2003, 278(7):4536-4541.
    • (2003) J. Biol. Chem. , vol.278 , Issue.7 , pp. 4536-4541
    • Nguyen, T.1
  • 46
    • 34548772935 scopus 로고    scopus 로고
    • Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2
    • Sun Z., et al. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 2007, 27(18):6334-6349.
    • (2007) Mol. Cell. Biol. , vol.27 , Issue.18 , pp. 6334-6349
    • Sun, Z.1
  • 47
    • 3543008924 scopus 로고    scopus 로고
    • Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
    • Kobayashi A., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 2004, 24(16):7130-7139.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.16 , pp. 7130-7139
    • Kobayashi, A.1
  • 48
    • 4544294365 scopus 로고    scopus 로고
    • The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase
    • Cullinan S.B., et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 2004, 24(19):8477-8486.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.19 , pp. 8477-8486
    • Cullinan, S.B.1
  • 49
    • 11144264663 scopus 로고    scopus 로고
    • BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
    • Furukawa M., Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 2005, 25(1):162-171.
    • (2005) Mol. Cell. Biol. , vol.25 , Issue.1 , pp. 162-171
    • Furukawa, M.1    Xiong, Y.2
  • 50
    • 33344469643 scopus 로고    scopus 로고
    • Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
    • Kobayashi A., et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 2006, 26(1):221-229.
    • (2006) Mol. Cell. Biol. , vol.26 , Issue.1 , pp. 221-229
    • Kobayashi, A.1
  • 51
    • 0037015035 scopus 로고    scopus 로고
    • Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
    • Dinkova-Kostova A.T., et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002, 99(18):11908-11913.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , Issue.18 , pp. 11908-11913
    • Dinkova-Kostova, A.T.1
  • 52
    • 77950887186 scopus 로고    scopus 로고
    • Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation
    • Fourquet S., et al. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 2010, 285(11):8463-8471.
    • (2010) J. Biol. Chem. , vol.285 , Issue.11 , pp. 8463-8471
    • Fourquet, S.1
  • 53
    • 42149196050 scopus 로고    scopus 로고
    • Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity
    • Yamamoto T., et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 2008, 28(8):2758-2770.
    • (2008) Mol. Cell. Biol. , vol.28 , Issue.8 , pp. 2758-2770
    • Yamamoto, T.1
  • 54
    • 0025948113 scopus 로고
    • The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity
    • Rushmore T.H., Morton M.R., Pickett C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 1991, 266(18):11632-11639.
    • (1991) J. Biol. Chem. , vol.266 , Issue.18 , pp. 11632-11639
    • Rushmore, T.H.1    Morton, M.R.2    Pickett, C.B.3
  • 55
    • 84867041441 scopus 로고    scopus 로고
    • Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2
    • Ma Q., He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol. Rev. 2012, 64(4):1055-1081.
    • (2012) Pharmacol. Rev. , vol.64 , Issue.4 , pp. 1055-1081
    • Ma, Q.1    He, X.2
  • 56
    • 67449128222 scopus 로고    scopus 로고
    • Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response
    • Chen W., et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell 2009, 34(6):663-673.
    • (2009) Mol. Cell , vol.34 , Issue.6 , pp. 663-673
    • Chen, W.1
  • 57
    • 77649265091 scopus 로고    scopus 로고
    • The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
    • Komatsu M., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12(3):213-223.
    • (2010) Nat. Cell Biol. , vol.12 , Issue.3 , pp. 213-223
    • Komatsu, M.1
  • 58
    • 84881476323 scopus 로고    scopus 로고
    • Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
    • Chowdhry S., et al. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013, 32(32):3765-3781.
    • (2013) Oncogene , vol.32 , Issue.32 , pp. 3765-3781
    • Chowdhry, S.1
  • 59
    • 77957237159 scopus 로고    scopus 로고
    • Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
    • Malhotra D., et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010, 38(17):5718-5734.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.17 , pp. 5718-5734
    • Malhotra, D.1
  • 60
    • 1642535318 scopus 로고    scopus 로고
    • Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction
    • Ma Q., et al. Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem. J. 2004, 377(1):205-213.
    • (2004) Biochem. J. , vol.377 , Issue.1 , pp. 205-213
    • Ma, Q.1
  • 61
    • 36148977625 scopus 로고    scopus 로고
    • Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis
    • Iida K., et al. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 2007, 28(11):2398-2403.
    • (2007) Carcinogenesis , vol.28 , Issue.11 , pp. 2398-2403
    • Iida, K.1
  • 62
    • 55949120110 scopus 로고    scopus 로고
    • Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis
    • Li W., et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76(11):1485-1489.
    • (2008) Biochem. Pharmacol. , vol.76 , Issue.11 , pp. 1485-1489
    • Li, W.1
  • 63
    • 47749116455 scopus 로고    scopus 로고
    • Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation
    • Jain A.K., Mahajan S., Jaiswal A.K. Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation. J. Biol. Chem. 2008, 283(25):17712-17720.
    • (2008) J. Biol. Chem. , vol.283 , Issue.25 , pp. 17712-17720
    • Jain, A.K.1    Mahajan, S.2    Jaiswal, A.K.3
  • 64
    • 0242329881 scopus 로고    scopus 로고
    • Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation
    • Wakabayashi N., et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 2003, 35(3):238-245.
    • (2003) Nat. Genet. , vol.35 , Issue.3 , pp. 238-245
    • Wakabayashi, N.1
  • 65
    • 77954351631 scopus 로고    scopus 로고
    • High levels of Nrf2 determine chemoresistance in type II endometrial cancer
    • Jiang T., et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 2010, 70(13):5486-5496.
    • (2010) Cancer Res. , vol.70 , Issue.13 , pp. 5486-5496
    • Jiang, T.1
  • 66
    • 0031897632 scopus 로고    scopus 로고
    • NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses
    • Ghosh S., May M.J., Kopp E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 225-260.
    • (1998) Annu. Rev. Immunol. , pp. 225-260
    • Ghosh, S.1    May, M.J.2    Kopp, E.B.3
  • 67
    • 68949215885 scopus 로고    scopus 로고
    • Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator
    • Oliveira-Marques V., et al. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid. Redox Signal. 2009, 11(9):2223-2243.
    • (2009) Antioxid. Redox Signal. , vol.11 , Issue.9 , pp. 2223-2243
    • Oliveira-Marques, V.1
  • 68
    • 53049109525 scopus 로고    scopus 로고
    • Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha
    • Jung Y., et al. Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J. Biol. Chem. 2008, 283(35):23863-23871.
    • (2008) J. Biol. Chem. , vol.283 , Issue.35 , pp. 23863-23871
    • Jung, Y.1
  • 69
    • 70349970493 scopus 로고    scopus 로고
    • KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta
    • Lee D.F., et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 2009, 36(1):131-140.
    • (2009) Mol. Cell , vol.36 , Issue.1 , pp. 131-140
    • Lee, D.F.1
  • 70
    • 8344260568 scopus 로고    scopus 로고
    • Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species
    • Pham C.G., et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004, 119(4):529-542.
    • (2004) Cell , vol.119 , Issue.4 , pp. 529-542
    • Pham, C.G.1
  • 71
    • 14844327760 scopus 로고    scopus 로고
    • Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases
    • Kamata H., et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120(5):649-661.
    • (2005) Cell , vol.120 , Issue.5 , pp. 649-661
    • Kamata, H.1
  • 72
    • 44849100198 scopus 로고    scopus 로고
    • NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha
    • Rius J., et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008, 453(7196):807-811.
    • (2008) Nature , vol.453 , Issue.7196 , pp. 807-811
    • Rius, J.1
  • 73
    • 0041842588 scopus 로고    scopus 로고
    • Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression
    • Ma Q., et al. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol. Pharmacol. 2003, 64(2):211-219.
    • (2003) Mol. Pharmacol. , vol.64 , Issue.2 , pp. 211-219
    • Ma, Q.1
  • 74
    • 18344378407 scopus 로고    scopus 로고
    • Oxidative stress and gene expression: the AP-1 and NF-kappaB connections
    • Karin M., et al. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 2001, 15(2-4):87-89.
    • (2001) Biofactors , vol.15 , Issue.2-4 , pp. 87-89
    • Karin, M.1
  • 75
    • 0029808748 scopus 로고    scopus 로고
    • Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways
    • Whitmarsh A.J., Davis R.J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. (Berl) 1996, 74(10):589-607.
    • (1996) J. Mol. Med. (Berl) , vol.74 , Issue.10 , pp. 589-607
    • Whitmarsh, A.J.1    Davis, R.J.2
  • 76
    • 0029990552 scopus 로고    scopus 로고
    • Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression
    • Pinkus R., Weiner L.M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J. Biol. Chem. 1996, 271(23):13422-13429.
    • (1996) J. Biol. Chem. , vol.271 , Issue.23 , pp. 13422-13429
    • Pinkus, R.1    Weiner, L.M.2    Daniel, V.3
  • 77
    • 0035917814 scopus 로고    scopus 로고
    • Mitochondrial permeability transition and oxidative stress
    • Kowaltowski A.J., Castilho R.F., Vercesi A.E. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001, 495(1-2):12-15.
    • (2001) FEBS Lett. , vol.495 , Issue.1-2 , pp. 12-15
    • Kowaltowski, A.J.1    Castilho, R.F.2    Vercesi, A.E.3
  • 78
    • 84857038935 scopus 로고    scopus 로고
    • Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts
    • Ronchi J.A., Vercesi A.E., Castilho R.F. Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts. J. Bioenergy Biomembr. 2011, 43(6):709-715.
    • (2011) J. Bioenergy Biomembr. , vol.43 , Issue.6 , pp. 709-715
    • Ronchi, J.A.1    Vercesi, A.E.2    Castilho, R.F.3
  • 79
    • 68649090703 scopus 로고    scopus 로고
    • The role of the mitochondrial permeability transition pore in heart disease
    • Halestrap A.P., Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta 2009, 1787(11):1402-1415.
    • (2009) Biochim. Biophys. Acta , vol.1787 , Issue.11 , pp. 1402-1415
    • Halestrap, A.P.1    Pasdois, P.2
  • 80
    • 0027751663 scopus 로고
    • The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
    • Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
    • (1993) Cell , vol.75 , Issue.5 , pp. 843-854
    • Lee, R.C.1    Feinbaum, R.L.2    Ambros, V.3
  • 81
    • 0027730383 scopus 로고
    • Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
    • Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
    • (1993) Cell , vol.75 , Issue.5 , pp. 855-862
    • Wightman, B.1    Ha, I.2    Ruvkun, G.3
  • 82
    • 84891818318 scopus 로고    scopus 로고
    • MiRBase: annotating high confidence microRNAs using deep sequencing data
    • Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42(Database issue):D68-D73.
    • (2014) Nucleic Acids Res. , vol.42 , Issue.DATABASE ISSUE , pp. D68-D73
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 83
    • 68149180031 scopus 로고    scopus 로고
    • Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis
    • Kim W., et al. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res. 2009, 19(7):899-909.
    • (2009) Cell Res. , vol.19 , Issue.7 , pp. 899-909
    • Kim, W.1
  • 84
    • 7644237777 scopus 로고    scopus 로고
    • Intron-derived microRNAs-fine tuning of gene functions
    • Ying S.Y., Lin S.L. Intron-derived microRNAs-fine tuning of gene functions. Gene 2004, 342(1):25-28.
    • (2004) Gene , vol.342 , Issue.1 , pp. 25-28
    • Ying, S.Y.1    Lin, S.L.2
  • 85
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
    • (2004) Cell , vol.116 , Issue.2 , pp. 281-297
    • Bartel, D.P.1
  • 86
    • 0035955374 scopus 로고    scopus 로고
    • Identification of novel genes coding for small expressed RNAs
    • Lagos-Quintana M., et al. Identification of novel genes coding for small expressed RNAs. Science 2001, 294(5543):853-858.
    • (2001) Science , vol.294 , Issue.5543 , pp. 853-858
    • Lagos-Quintana, M.1
  • 87
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: target recognition and regulatory functions
    • Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
    • (2009) Cell , vol.136 , Issue.2 , pp. 215-233
    • Bartel, D.P.1
  • 88
    • 84885185272 scopus 로고    scopus 로고
    • Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis
    • Cheng X., Ku C.H., Siow R.C. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic. Biol. Med. 2013, 64:4-11.
    • (2013) Free Radic. Biol. Med. , vol.64 , pp. 4-11
    • Cheng, X.1    Ku, C.H.2    Siow, R.C.3
  • 89
    • 84875050771 scopus 로고    scopus 로고
    • Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells
    • Stachurska A., et al. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 2013, 57(3):504-515.
    • (2013) Mol. Nutr. Food Res. , vol.57 , Issue.3 , pp. 504-515
    • Stachurska, A.1
  • 90
    • 84870859466 scopus 로고    scopus 로고
    • Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronalSH-SY5Y cells
    • Narasimhan M., et al. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronalSH-SY5Y cells. PLoS One 2012, 7(12):e51111.
    • (2012) PLoS One , vol.7 , Issue.12 , pp. e51111
    • Narasimhan, M.1
  • 91
    • 84862494503 scopus 로고    scopus 로고
    • The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops
    • Papp D., et al. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops. FEBS Lett. 2012, 586(13):1795-1802.
    • (2012) FEBS Lett. , vol.586 , Issue.13 , pp. 1795-1802
    • Papp, D.1
  • 92
    • 81755171451 scopus 로고    scopus 로고
    • MiR-200 a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells
    • Eades G., et al. miR-200 a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 2011, 286(47):40725-40733.
    • (2011) J. Biol. Chem. , vol.286 , Issue.47 , pp. 40725-40733
    • Eades, G.1
  • 93
    • 77951460055 scopus 로고    scopus 로고
    • MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins
    • Hou W., et al. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 2010, 51(5):1494-1504.
    • (2010) Hepatology , vol.51 , Issue.5 , pp. 1494-1504
    • Hou, W.1
  • 94
    • 78549277802 scopus 로고    scopus 로고
    • MicroRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease
    • Sangokoya C., Telen M.J., Chi J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010, 116(20):4338-4348.
    • (2010) Blood , vol.116 , Issue.20 , pp. 4338-4348
    • Sangokoya, C.1    Telen, M.J.2    Chi, J.T.3
  • 95
    • 80052570740 scopus 로고    scopus 로고
    • MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism
    • Yang M., et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 2011, 129(3):983-991.
    • (2011) Breast Cancer Res. Treat. , vol.129 , Issue.3 , pp. 983-991
    • Yang, M.1
  • 96
    • 84921048652 scopus 로고    scopus 로고
    • Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice
    • Yang H., et al. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid. Redox Signal. 2015, 22(3):259-274.
    • (2015) Antioxid. Redox Signal. , vol.22 , Issue.3 , pp. 259-274
    • Yang, H.1
  • 97
    • 84904157844 scopus 로고    scopus 로고
    • Metformin induces microRNA-34 a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
    • Do M.T., et al. Metformin induces microRNA-34 a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 2014, 74:21-34.
    • (2014) Free Radic. Biol. Med. , vol.74 , pp. 21-34
    • Do, M.T.1
  • 98
    • 84919341176 scopus 로고    scopus 로고
    • The role of miR-34 a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats
    • Huang X., et al. The role of miR-34 a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. PLoS One 2014, 9(11):e113305.
    • (2014) PLoS One , vol.9 , Issue.11 , pp. e113305
    • Huang, X.1
  • 99
    • 79952742806 scopus 로고    scopus 로고
    • Increased expression of miR-34 a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1
    • Li N., et al. Increased expression of miR-34 a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech. Ageing Dev. 2011, 132(3):75-85.
    • (2011) Mech. Ageing Dev. , vol.132 , Issue.3 , pp. 75-85
    • Li, N.1
  • 100
    • 84921467662 scopus 로고    scopus 로고
    • MicroRNA-200 a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis
    • Yang J.J., et al. MicroRNA-200 a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cell Signal. 2014, 26(11):2381-2389.
    • (2014) Cell Signal. , vol.26 , Issue.11 , pp. 2381-2389
    • Yang, J.J.1
  • 101
    • 80255137252 scopus 로고    scopus 로고
    • Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells
    • Pulkkinen K.H., Yla-Herttuala S., Levonen A.L. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells. Free Radic. Biol. Med. 2011, 51(11):2124-2131.
    • (2011) Free Radic. Biol. Med. , vol.51 , Issue.11 , pp. 2124-2131
    • Pulkkinen, K.H.1    Yla-Herttuala, S.2    Levonen, A.L.3
  • 102
    • 79951682474 scopus 로고    scopus 로고
    • Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155
    • Boesch-Saadatmandi C., et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J. Nutr. Biochem. 2011, 22(3):293-299.
    • (2011) J. Nutr. Biochem. , vol.22 , Issue.3 , pp. 293-299
    • Boesch-Saadatmandi, C.1
  • 103
    • 84863245942 scopus 로고    scopus 로고
    • MicroRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells
    • Li S., et al. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol. Med. Rep. 2012, 5(4):949-954.
    • (2012) Mol. Med. Rep. , vol.5 , Issue.4 , pp. 949-954
    • Li, S.1
  • 104
    • 85015545111 scopus 로고    scopus 로고
    • Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis
    • Espinosa-Diez C., et al. Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis. Antioxid. Redox Signal. 2014.
    • (2014) Antioxid. Redox Signal.
    • Espinosa-Diez, C.1
  • 105
    • 84880569509 scopus 로고    scopus 로고
    • Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells
    • Ungvari Z., et al. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68(8):877-891.
    • (2013) J. Gerontol. A Biol. Sci. Med. Sci. , vol.68 , Issue.8 , pp. 877-891
    • Ungvari, Z.1
  • 106
    • 60949102130 scopus 로고    scopus 로고
    • Dicer is regulated by cellular stresses and interferons
    • Wiesen J.L., Tomasi T.B. Dicer is regulated by cellular stresses and interferons. Mol. Immunol. 2009, 46(6):1222-1228.
    • (2009) Mol. Immunol. , vol.46 , Issue.6 , pp. 1222-1228
    • Wiesen, J.L.1    Tomasi, T.B.2
  • 107
    • 75649139134 scopus 로고    scopus 로고
    • Physiological and pathological roles for microRNAs in the immune system
    • O'Connell R.M., et al. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10(2):111-122.
    • (2010) Nat. Rev. Immunol. , vol.10 , Issue.2 , pp. 111-122
    • O'Connell, R.M.1
  • 108
    • 78649378267 scopus 로고    scopus 로고
    • MicroRNA functions in stress responses
    • Leung A.K., Sharp P.A. MicroRNA functions in stress responses. Mol. Cell 2010, 40(2):205-215.
    • (2010) Mol. Cell , vol.40 , Issue.2 , pp. 205-215
    • Leung, A.K.1    Sharp, P.A.2
  • 109
    • 79955581917 scopus 로고    scopus 로고
    • MicroRNAs and epigenetics
    • Sato F., et al. MicroRNAs and epigenetics. FEBS J. 2011, 278(10):1598-1609.
    • (2011) FEBS J. , vol.278 , Issue.10 , pp. 1598-1609
    • Sato, F.1
  • 110
    • 79959521749 scopus 로고    scopus 로고
    • The redox basis of epigenetic modifications: from mechanisms to functional consequences
    • Cyr A.R., Domann F.E. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid. Redox Signal. 2011, 15(2):551-589.
    • (2011) Antioxid. Redox Signal. , vol.15 , Issue.2 , pp. 551-589
    • Cyr, A.R.1    Domann, F.E.2
  • 111
    • 78149352664 scopus 로고    scopus 로고
    • Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
    • Fu Y., et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 2010, 32(6):581-589.
    • (2010) Am. J. Nephrol. , vol.32 , Issue.6 , pp. 581-589
    • Fu, Y.1
  • 112
    • 70349478990 scopus 로고    scopus 로고
    • MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
    • Chan S.Y., et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009, 10(4):273-284.
    • (2009) Cell Metab. , vol.10 , Issue.4 , pp. 273-284
    • Chan, S.Y.1
  • 113
    • 84927781929 scopus 로고    scopus 로고
    • MiR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor
    • Tak H., et al. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp. Mol. Med. 2014, 46:e123.
    • (2014) Exp. Mol. Med. , vol.46 , pp. e123
    • Tak, H.1
  • 114
    • 79960140833 scopus 로고    scopus 로고
    • MiR-335 and miR-34 a Promote renal senescence by suppressing mitochondrial antioxidative enzymes
    • Bai X.Y., et al. miR-335 and miR-34 a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J. Am. Soc. Nephrol. 2011, 22(7):1252-1261.
    • (2011) J. Am. Soc. Nephrol. , vol.22 , Issue.7 , pp. 1252-1261
    • Bai, X.Y.1
  • 115
    • 84866515571 scopus 로고    scopus 로고
    • MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway
    • Li R., et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 2012, 7(9):e44907.
    • (2012) PLoS One , vol.7 , Issue.9 , pp. e44907
    • Li, R.1
  • 116
    • 84940788564 scopus 로고    scopus 로고
    • MicroRNA-181 c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
    • Wang H., et al. MicroRNA-181 c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J. Cell Mol. Med. 2015.
    • (2015) J. Cell Mol. Med.
    • Wang, H.1
  • 117
    • 84925852915 scopus 로고    scopus 로고
    • The role of hypoxia-induced miR-210 in cancer progression
    • Dang K., Myers K.A. The role of hypoxia-induced miR-210 in cancer progression. Int. J. Mol. Sci. 2015, 16(3):6353-6372.
    • (2015) Int. J. Mol. Sci. , vol.16 , Issue.3 , pp. 6353-6372
    • Dang, K.1    Myers, K.A.2
  • 118
    • 84871342129 scopus 로고    scopus 로고
    • MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
    • Yamamoto H., et al. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 2012, 303(12):E1419-E1427.
    • (2012) Am. J. Physiol. Endocrinol. Metab. , vol.303 , Issue.12 , pp. E1419-E1427
    • Yamamoto, H.1
  • 119
    • 84891300743 scopus 로고    scopus 로고
    • Regulation of the unfolded protein response by microRNAs
    • Bartoszewska S., et al. Regulation of the unfolded protein response by microRNAs. Cell. Mol. Biol. Lett. 2013, 18(4):555-578.
    • (2013) Cell. Mol. Biol. Lett. , vol.18 , Issue.4 , pp. 555-578
    • Bartoszewska, S.1
  • 120
    • 84876902510 scopus 로고    scopus 로고
    • Micro(RNA)managing endoplasmic reticulum stress
    • Byrd A.E., Brewer J.W. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013, 65(5):373-381.
    • (2013) IUBMB Life , vol.65 , Issue.5 , pp. 373-381
    • Byrd, A.E.1    Brewer, J.W.2
  • 121
    • 84907324299 scopus 로고    scopus 로고
    • HypoxamiR regulation and function in ischemic cardiovascular diseases
    • Greco S., Gaetano C., Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid. Redox Signal. 2014, 21(8):1202-1219.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.8 , pp. 1202-1219
    • Greco, S.1    Gaetano, C.2    Martelli, F.3
  • 122
    • 84913594663 scopus 로고    scopus 로고
    • Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia
    • Yao M., et al. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 307(11):L829-L837.
    • (2014) Am. J. Physiol.-Lung Cell. Mol. Physiol. , vol.307 , Issue.11 , pp. L829-L837
    • Yao, M.1
  • 123
    • 84902649752 scopus 로고    scopus 로고
    • Multiple functions of hypoxia-regulated miR-210 in cancer
    • Qin Q., Furong W., Baosheng L. Multiple functions of hypoxia-regulated miR-210 in cancer. J. Exp. Clin. Cancer Res. 2014, 33:50.
    • (2014) J. Exp. Clin. Cancer Res. , vol.33 , pp. 50
    • Qin, Q.1    Furong, W.2    Baosheng, L.3
  • 124
    • 79957649500 scopus 로고    scopus 로고
    • MicroRNA in ischemic stroke etiology and pathology
    • Rink C., Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol. Genomics 2011, 43(10):521-528.
    • (2011) Physiol. Genomics , vol.43 , Issue.10 , pp. 521-528
    • Rink, C.1    Khanna, S.2
  • 125
    • 84880160092 scopus 로고    scopus 로고
    • Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders
    • Kauppinen A., et al. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013, 25(10):1939-1948.
    • (2013) Cell Signal. , vol.25 , Issue.10 , pp. 1939-1948
    • Kauppinen, A.1
  • 126
    • 84922954051 scopus 로고    scopus 로고
    • Differential expression of microRNAs in ischemic heart disease
    • Song M.A., et al. Differential expression of microRNAs in ischemic heart disease. Drug Discov. Today 2015, 20(2):223-235.
    • (2015) Drug Discov. Today , vol.20 , Issue.2 , pp. 223-235
    • Song, M.A.1
  • 127
    • 84928595465 scopus 로고    scopus 로고
    • Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34 a/SIRT1 pathway
    • Kim H.J., et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34 a/SIRT1 pathway. Biochim. Biophys. Acta 2015, 1852(7):1550-1559.
    • (2015) Biochim. Biophys. Acta , vol.1852 , Issue.7 , pp. 1550-1559
    • Kim, H.J.1
  • 129
    • 84920903716 scopus 로고    scopus 로고
    • Oxidative stress: a concept in redox biology and medicine
    • Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015, 4:180-183.
    • (2015) Redox Biol. , vol.4 , pp. 180-183
    • Sies, H.1
  • 131
    • 0041761700 scopus 로고    scopus 로고
    • Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation
    • van der Vlies D., et al. Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Signal. 2003, 5(4):381-387.
    • (2003) Antioxid. Redox Signal. , vol.5 , Issue.4 , pp. 381-387
    • van der Vlies, D.1
  • 132
    • 0035675962 scopus 로고    scopus 로고
    • The action of molecular chaperones in the early secretory pathway
    • Fewell S.W., et al. The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet. 2001, 35:149-191.
    • (2001) Annu. Rev. Genet. , vol.35 , pp. 149-191
    • Fewell, S.W.1
  • 133
    • 33750902737 scopus 로고    scopus 로고
    • The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control
    • Gorlach A., Klappa P., Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 2006, 8(9-10):1391-1418.
    • (2006) Antioxid. Redox Signal. , vol.8 , Issue.9-10 , pp. 1391-1418
    • Gorlach, A.1    Klappa, P.2    Kietzmann, T.3
  • 134
    • 84857582664 scopus 로고    scopus 로고
    • The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more
    • Ramming T., Appenzeller-Herzog C. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid. Redox Signal. 2012, 16(10):1109-1118.
    • (2012) Antioxid. Redox Signal. , vol.16 , Issue.10 , pp. 1109-1118
    • Ramming, T.1    Appenzeller-Herzog, C.2
  • 135
    • 71549132149 scopus 로고    scopus 로고
    • Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation
    • Hatahet F., Ruddock L.W. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal. 2009, 11(11):2807-2850.
    • (2009) Antioxid. Redox Signal. , vol.11 , Issue.11 , pp. 2807-2850
    • Hatahet, F.1    Ruddock, L.W.2
  • 136
    • 0024404910 scopus 로고
    • Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells
    • Dorner A.J., Wasley L.C., Kaufman R.J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 1989, 264(34):20602-20607.
    • (1989) J. Biol. Chem. , vol.264 , Issue.34 , pp. 20602-20607
    • Dorner, A.J.1    Wasley, L.C.2    Kaufman, R.J.3
  • 137
    • 0023852783 scopus 로고
    • The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins
    • Kozutsumi Y., et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988, 332(6163):462-464.
    • (1988) Nature , vol.332 , Issue.6163 , pp. 462-464
    • Kozutsumi, Y.1
  • 138
    • 0033590451 scopus 로고    scopus 로고
    • Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
    • Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397(6716):271-274.
    • (1999) Nature , vol.397 , Issue.6716 , pp. 271-274
    • Harding, H.P.1    Zhang, Y.2    Ron, D.3
  • 139
    • 0034724520 scopus 로고    scopus 로고
    • Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation
    • Travers K.J., et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000, 101(3):249-258.
    • (2000) Cell , vol.101 , Issue.3 , pp. 249-258
    • Travers, K.J.1
  • 140
    • 0032432673 scopus 로고    scopus 로고
    • Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones
    • Kim P.S., Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocrine Rev. 1998, 19(2):173-202.
    • (1998) Endocrine Rev. , vol.19 , Issue.2 , pp. 173-202
    • Kim, P.S.1    Arvan, P.2
  • 141
    • 0036843129 scopus 로고    scopus 로고
    • Traffic jams II: an update of diseases of intracellular transport
    • Aridor M., Hannan L.A. Traffic jams II: an update of diseases of intracellular transport. Traffic (Copenhagen, Denmark) 2002, 3(11):781-790.
    • (2002) Traffic (Copenhagen, Denmark) , vol.3 , Issue.11 , pp. 781-790
    • Aridor, M.1    Hannan, L.A.2
  • 142
    • 2442542312 scopus 로고    scopus 로고
    • PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress
    • Cullinan S.B., Diehl J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 2004, 279(19):20108-20117.
    • (2004) J. Biol. Chem. , vol.279 , Issue.19 , pp. 20108-20117
    • Cullinan, S.B.1    Diehl, J.A.2
  • 143
    • 0842266604 scopus 로고    scopus 로고
    • Oxidative protein folding in eukaryotes: mechanisms and consequences
    • Tu B.P., Weissman J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 2004, 164(3):341-346.
    • (2004) J. Cell Biol. , vol.164 , Issue.3 , pp. 341-346
    • Tu, B.P.1    Weissman, J.S.2
  • 144
    • 0037353039 scopus 로고    scopus 로고
    • An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
    • Harding H.P., et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 2003, 11(3):619-633.
    • (2003) Mol. Cell , vol.11 , Issue.3 , pp. 619-633
    • Harding, H.P.1
  • 145
    • 0034681340 scopus 로고    scopus 로고
    • ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum
    • Cabibbo A., et al. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 2000, 275(7):4827-4833.
    • (2000) J. Biol. Chem. , vol.275 , Issue.7 , pp. 4827-4833
    • Cabibbo, A.1
  • 146
    • 0034604675 scopus 로고    scopus 로고
    • Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response
    • Pagani M., et al. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 2000, 275(31):23685-23692.
    • (2000) J. Biol. Chem. , vol.275 , Issue.31 , pp. 23685-23692
    • Pagani, M.1
  • 147
    • 0035834372 scopus 로고    scopus 로고
    • The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function
    • Pagani M., et al. The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Lett. 2001, 508(1):117-120.
    • (2001) FEBS Lett. , vol.508 , Issue.1 , pp. 117-120
    • Pagani, M.1
  • 148
    • 0035890070 scopus 로고    scopus 로고
    • Manipulation of oxidative protein folding and PDI redox state in mammalian cells
    • Mezghrani A., et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 2001, 20(22):6288-6296.
    • (2001) EMBO J. , vol.20 , Issue.22 , pp. 6288-6296
    • Mezghrani, A.1
  • 149
    • 3543044954 scopus 로고    scopus 로고
    • Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum
    • Molteni S.N., et al. Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. J. Biol. Chem. 2004, 279(31):32667-32673.
    • (2004) J. Biol. Chem. , vol.279 , Issue.31 , pp. 32667-32673
    • Molteni, S.N.1
  • 150
    • 77955708533 scopus 로고    scopus 로고
    • Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM)
    • Gilady S.Y., et al. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 2010, 15(5):619-629.
    • (2010) Cell Stress Chaperones , vol.15 , Issue.5 , pp. 619-629
    • Gilady, S.Y.1
  • 151
    • 0036862532 scopus 로고    scopus 로고
    • The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum
    • Tu B.P., Weissman J.S. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 2002, 10(5):983-994.
    • (2002) Mol. Cell , vol.10 , Issue.5 , pp. 983-994
    • Tu, B.P.1    Weissman, J.S.2
  • 152
    • 2542475140 scopus 로고    scopus 로고
    • Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell
    • Gross E., et al. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 2004, 117(5):601-610.
    • (2004) Cell , vol.117 , Issue.5 , pp. 601-610
    • Gross, E.1
  • 153
    • 78650270477 scopus 로고    scopus 로고
    • Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum
    • Tavender T.J., Springate J.J., Bulleid N.J. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J. 2010, 29(24):4185-4197.
    • (2010) EMBO J. , vol.29 , Issue.24 , pp. 4185-4197
    • Tavender, T.J.1    Springate, J.J.2    Bulleid, N.J.3
  • 154
    • 78649918283 scopus 로고    scopus 로고
    • Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin
    • Zito E., et al. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell 2010, 40(5):787-797.
    • (2010) Mol. Cell , vol.40 , Issue.5 , pp. 787-797
    • Zito, E.1
  • 155
    • 0034946944 scopus 로고    scopus 로고
    • Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport
    • Ozawa K., et al. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J. Clin. Investig. 2001, 108(1):41-50.
    • (2001) J. Clin. Investig. , vol.108 , Issue.1 , pp. 41-50
    • Ozawa, K.1
  • 156
    • 0346034856 scopus 로고    scopus 로고
    • Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice
    • Tobisawa S., et al. Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 2003, 303(2):496-503.
    • (2003) Biochem. Biophys. Res. Commun. , vol.303 , Issue.2 , pp. 496-503
    • Tobisawa, S.1
  • 157
    • 0030910404 scopus 로고    scopus 로고
    • Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease
    • Tu P.H., et al. Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease. Lab. Investig. J. Tech. Methods Pathol. 1997, 76(4):441-456.
    • (1997) Lab. Investig. J. Tech. Methods Pathol. , vol.76 , Issue.4 , pp. 441-456
    • Tu, P.H.1
  • 158
    • 0344507132 scopus 로고    scopus 로고
    • Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis
    • Bruening W., et al. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 1999, 72(2):693-699.
    • (1999) J. Neurochem. , vol.72 , Issue.2 , pp. 693-699
    • Bruening, W.1
  • 159
    • 0029053881 scopus 로고
    • An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria
    • Wong P.C., et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995, 14(6):1105-1116.
    • (1995) Neuron , vol.14 , Issue.6 , pp. 1105-1116
    • Wong, P.C.1
  • 160
    • 0010625474 scopus 로고
    • Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts
    • Shiu R.P., Pouyssegur J., Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 1977, 74(9):3840-3844.
    • (1977) Proc. Natl. Acad. Sci. USA , vol.74 , Issue.9 , pp. 3840-3844
    • Shiu, R.P.1    Pouyssegur, J.2    Pastan, I.3
  • 161
    • 0025293207 scopus 로고
    • Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism
    • Heacock C.S., Sutherland R.M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br. J. Cancer 1990, 62(2):217-225.
    • (1990) Br. J. Cancer , vol.62 , Issue.2 , pp. 217-225
    • Heacock, C.S.1    Sutherland, R.M.2
  • 162
    • 0033525519 scopus 로고    scopus 로고
    • 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death
    • Ozawa K., et al. 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J. Biol. Chem. 1999, 274(10):6397-6404.
    • (1999) J. Biol. Chem. , vol.274 , Issue.10 , pp. 6397-6404
    • Ozawa, K.1
  • 163
    • 4344648874 scopus 로고    scopus 로고
    • Activating transcription factor 4 is translationally regulated by hypoxic stress
    • Blais J.D., et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol. Cell. Biol. 2004, 24(17):7469-7482.
    • (2004) Mol. Cell. Biol. , vol.24 , Issue.17 , pp. 7469-7482
    • Blais, J.D.1
  • 164
    • 0029112861 scopus 로고
    • Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia
    • Estes S.D., Stoler D.L., Anderson G.R. Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp. Cell Res. 1995, 220(1):47-54.
    • (1995) Exp. Cell Res. , vol.220 , Issue.1 , pp. 47-54
    • Estes, S.D.1    Stoler, D.L.2    Anderson, G.R.3
  • 165
    • 1642447143 scopus 로고    scopus 로고
    • A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression
    • Liu Q., et al. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc. Natl. Acad. Sci. USA 2004, 101(12):4302-4307.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , Issue.12 , pp. 4302-4307
    • Liu, Q.1
  • 166
    • 35648930417 scopus 로고    scopus 로고
    • An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha
    • Koivunen P., et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J. Biol. Chem. 2007, 282(42):30544-30552.
    • (2007) J. Biol. Chem. , vol.282 , Issue.42 , pp. 30544-30552
    • Koivunen, P.1
  • 167
    • 0037517089 scopus 로고    scopus 로고
    • The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha
    • Gess B., et al. The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. Eur. J. Biochem./FEBS 2003, 270(10):2228-2235.
    • (2003) Eur. J. Biochem./FEBS , vol.270 , Issue.10 , pp. 2228-2235
    • Gess, B.1
  • 168
    • 26644450729 scopus 로고    scopus 로고
    • Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha
    • Xue X., et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J. Biol. Chem. 2005, 280(40):33917-33925.
    • (2005) J. Biol. Chem. , vol.280 , Issue.40 , pp. 33917-33925
    • Xue, X.1
  • 169
    • 0035957929 scopus 로고    scopus 로고
    • Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress
    • Yoneda T., et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 2001, 276(17):13935-13940.
    • (2001) J. Biol. Chem. , vol.276 , Issue.17 , pp. 13935-13940
    • Yoneda, T.1
  • 170
    • 0034610743 scopus 로고    scopus 로고
    • Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta
    • Nakagawa T., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403(6765):98-103.
    • (2000) Nature , vol.403 , Issue.6765 , pp. 98-103
    • Nakagawa, T.1
  • 171
    • 0035823579 scopus 로고    scopus 로고
    • Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation
    • Rao R.V., et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 2001, 276(36):33869-33874.
    • (2001) J. Biol. Chem. , vol.276 , Issue.36 , pp. 33869-33874
    • Rao, R.V.1
  • 172
    • 0036019933 scopus 로고    scopus 로고
    • Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice
    • Matsuzawa A., et al. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid. Redox Signal. 2002, 4(3):415-425.
    • (2002) Antioxid. Redox Signal. , vol.4 , Issue.3 , pp. 415-425
    • Matsuzawa, A.1
  • 173
    • 0036606540 scopus 로고    scopus 로고
    • ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats
    • Nishitoh H., et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002, 16(11):1345-1355.
    • (2002) Genes Dev. , vol.16 , Issue.11 , pp. 1345-1355
    • Nishitoh, H.1
  • 174
    • 0034723235 scopus 로고    scopus 로고
    • Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
    • Urano F., et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000, 287(5453):664-666.
    • (2000) Science , vol.287 , Issue.5453 , pp. 664-666
    • Urano, F.1
  • 175
    • 0035065836 scopus 로고    scopus 로고
    • ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis
    • Tobiume K., et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2(3):222-228.
    • (2001) EMBO Rep. , vol.2 , Issue.3 , pp. 222-228
    • Tobiume, K.1
  • 176
    • 3042636436 scopus 로고    scopus 로고
    • JAB1 participates in unfolded protein responses by association and dissociation with IRE1
    • Oono K., et al. JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem. Int. 2004, 45(5):765-772.
    • (2004) Neurochem. Int. , vol.45 , Issue.5 , pp. 765-772
    • Oono, K.1
  • 177
    • 33644992047 scopus 로고    scopus 로고
    • Direct evidence for S-nitrosation of mitochondrial complex I.
    • Burwell L.S., et al. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 2006, 394(3):627-634.
    • (2006) Biochem. J. , vol.394 , Issue.3 , pp. 627-634
    • Burwell, L.S.1
  • 178
    • 33744527052 scopus 로고    scopus 로고
    • Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria
    • Dahm C.C., Moore K., Murphy M.P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J. Biol. Chem. 2006, 281(15):10056-10065.
    • (2006) J. Biol. Chem. , vol.281 , Issue.15 , pp. 10056-10065
    • Dahm, C.C.1    Moore, K.2    Murphy, M.P.3
  • 179
    • 38049136885 scopus 로고    scopus 로고
    • S-nitrosation of mitochondrial complex I depends on its structural conformation
    • Galkin A., Moncada S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J. Biol. Chem. 2007, 282(52):37448-37453.
    • (2007) J. Biol. Chem. , vol.282 , Issue.52 , pp. 37448-37453
    • Galkin, A.1    Moncada, S.2
  • 180
    • 34548412578 scopus 로고    scopus 로고
    • Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer
    • Shiva S., et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 2007, 204(9):2089-2102.
    • (2007) J. Exp. Med. , vol.204 , Issue.9 , pp. 2089-2102
    • Shiva, S.1
  • 181
    • 34047142614 scopus 로고    scopus 로고
    • Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury
    • Nadtochiy S.M., Burwell L.S., Brookes P.S. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2007, 42(4):812-825.
    • (2007) J. Mol. Cell. Cardiol. , vol.42 , Issue.4 , pp. 812-825
    • Nadtochiy, S.M.1    Burwell, L.S.2    Brookes, P.S.3
  • 182
    • 84856729192 scopus 로고    scopus 로고
    • Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
    • Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 2012, 16(6):476-495.
    • (2012) Antioxid. Redox Signal. , vol.16 , Issue.6 , pp. 476-495
    • Murphy, M.P.1
  • 183
    • 67649757115 scopus 로고    scopus 로고
    • A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury
    • Prime T.A., et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 2009, 106(26):10764-10769.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , Issue.26 , pp. 10764-10769
    • Prime, T.A.1
  • 184
    • 84880253528 scopus 로고    scopus 로고
    • Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
    • Chouchani E.T., et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 2013, 19(6):753-759.
    • (2013) Nat. Med. , vol.19 , Issue.6 , pp. 753-759
    • Chouchani, E.T.1
  • 185
    • 33745603712 scopus 로고    scopus 로고
    • S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production
    • Borutaite V., Brown G.C. S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production. Biochim. Biophys. Acta 2006, 1757(5-6):562-566.
    • (2006) Biochim. Biophys. Acta , vol.1757 , Issue.5-6 , pp. 562-566
    • Borutaite, V.1    Brown, G.C.2
  • 186
    • 85015557459 scopus 로고    scopus 로고
    • Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by RISK and SAFE pathways
    • Skyschally A., et al. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by RISK and SAFE pathways. Circ. Res. 2015.
    • (2015) Circ. Res.
    • Skyschally, A.1
  • 187
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403(6771):795-800.
    • (2000) Nature , vol.403 , Issue.6771 , pp. 795-800
    • Imai, S.1
  • 188
    • 84872161575 scopus 로고    scopus 로고
    • Post-translational modification of mitochondrial proteins by caloric restriction: possible involvement in caloric restriction-induced cardioprotection
    • Shinmura K. Post-translational modification of mitochondrial proteins by caloric restriction: possible involvement in caloric restriction-induced cardioprotection. Trends Cardiovasc. Med. 2013, 23(1):18-25.
    • (2013) Trends Cardiovasc. Med. , vol.23 , Issue.1 , pp. 18-25
    • Shinmura, K.1
  • 189
    • 84878003949 scopus 로고    scopus 로고
    • The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
    • Anedda A., et al. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med. 2013, 61:395-407.
    • (2013) Free Radic. Biol. Med. , vol.61 , pp. 395-407
    • Anedda, A.1
  • 190
    • 33845646748 scopus 로고    scopus 로고
    • Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury
    • Leonard M.O., et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20(14):2624-2626.
    • (2006) FASEB J. , vol.20 , Issue.14 , pp. 2624-2626
    • Leonard, M.O.1
  • 191
    • 84926205444 scopus 로고    scopus 로고
    • Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation
    • Wu J.X., et al. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen. Res. 2015, 10(3):481-489.
    • (2015) Neural Regen. Res. , vol.10 , Issue.3 , pp. 481-489
    • Wu, J.X.1
  • 192
    • 84868641492 scopus 로고    scopus 로고
    • Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction
    • Wang N.P., et al. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br. J. Pharmacol. 2012, 167(7):1550-1562.
    • (2012) Br. J. Pharmacol. , vol.167 , Issue.7 , pp. 1550-1562
    • Wang, N.P.1
  • 193
    • 84884776136 scopus 로고    scopus 로고
    • Renoprotective effect of the antioxidant curcumin: recent findings
    • Trujillo J., et al. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol. 2013, 1:448-456.
    • (2013) Redox Biol. , vol.1 , pp. 448-456
    • Trujillo, J.1
  • 194
    • 84919922469 scopus 로고    scopus 로고
    • Novel curcumin analogue 14 p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity
    • Li W., et al. Novel curcumin analogue 14 p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol. Appl. Pharmacol. 2015, 282(2):175-183.
    • (2015) Toxicol. Appl. Pharmacol. , vol.282 , Issue.2 , pp. 175-183
    • Li, W.1
  • 195
    • 77954560109 scopus 로고    scopus 로고
    • Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway
    • Zhao H.D., et al. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J. Gastroenterol. 2010, 16(24):3002-3010.
    • (2010) World J. Gastroenterol. , vol.16 , Issue.24 , pp. 3002-3010
    • Zhao, H.D.1
  • 196
    • 77951526269 scopus 로고    scopus 로고
    • Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation
    • Soane L., et al. Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J. Neurosci. Res. 2010, 88(6):1355-1363.
    • (2010) J. Neurosci. Res. , vol.88 , Issue.6 , pp. 1355-1363
    • Soane, L.1
  • 197
    • 65549118899 scopus 로고    scopus 로고
    • Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation
    • Danilov C.A., et al. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 2009, 57(6):645-656.
    • (2009) Glia , vol.57 , Issue.6 , pp. 645-656
    • Danilov, C.A.1
  • 198
    • 77649341955 scopus 로고    scopus 로고
    • Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels
    • Piao C.S., et al. Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol. Res. 2010, 61(4):342-348.
    • (2010) Pharmacol. Res. , vol.61 , Issue.4 , pp. 342-348
    • Piao, C.S.1
  • 199
    • 43049117465 scopus 로고    scopus 로고
    • Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme
    • Yoon H.Y., et al. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem. Pharmacol. 2008, 75(11):2214-2223.
    • (2008) Biochem. Pharmacol. , vol.75 , Issue.11 , pp. 2214-2223
    • Yoon, H.Y.1
  • 200
    • 84887236178 scopus 로고    scopus 로고
    • Sulforaphane protects hearts from early injury after experimental transplantation
    • Li Z., et al. Sulforaphane protects hearts from early injury after experimental transplantation. Ann. Transplant. 2013, 18:558-566.
    • (2013) Ann. Transplant. , vol.18 , pp. 558-566
    • Li, Z.1
  • 201
    • 84856464242 scopus 로고    scopus 로고
    • Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart
    • Anderson E.J., Katunga L.A., Willis M.S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin. Exp. Pharmacol. Physiol. 2012, 39(2):179-193.
    • (2012) Clin. Exp. Pharmacol. Physiol. , vol.39 , Issue.2 , pp. 179-193
    • Anderson, E.J.1    Katunga, L.A.2    Willis, M.S.3
  • 202
    • 79954488111 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde
    • Ma H., et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 2011, 32(8):1025-1038.
    • (2011) Eur. Heart J. , vol.32 , Issue.8 , pp. 1025-1038
    • Ma, H.1
  • 203
    • 77956101963 scopus 로고    scopus 로고
    • 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway
    • Zhang Y., et al. 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. J. Mol. Cell. Cardiol. 2010, 49(4):576-586.
    • (2010) J. Mol. Cell. Cardiol. , vol.49 , Issue.4 , pp. 576-586
    • Zhang, Y.1
  • 204
    • 84969858850 scopus 로고    scopus 로고
    • 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes
    • Lopez-Bernardo E., et al. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic. Biol. Med. 2015.
    • (2015) Free Radic. Biol. Med.
    • Lopez-Bernardo, E.1
  • 205
    • 84875426064 scopus 로고    scopus 로고
    • The role of transcription-independent damage signals in the initiation of epithelial wound healing
    • Cordeiro J.V., Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 2013, 14(4):249-262.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , Issue.4 , pp. 249-262
    • Cordeiro, J.V.1    Jacinto, A.2
  • 207
    • 0038411479 scopus 로고    scopus 로고
    • Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate
    • Salmeen A., et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 2003, 423(6941):769-773.
    • (2003) Nature , vol.423 , Issue.6941 , pp. 769-773
    • Salmeen, A.1
  • 208
    • 0038749600 scopus 로고    scopus 로고
    • Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B
    • van Montfort R.L., et al. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003, 423(6941):773-777.
    • (2003) Nature , vol.423 , Issue.6941 , pp. 773-777
    • van Montfort, R.L.1
  • 209
    • 0033598677 scopus 로고    scopus 로고
    • Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation
    • Claiborne A., et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 1999, 38(47):15407-15416.
    • (1999) Biochemistry , vol.38 , Issue.47 , pp. 15407-15416
    • Claiborne, A.1
  • 210
    • 0034190297 scopus 로고    scopus 로고
    • Protein kinase C signaling and oxidative stress
    • Gopalakrishna R., Jaken S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 2000, 28(9):1349-1361.
    • (2000) Free Radic. Biol. Med. , vol.28 , Issue.9 , pp. 1349-1361
    • Gopalakrishna, R.1    Jaken, S.2
  • 211
    • 0028152333 scopus 로고
    • MAP kinase kinase kinase, MAP kinase kinase and MAP kinase
    • Marshall C.J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 1994, 4(1):82-89.
    • (1994) Curr. Opin. Genet. Dev. , vol.4 , Issue.1 , pp. 82-89
    • Marshall, C.J.1
  • 212
    • 79751532260 scopus 로고    scopus 로고
    • Redox regulation of ERK1/2 activation induced by sphingosine 1-phosphate in fibroblasts: involvement of NADPH oxidase and platelet-derived growth factor receptor
    • Catarzi S., et al. Redox regulation of ERK1/2 activation induced by sphingosine 1-phosphate in fibroblasts: involvement of NADPH oxidase and platelet-derived growth factor receptor. Biochim. Biophys. Acta 2011, 1810(4):446-456.
    • (2011) Biochim. Biophys. Acta , vol.1810 , Issue.4 , pp. 446-456
    • Catarzi, S.1
  • 213
    • 34247230549 scopus 로고    scopus 로고
    • Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species
    • Meng D., et al. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic. Biol. Med. 2007, 42(11):1651-1660.
    • (2007) Free Radic. Biol. Med. , vol.42 , Issue.11 , pp. 1651-1660
    • Meng, D.1
  • 214
    • 33846603289 scopus 로고    scopus 로고
    • Pathophysiological roles of ASK1-MAP kinase signaling pathways
    • Nagai H., et al. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J. Biochem. Mol. Biol. 2007, 40(1):1-6.
    • (2007) J. Biochem. Mol. Biol. , vol.40 , Issue.1 , pp. 1-6
    • Nagai, H.1
  • 215
    • 33646416743 scopus 로고    scopus 로고
    • The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death
    • Zhou J.Y., Liu Y., Wu G.S. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res. 2006, 66(9):4888-4894.
    • (2006) Cancer Res. , vol.66 , Issue.9 , pp. 4888-4894
    • Zhou, J.Y.1    Liu, Y.2    Wu, G.S.3
  • 216
    • 0034704079 scopus 로고    scopus 로고
    • Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism
    • Yu R., et al. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 2000, 275(51):39907-39913.
    • (2000) J. Biol. Chem. , vol.275 , Issue.51 , pp. 39907-39913
    • Yu, R.1
  • 217
    • 84877596486 scopus 로고    scopus 로고
    • Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation
    • Kim S.U., et al. Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation. J. Neuroimmunol. 2013, 259(1-2):26-36.
    • (2013) J. Neuroimmunol. , vol.259 , Issue.1-2 , pp. 26-36
    • Kim, S.U.1
  • 218
    • 4243687105 scopus 로고    scopus 로고
    • The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive
    • Dhar A., Young M.R., Colburn N.H. The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol. Cell. Biochem. 2002, 234-235(1-2):185-193.
    • (2002) Mol. Cell. Biochem. , Issue.1-2 , pp. 185-193
    • Dhar, A.1    Young, M.R.2    Colburn, N.H.3
  • 219
    • 0034573074 scopus 로고    scopus 로고
    • Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death
    • Chen C., et al. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 2000, 23(6):605-612.
    • (2000) Arch. Pharm. Res. , vol.23 , Issue.6 , pp. 605-612
    • Chen, C.1
  • 220
    • 3543008400 scopus 로고    scopus 로고
    • Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols
    • Brown G.C., Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 2004, 1658(1-2):44-49.
    • (2004) Biochim. Biophys. Acta , vol.1658 , Issue.1-2 , pp. 44-49
    • Brown, G.C.1    Borutaite, V.2
  • 221
    • 46249128955 scopus 로고    scopus 로고
    • S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning
    • Hill B.G., Darley-Usmar V.M. S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochem. J. 2008, 412(2):e11-e13.
    • (2008) Biochem. J. , vol.412 , Issue.2 , pp. e11-e13
    • Hill, B.G.1    Darley-Usmar, V.M.2
  • 222
    • 0037490142 scopus 로고    scopus 로고
    • Reversible glutathionylation of complex I increases mitochondrial superoxide formation
    • Taylor E.R., et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278(22):19603-19610.
    • (2003) J. Biol. Chem. , vol.278 , Issue.22 , pp. 19603-19610
    • Taylor, E.R.1
  • 223
    • 34248569415 scopus 로고    scopus 로고
    • Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase
    • Chen C.L., et al. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase. Biochemistry 2007, 46(19):5754-5765.
    • (2007) Biochemistry , vol.46 , Issue.19 , pp. 5754-5765
    • Chen, C.L.1
  • 224
    • 84864970382 scopus 로고    scopus 로고
    • Protein thiyl radical mediates S-glutathionylation of complex I
    • Kang P.T., et al. Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic. Biol. Med. 2012, 53(4):962-973.
    • (2012) Free Radic. Biol. Med. , vol.53 , Issue.4 , pp. 962-973
    • Kang, P.T.1
  • 225
    • 54049146740 scopus 로고    scopus 로고
    • Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
    • Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283(36):24801-24815.
    • (2008) J. Biol. Chem. , vol.283 , Issue.36 , pp. 24801-24815
    • Hurd, T.R.1
  • 226
    • 0037105335 scopus 로고    scopus 로고
    • Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species
    • Brookes P.S., et al. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2002, 33(6):755-764.
    • (2002) Free Radic. Biol. Med. , vol.33 , Issue.6 , pp. 755-764
    • Brookes, P.S.1
  • 227
    • 0141510019 scopus 로고    scopus 로고
    • Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry
    • Murray J., et al. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J. Biol. Chem. 2003, 278(39):37223-37230.
    • (2003) J. Biol. Chem. , vol.278 , Issue.39 , pp. 37223-37230
    • Murray, J.1
  • 228
    • 67650354415 scopus 로고    scopus 로고
    • Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins
    • Abello N., et al. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J. Proteome Res. 2009, 8(7):3222-3238.
    • (2009) J. Proteome Res. , vol.8 , Issue.7 , pp. 3222-3238
    • Abello, N.1
  • 229
    • 55549123029 scopus 로고    scopus 로고
    • Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium
    • Chen C.L., et al. Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J. Biol. Chem. 2008, 283(41):27991-28003.
    • (2008) J. Biol. Chem. , vol.283 , Issue.41 , pp. 27991-28003
    • Chen, C.L.1
  • 230
    • 15444370200 scopus 로고    scopus 로고
    • Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria
    • Yarian C.S., Rebrin I., Sohal R.S. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem. Biophys. Res. Commun. 2005, 330(1):151-156.
    • (2005) Biochem. Biophys. Res. Commun. , vol.330 , Issue.1 , pp. 151-156
    • Yarian, C.S.1    Rebrin, I.2    Sohal, R.S.3
  • 231
    • 0242665322 scopus 로고    scopus 로고
    • Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development
    • Benderdour M., et al. Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem 2003, 278(46):45154-45159.
    • (2003) J Biol Chem , vol.278 , Issue.46 , pp. 45154-45159
    • Benderdour, M.1
  • 232
    • 0347695994 scopus 로고    scopus 로고
    • Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury
    • Lee J.H., Yang E.S., Park J.W. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J. Biol. Chem. 2003, 278(51):51360-51371.
    • (2003) J. Biol. Chem. , vol.278 , Issue.51 , pp. 51360-51371
    • Lee, J.H.1    Yang, E.S.2    Park, J.W.3
  • 233
    • 0033535948 scopus 로고    scopus 로고
    • Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase
    • Lucas D.T., Szweda L.I. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc. Natl. Acad. Sci. USA 1999, 96(12):6689-6693.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , Issue.12 , pp. 6689-6693
    • Lucas, D.T.1    Szweda, L.I.2
  • 234
    • 84877035408 scopus 로고    scopus 로고
    • Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification
    • McLain A.L., et al. Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic. Biol. Med. 2013, 61:161-169.
    • (2013) Free Radic. Biol. Med. , vol.61 , pp. 161-169
    • McLain, A.L.1
  • 235
    • 17844393112 scopus 로고    scopus 로고
    • Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion
    • Bulteau A.L., et al. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc. Natl. Acad. Sci. USA 2005, 102(17):5987-5991.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , Issue.17 , pp. 5987-5991
    • Bulteau, A.L.1
  • 236
    • 0032479147 scopus 로고    scopus 로고
    • Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation
    • Stachowiak O., et al. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 1998, 273(27):16694-16699.
    • (1998) J. Biol. Chem. , vol.273 , Issue.27 , pp. 16694-16699
    • Stachowiak, O.1
  • 237
    • 41549159780 scopus 로고    scopus 로고
    • Oxidative modification of cytochrome c by singlet oxygen
    • Kim J., et al. Oxidative modification of cytochrome c by singlet oxygen. Free Radic. Biol. Med. 2008, 44(9):1700-1711.
    • (2008) Free Radic. Biol. Med. , vol.44 , Issue.9 , pp. 1700-1711
    • Kim, J.1
  • 238
    • 84859475161 scopus 로고    scopus 로고
    • Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal
    • Zarse K., et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab. 2012, 15(4):451-465.
    • (2012) Cell Metab. , vol.15 , Issue.4 , pp. 451-465
    • Zarse, K.1
  • 239
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48(2):158-167.
    • (2012) Mol. Cell , vol.48 , Issue.2 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 240
    • 84900295547 scopus 로고    scopus 로고
    • Mitohormesis
    • Yun J., Finkel T. Mitohormesis. Cell Metab. 2014, 19(5):757-766.
    • (2014) Cell Metab. , vol.19 , Issue.5 , pp. 757-766
    • Yun, J.1    Finkel, T.2
  • 241
    • 84856821006 scopus 로고    scopus 로고
    • Signal transduction by mitochondrial oxidants
    • Finkel T. Signal transduction by mitochondrial oxidants. J. Biol. Chem. 2012, 287(7):4434-4440.
    • (2012) J. Biol. Chem. , vol.287 , Issue.7 , pp. 4434-4440
    • Finkel, T.1
  • 242
    • 0032578458 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    • Chandel N.S., et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95(20):11715-11720.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , Issue.20 , pp. 11715-11720
    • Chandel, N.S.1
  • 243
    • 34247186472 scopus 로고    scopus 로고
    • Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
    • Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26(7):1749-1760.
    • (2007) EMBO J. , vol.26 , Issue.7 , pp. 1749-1760
    • Scherz-Shouval, R.1
  • 244
    • 21744450416 scopus 로고    scopus 로고
    • Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
    • Adlam V.J., et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005, 19(9):1088-1095.
    • (2005) FASEB J. , vol.19 , Issue.9 , pp. 1088-1095
    • Adlam, V.J.1
  • 245
    • 84930939650 scopus 로고    scopus 로고
    • Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ
    • Dare A.J., et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015, 5:163-168.
    • (2015) Redox Biol. , vol.5 , pp. 163-168
    • Dare, A.J.1
  • 246
    • 84885015610 scopus 로고    scopus 로고
    • Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells
    • Zhao W.Y., et al. Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell. Physiol. Biochem. 2013, 32(3):591-600.
    • (2013) Cell. Physiol. Biochem. , vol.32 , Issue.3 , pp. 591-600
    • Zhao, W.Y.1
  • 247
    • 84918570887 scopus 로고    scopus 로고
    • Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats
    • Dai W., et al. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J. Cardiovasc. Pharmacol. 2014, 64(6):543-553.
    • (2014) J. Cardiovasc. Pharmacol. , vol.64 , Issue.6 , pp. 543-553
    • Dai, W.1
  • 248
    • 84925883323 scopus 로고    scopus 로고
    • Mitochondria-targeted therapies for acute kidney injury
    • Tabara L.C., et al. Mitochondria-targeted therapies for acute kidney injury. Expert Rev. Mol. Med. 2014, 16:e13.
    • (2014) Expert Rev. Mol. Med. , vol.16 , pp. e13
    • Tabara, L.C.1
  • 249
    • 77952236126 scopus 로고    scopus 로고
    • Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury
    • Ong S.B., et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010, 121(18):2012-2022.
    • (2010) Circulation , vol.121 , Issue.18 , pp. 2012-2022
    • Ong, S.B.1
  • 250
    • 84876312885 scopus 로고    scopus 로고
    • A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity
    • Qi X., et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 2013, 126(3):789-802.
    • (2013) J. Cell Sci. , vol.126 , Issue.3 , pp. 789-802
    • Qi, X.1
  • 251
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer G., Marino G., Levine B. Autophagy and the integrated stress response. Mol. Cell 2010, 40(2):280-293.
    • (2010) Mol. Cell , vol.40 , Issue.2 , pp. 280-293
    • Kroemer, G.1    Marino, G.2    Levine, B.3
  • 252
    • 84913546616 scopus 로고    scopus 로고
    • Mitophagy is required for acute cardioprotection by simvastatin
    • Andres A.M., et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 2014, 21(14):1960-1973.
    • (2014) Antioxid. Redox Signal. , vol.21 , Issue.14 , pp. 1960-1973
    • Andres, A.M.1
  • 253
    • 84897444272 scopus 로고    scopus 로고
    • 2 generation: redox signaling and oxidative stress
    • 2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014, 289(13):8735-8741.
    • (2014) J. Biol. Chem. , vol.289 , Issue.13 , pp. 8735-8741
    • Sies, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.