-
1
-
-
0026698060
-
Oxidized redox state of glutathione in the endoplasmic reticulum
-
Hwang C., Sinskey A.J., Lodish H.F. Oxidized redox state of glutathione in the endoplasmic reticulum. Science 1992, 257(5076):1496-1502.
-
(1992)
Science
, vol.257
, Issue.5076
, pp. 1496-1502
-
-
Hwang, C.1
Sinskey, A.J.2
Lodish, H.F.3
-
2
-
-
84861182619
-
S-glutathionylation signaling in cell biology: progress and prospects
-
Pastore A., Piemonte F. S-glutathionylation signaling in cell biology: progress and prospects. Eur. J. Pharm. Sci. 2012, 46(5):279-292.
-
(2012)
Eur. J. Pharm. Sci.
, vol.46
, Issue.5
, pp. 279-292
-
-
Pastore, A.1
Piemonte, F.2
-
3
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
Ray P.D., Huang B.W., Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24(5):981-990.
-
(2012)
Cell Signal.
, vol.24
, Issue.5
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
4
-
-
13244269755
-
Glutathione, stress responses, and redox signaling in lung inflammation
-
Rahman I., et al. Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid. Redox Signal. 2005, 7(1-2):42-59.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, Issue.1-2
, pp. 42-59
-
-
Rahman, I.1
-
5
-
-
17044395507
-
L-gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
-
Haddad J.J., Harb H.L. L-gamma-glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?. Mol. Immunol. 2005, 42(9):987-1014.
-
(2005)
Mol. Immunol.
, vol.42
, Issue.9
, pp. 987-1014
-
-
Haddad, J.J.1
Harb, H.L.2
-
6
-
-
84875744148
-
Glutathione synthesis
-
Lu S.C. Glutathione synthesis. Biochim. Biophys. Acta 2013, 1830(5):3143-3153.
-
(2013)
Biochim. Biophys. Acta
, vol.1830
, Issue.5
, pp. 3143-3153
-
-
Lu, S.C.1
-
7
-
-
65049089113
-
Regulation of glutathione synthesis
-
Lu S.C. Regulation of glutathione synthesis. Mol. Aspects Med. 2009, 30(1-2):42-59.
-
(2009)
Mol. Aspects Med.
, vol.30
, Issue.1-2
, pp. 42-59
-
-
Lu, S.C.1
-
8
-
-
84892369382
-
How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo
-
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66:24-35.
-
(2014)
Free Radic. Biol. Med.
, vol.66
, pp. 24-35
-
-
Forman, H.J.1
Davies, K.J.2
Ursini, F.3
-
9
-
-
84892916146
-
Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging
-
Oelze M., et al. Glutathione peroxidase-1 deficiency potentiates dysregulatory modifications of endothelial nitric oxide synthase and vascular dysfunction in aging. Hypertension 2014, 63(2):390-396.
-
(2014)
Hypertension
, vol.63
, Issue.2
, pp. 390-396
-
-
Oelze, M.1
-
10
-
-
34548163922
-
Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress
-
Gallogly M.M., Mieyal J.J. Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 2007, 7(4):381-391.
-
(2007)
Curr. Opin. Pharmacol.
, vol.7
, Issue.4
, pp. 381-391
-
-
Gallogly, M.M.1
Mieyal, J.J.2
-
11
-
-
34250738347
-
Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences
-
Martinez-Ruiz A., Lamas S. Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: convergences and divergences. Cardiovasc. Res. 2007, 75(2):220-228.
-
(2007)
Cardiovasc. Res.
, vol.75
, Issue.2
, pp. 220-228
-
-
Martinez-Ruiz, A.1
Lamas, S.2
-
12
-
-
84884179149
-
Causes and consequences of cysteine S-glutathionylation
-
Grek C.L., et al. Causes and consequences of cysteine S-glutathionylation. J. Biol. Chem. 2013, 288(37):26497-26504.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.37
, pp. 26497-26504
-
-
Grek, C.L.1
-
13
-
-
78650810596
-
S-glutathionylation uncouples eNOS and regulates its cellular and vascular function
-
Chen C.A., et al. S-glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 2010, 468(7327):1115-1118.
-
(2010)
Nature
, vol.468
, Issue.7327
, pp. 1115-1118
-
-
Chen, C.A.1
-
14
-
-
84891586833
-
Inborn defects in the antioxidant systems of human red blood cells
-
van Zwieten R., Verhoeven A.J., Roos D. Inborn defects in the antioxidant systems of human red blood cells. Free Radic. Biol. Med. 2014, 67:377-386.
-
(2014)
Free Radic. Biol. Med.
, vol.67
, pp. 377-386
-
-
van Zwieten, R.1
Verhoeven, A.J.2
Roos, D.3
-
15
-
-
80052000670
-
Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities
-
Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15(7):1957-1997.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, Issue.7
, pp. 1957-1997
-
-
Lubos, E.1
Loscalzo, J.2
Handy, D.E.3
-
16
-
-
0037438730
-
Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells
-
Imai H., Nakagawa Y. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 2003, 34(2):145-169.
-
(2003)
Free Radic. Biol. Med.
, vol.34
, Issue.2
, pp. 145-169
-
-
Imai, H.1
Nakagawa, Y.2
-
17
-
-
84859211841
-
Selenium and human health
-
Rayman M.P. Selenium and human health. Lancet 2012, 379(9822):1256-1268.
-
(2012)
Lancet
, vol.379
, Issue.9822
, pp. 1256-1268
-
-
Rayman, M.P.1
-
18
-
-
0028922827
-
Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo
-
Chen H., Tappel A.L. Protection of vitamin E, selenium, trolox C, ascorbic acid palmitate, acetylcysteine, coenzyme Q0, coenzyme Q10, beta-carotene, canthaxanthin, and (+)-catechin against oxidative damage to rat blood and tissues in vivo. Free Radic. Biol. Med. 1995, 18(5):949-953.
-
(1995)
Free Radic. Biol. Med.
, vol.18
, Issue.5
, pp. 949-953
-
-
Chen, H.1
Tappel, A.L.2
-
19
-
-
0031410089
-
Inhibition of 2-nitropropane-induced rat liver DNA and RNA damage by benzyl selenocyanate
-
Fiala E.S., et al. Inhibition of 2-nitropropane-induced rat liver DNA and RNA damage by benzyl selenocyanate. Carcinogenesis 1997, 18(9):1809-1815.
-
(1997)
Carcinogenesis
, vol.18
, Issue.9
, pp. 1809-1815
-
-
Fiala, E.S.1
-
20
-
-
0025021058
-
Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices
-
Leibovitz B., Hu M.L., Tappel A.L. Dietary supplements of vitamin E, beta-carotene, coenzyme Q10 and selenium protect tissues against lipid peroxidation in rat tissue slices. J. Nutr. 1990, 120(1):97-104.
-
(1990)
J. Nutr.
, vol.120
, Issue.1
, pp. 97-104
-
-
Leibovitz, B.1
Hu, M.L.2
Tappel, A.L.3
-
21
-
-
0348230942
-
Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system
-
Fernandes A.P., Holmgren A. Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal. 2004, 6(1):63-74.
-
(2004)
Antioxid. Redox Signal.
, vol.6
, Issue.1
, pp. 63-74
-
-
Fernandes, A.P.1
Holmgren, A.2
-
22
-
-
0037222255
-
Structure, mechanism and regulation of peroxiredoxins
-
Wood Z.A., et al. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28(1):32-40.
-
(2003)
Trends Biochem. Sci.
, vol.28
, Issue.1
, pp. 32-40
-
-
Wood, Z.A.1
-
23
-
-
0242668686
-
Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling
-
Wood Z.A., Poole L.B., Karplus P.A. Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling. Science 2003, 300(5619):650-653.
-
(2003)
Science
, vol.300
, Issue.5619
, pp. 650-653
-
-
Wood, Z.A.1
Poole, L.B.2
Karplus, P.A.3
-
25
-
-
0036287739
-
Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein
-
Fujii J., Ikeda Y. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox Rep. 2002, 7(3):123-130.
-
(2002)
Redox Rep.
, vol.7
, Issue.3
, pp. 123-130
-
-
Fujii, J.1
Ikeda, Y.2
-
26
-
-
0035865858
-
Localization of the thioredoxin system in normal rat kidney
-
Oberley T.D., et al. Localization of the thioredoxin system in normal rat kidney. Free Radic. Biol. Med. 2001, 30(4):412-424.
-
(2001)
Free Radic. Biol. Med.
, vol.30
, Issue.4
, pp. 412-424
-
-
Oberley, T.D.1
-
27
-
-
0344862115
-
Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver
-
Immenschuh S., et al. Differential cellular and subcellular localization of heme-binding protein 23/peroxiredoxin I and heme oxygenase-1 in rat liver. J. Histochem. Cytochem. 2003, 51(12):1621-1631.
-
(2003)
J. Histochem. Cytochem.
, vol.51
, Issue.12
, pp. 1621-1631
-
-
Immenschuh, S.1
-
28
-
-
0001015125
-
Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate
-
Seo M.S., et al. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 2000, 275(27):20346-20354.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.27
, pp. 20346-20354
-
-
Seo, M.S.1
-
29
-
-
0028114890
-
The reaction of superoxide with reduced glutathione
-
Winterbourn C.C., Metodiewa D. The reaction of superoxide with reduced glutathione. Arch. Biochem. Biophys. 1994, 314(2):284-290.
-
(1994)
Arch. Biochem. Biophys.
, vol.314
, Issue.2
, pp. 284-290
-
-
Winterbourn, C.C.1
Metodiewa, D.2
-
30
-
-
42249088093
-
Reconciling the chemistry and biology of reactive oxygen species
-
Winterbourn C.C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4(5):278-286.
-
(2008)
Nat. Chem. Biol.
, vol.4
, Issue.5
, pp. 278-286
-
-
Winterbourn, C.C.1
-
31
-
-
84901741434
-
Hydrogen peroxide sensing, signaling and regulation of transcription factors
-
Marinho H.S., et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014, 2:535-562.
-
(2014)
Redox Biol.
, vol.2
, pp. 535-562
-
-
Marinho, H.S.1
-
32
-
-
28844480498
-
Thiol redox control via thioredoxin and glutaredoxin systems
-
Holmgren A., et al. Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans. 2005, 33(6):1375-1377.
-
(2005)
Biochem. Soc. Trans.
, vol.33
, Issue.6
, pp. 1375-1377
-
-
Holmgren, A.1
-
33
-
-
77954509272
-
Redox control systems in the nucleus: mechanisms and functions
-
Go Y.M., Jones D.P. Redox control systems in the nucleus: mechanisms and functions. Antioxid. Redox Signal. 2010, 13(4):489-509.
-
(2010)
Antioxid. Redox Signal.
, vol.13
, Issue.4
, pp. 489-509
-
-
Go, Y.M.1
Jones, D.P.2
-
34
-
-
84895457867
-
Superoxide dismutases: you've come a long way, baby
-
McCord J.M., Fridovich I. Superoxide dismutases: you've come a long way, baby. Antioxid. Redox Signal. 2014, 20(10):1548-1549.
-
(2014)
Antioxid. Redox Signal.
, vol.20
, Issue.10
, pp. 1548-1549
-
-
McCord, J.M.1
Fridovich, I.2
-
35
-
-
33748518966
-
Superoxide dismutase: an emerging target for cancer therapeutics
-
Hileman E.A., Achanta G., Huang P. Superoxide dismutase: an emerging target for cancer therapeutics. Expert Opin. Ther. Targets 2001, 5(6):697-710.
-
(2001)
Expert Opin. Ther. Targets
, vol.5
, Issue.6
, pp. 697-710
-
-
Hileman, E.A.1
Achanta, G.2
Huang, P.3
-
36
-
-
84905820955
-
Manganese superoxide dismutase in carcinogenesis: friend or foe?
-
Konzack A., Kietzmann T. Manganese superoxide dismutase in carcinogenesis: friend or foe?. Biochem. Soc. Trans. 2014, 42(4):1012-1016.
-
(2014)
Biochem. Soc. Trans.
, vol.42
, Issue.4
, pp. 1012-1016
-
-
Konzack, A.1
Kietzmann, T.2
-
37
-
-
33747404190
-
Role of extracellular superoxide dismutase in hypertension
-
Gongora M.C., et al. Role of extracellular superoxide dismutase in hypertension. Hypertension 2006, 48(3):473-481.
-
(2006)
Hypertension
, vol.48
, Issue.3
, pp. 473-481
-
-
Gongora, M.C.1
-
38
-
-
7244253081
-
Nrf2-Keap1 defines a physiologically important stress response mechanism
-
Motohashi H., Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004, 10(11):549-557.
-
(2004)
Trends Mol. Med.
, vol.10
, Issue.11
, pp. 549-557
-
-
Motohashi, H.1
Yamamoto, M.2
-
39
-
-
79954416526
-
The cytoprotective role of the Keap1-Nrf2 pathway
-
Baird L., Dinkova-Kostova A.T. The cytoprotective role of the Keap1-Nrf2 pathway. Arch. Toxicol. 2011, 85(4):241-272.
-
(2011)
Arch. Toxicol.
, vol.85
, Issue.4
, pp. 241-272
-
-
Baird, L.1
Dinkova-Kostova, A.T.2
-
40
-
-
0037055265
-
Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors
-
Motohashi H., et al. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 2002, 294(1-2):1-12.
-
(2002)
Gene
, vol.294
, Issue.1-2
, pp. 1-12
-
-
Motohashi, H.1
-
41
-
-
10044228504
-
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
-
Zhang D.D., et al. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 2004, 24(24):10941-10953.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.24
, pp. 10941-10953
-
-
Zhang, D.D.1
-
42
-
-
33747728194
-
Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex
-
McMahon M., et al. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 2006, 281(34):24756-24768.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.34
, pp. 24756-24768
-
-
McMahon, M.1
-
43
-
-
33750613056
-
Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism
-
Tong K.I., et al. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 2006, 387(10-11):1311-1320.
-
(2006)
Biol. Chem.
, vol.387
, Issue.10-11
, pp. 1311-1320
-
-
Tong, K.I.1
-
44
-
-
3843104763
-
Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
-
McMahon M., et al. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 2004, 279(30):31556-31567.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.30
, pp. 31556-31567
-
-
McMahon, M.1
-
45
-
-
0013282861
-
Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26S proteasome
-
Nguyen T., et al. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26S proteasome. J. Biol. Chem. 2003, 278(7):4536-4541.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.7
, pp. 4536-4541
-
-
Nguyen, T.1
-
46
-
-
34548772935
-
Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2
-
Sun Z., et al. Keap1 controls postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol. Cell. Biol. 2007, 27(18):6334-6349.
-
(2007)
Mol. Cell. Biol.
, vol.27
, Issue.18
, pp. 6334-6349
-
-
Sun, Z.1
-
47
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
Kobayashi A., et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 2004, 24(16):7130-7139.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.16
, pp. 7130-7139
-
-
Kobayashi, A.1
-
48
-
-
4544294365
-
The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase
-
Cullinan S.B., et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 2004, 24(19):8477-8486.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.19
, pp. 8477-8486
-
-
Cullinan, S.B.1
-
49
-
-
11144264663
-
BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
-
Furukawa M., Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 2005, 25(1):162-171.
-
(2005)
Mol. Cell. Biol.
, vol.25
, Issue.1
, pp. 162-171
-
-
Furukawa, M.1
Xiong, Y.2
-
50
-
-
33344469643
-
Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1
-
Kobayashi A., et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol. Cell. Biol. 2006, 26(1):221-229.
-
(2006)
Mol. Cell. Biol.
, vol.26
, Issue.1
, pp. 221-229
-
-
Kobayashi, A.1
-
51
-
-
0037015035
-
Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
-
Dinkova-Kostova A.T., et al. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 2002, 99(18):11908-11913.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, Issue.18
, pp. 11908-11913
-
-
Dinkova-Kostova, A.T.1
-
52
-
-
77950887186
-
Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation
-
Fourquet S., et al. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J. Biol. Chem. 2010, 285(11):8463-8471.
-
(2010)
J. Biol. Chem.
, vol.285
, Issue.11
, pp. 8463-8471
-
-
Fourquet, S.1
-
53
-
-
42149196050
-
Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity
-
Yamamoto T., et al. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 2008, 28(8):2758-2770.
-
(2008)
Mol. Cell. Biol.
, vol.28
, Issue.8
, pp. 2758-2770
-
-
Yamamoto, T.1
-
54
-
-
0025948113
-
The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity
-
Rushmore T.H., Morton M.R., Pickett C.B. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem. 1991, 266(18):11632-11639.
-
(1991)
J. Biol. Chem.
, vol.266
, Issue.18
, pp. 11632-11639
-
-
Rushmore, T.H.1
Morton, M.R.2
Pickett, C.B.3
-
55
-
-
84867041441
-
Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2
-
Ma Q., He X. Molecular basis of electrophilic and oxidative defense: promises and perils of Nrf2. Pharmacol. Rev. 2012, 64(4):1055-1081.
-
(2012)
Pharmacol. Rev.
, vol.64
, Issue.4
, pp. 1055-1081
-
-
Ma, Q.1
He, X.2
-
56
-
-
67449128222
-
Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response
-
Chen W., et al. Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response. Mol. Cell 2009, 34(6):663-673.
-
(2009)
Mol. Cell
, vol.34
, Issue.6
, pp. 663-673
-
-
Chen, W.1
-
57
-
-
77649265091
-
The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
-
Komatsu M., et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 2010, 12(3):213-223.
-
(2010)
Nat. Cell Biol.
, vol.12
, Issue.3
, pp. 213-223
-
-
Komatsu, M.1
-
58
-
-
84881476323
-
Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity
-
Chowdhry S., et al. Nrf2 is controlled by two distinct beta-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene 2013, 32(32):3765-3781.
-
(2013)
Oncogene
, vol.32
, Issue.32
, pp. 3765-3781
-
-
Chowdhry, S.1
-
59
-
-
77957237159
-
Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis
-
Malhotra D., et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010, 38(17):5718-5734.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.17
, pp. 5718-5734
-
-
Malhotra, D.1
-
60
-
-
1642535318
-
Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction
-
Ma Q., et al. Induction of murine NAD(P)H:quinone oxidoreductase by 2,3,7,8-tetrachlorodibenzo-p-dioxin requires the CNC (cap 'n' collar) basic leucine zipper transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2): cross-interaction between AhR (aryl hydrocarbon receptor) and Nrf2 signal transduction. Biochem. J. 2004, 377(1):205-213.
-
(2004)
Biochem. J.
, vol.377
, Issue.1
, pp. 205-213
-
-
Ma, Q.1
-
61
-
-
36148977625
-
Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis
-
Iida K., et al. Nrf2 and p53 cooperatively protect against BBN-induced urinary bladder carcinogenesis. Carcinogenesis 2007, 28(11):2398-2403.
-
(2007)
Carcinogenesis
, vol.28
, Issue.11
, pp. 2398-2403
-
-
Iida, K.1
-
62
-
-
55949120110
-
Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis
-
Li W., et al. Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem. Pharmacol. 2008, 76(11):1485-1489.
-
(2008)
Biochem. Pharmacol.
, vol.76
, Issue.11
, pp. 1485-1489
-
-
Li, W.1
-
63
-
-
47749116455
-
Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation
-
Jain A.K., Mahajan S., Jaiswal A.K. Phosphorylation and dephosphorylation of tyrosine 141 regulate stability and degradation of INrf2: a novel mechanism in Nrf2 activation. J. Biol. Chem. 2008, 283(25):17712-17720.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.25
, pp. 17712-17720
-
-
Jain, A.K.1
Mahajan, S.2
Jaiswal, A.K.3
-
64
-
-
0242329881
-
Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation
-
Wakabayashi N., et al. Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat. Genet. 2003, 35(3):238-245.
-
(2003)
Nat. Genet.
, vol.35
, Issue.3
, pp. 238-245
-
-
Wakabayashi, N.1
-
65
-
-
77954351631
-
High levels of Nrf2 determine chemoresistance in type II endometrial cancer
-
Jiang T., et al. High levels of Nrf2 determine chemoresistance in type II endometrial cancer. Cancer Res. 2010, 70(13):5486-5496.
-
(2010)
Cancer Res.
, vol.70
, Issue.13
, pp. 5486-5496
-
-
Jiang, T.1
-
66
-
-
0031897632
-
NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses
-
Ghosh S., May M.J., Kopp E.B. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 1998, 225-260.
-
(1998)
Annu. Rev. Immunol.
, pp. 225-260
-
-
Ghosh, S.1
May, M.J.2
Kopp, E.B.3
-
67
-
-
68949215885
-
Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator
-
Oliveira-Marques V., et al. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid. Redox Signal. 2009, 11(9):2223-2243.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, Issue.9
, pp. 2223-2243
-
-
Oliveira-Marques, V.1
-
68
-
-
53049109525
-
Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha
-
Jung Y., et al. Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J. Biol. Chem. 2008, 283(35):23863-23871.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.35
, pp. 23863-23871
-
-
Jung, Y.1
-
69
-
-
70349970493
-
KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta
-
Lee D.F., et al. KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta. Mol. Cell 2009, 36(1):131-140.
-
(2009)
Mol. Cell
, vol.36
, Issue.1
, pp. 131-140
-
-
Lee, D.F.1
-
70
-
-
8344260568
-
Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species
-
Pham C.G., et al. Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 2004, 119(4):529-542.
-
(2004)
Cell
, vol.119
, Issue.4
, pp. 529-542
-
-
Pham, C.G.1
-
71
-
-
14844327760
-
Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases
-
Kamata H., et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120(5):649-661.
-
(2005)
Cell
, vol.120
, Issue.5
, pp. 649-661
-
-
Kamata, H.1
-
72
-
-
44849100198
-
NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha
-
Rius J., et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008, 453(7196):807-811.
-
(2008)
Nature
, vol.453
, Issue.7196
, pp. 807-811
-
-
Rius, J.1
-
73
-
-
0041842588
-
Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression
-
Ma Q., et al. Inhibition of nuclear factor kappaB by phenolic antioxidants: interplay between antioxidant signaling and inflammatory cytokine expression. Mol. Pharmacol. 2003, 64(2):211-219.
-
(2003)
Mol. Pharmacol.
, vol.64
, Issue.2
, pp. 211-219
-
-
Ma, Q.1
-
74
-
-
18344378407
-
Oxidative stress and gene expression: the AP-1 and NF-kappaB connections
-
Karin M., et al. Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 2001, 15(2-4):87-89.
-
(2001)
Biofactors
, vol.15
, Issue.2-4
, pp. 87-89
-
-
Karin, M.1
-
75
-
-
0029808748
-
Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways
-
Whitmarsh A.J., Davis R.J. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J. Mol. Med. (Berl) 1996, 74(10):589-607.
-
(1996)
J. Mol. Med. (Berl)
, vol.74
, Issue.10
, pp. 589-607
-
-
Whitmarsh, A.J.1
Davis, R.J.2
-
76
-
-
0029990552
-
Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression
-
Pinkus R., Weiner L.M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J. Biol. Chem. 1996, 271(23):13422-13429.
-
(1996)
J. Biol. Chem.
, vol.271
, Issue.23
, pp. 13422-13429
-
-
Pinkus, R.1
Weiner, L.M.2
Daniel, V.3
-
77
-
-
0035917814
-
Mitochondrial permeability transition and oxidative stress
-
Kowaltowski A.J., Castilho R.F., Vercesi A.E. Mitochondrial permeability transition and oxidative stress. FEBS Lett. 2001, 495(1-2):12-15.
-
(2001)
FEBS Lett.
, vol.495
, Issue.1-2
, pp. 12-15
-
-
Kowaltowski, A.J.1
Castilho, R.F.2
Vercesi, A.E.3
-
78
-
-
84857038935
-
Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts
-
Ronchi J.A., Vercesi A.E., Castilho R.F. Reactive oxygen species and permeability transition pore in rat liver and kidney mitoplasts. J. Bioenergy Biomembr. 2011, 43(6):709-715.
-
(2011)
J. Bioenergy Biomembr.
, vol.43
, Issue.6
, pp. 709-715
-
-
Ronchi, J.A.1
Vercesi, A.E.2
Castilho, R.F.3
-
79
-
-
68649090703
-
The role of the mitochondrial permeability transition pore in heart disease
-
Halestrap A.P., Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim. Biophys. Acta 2009, 1787(11):1402-1415.
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, Issue.11
, pp. 1402-1415
-
-
Halestrap, A.P.1
Pasdois, P.2
-
80
-
-
0027751663
-
The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14
-
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
-
(1993)
Cell
, vol.75
, Issue.5
, pp. 843-854
-
-
Lee, R.C.1
Feinbaum, R.L.2
Ambros, V.3
-
81
-
-
0027730383
-
Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans
-
Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
-
(1993)
Cell
, vol.75
, Issue.5
, pp. 855-862
-
-
Wightman, B.1
Ha, I.2
Ruvkun, G.3
-
82
-
-
84891818318
-
MiRBase: annotating high confidence microRNAs using deep sequencing data
-
Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42(Database issue):D68-D73.
-
(2014)
Nucleic Acids Res.
, vol.42
, Issue.DATABASE ISSUE
, pp. D68-D73
-
-
Kozomara, A.1
Griffiths-Jones, S.2
-
83
-
-
68149180031
-
Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis
-
Kim W., et al. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res. 2009, 19(7):899-909.
-
(2009)
Cell Res.
, vol.19
, Issue.7
, pp. 899-909
-
-
Kim, W.1
-
84
-
-
7644237777
-
Intron-derived microRNAs-fine tuning of gene functions
-
Ying S.Y., Lin S.L. Intron-derived microRNAs-fine tuning of gene functions. Gene 2004, 342(1):25-28.
-
(2004)
Gene
, vol.342
, Issue.1
, pp. 25-28
-
-
Ying, S.Y.1
Lin, S.L.2
-
85
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
-
(2004)
Cell
, vol.116
, Issue.2
, pp. 281-297
-
-
Bartel, D.P.1
-
86
-
-
0035955374
-
Identification of novel genes coding for small expressed RNAs
-
Lagos-Quintana M., et al. Identification of novel genes coding for small expressed RNAs. Science 2001, 294(5543):853-858.
-
(2001)
Science
, vol.294
, Issue.5543
, pp. 853-858
-
-
Lagos-Quintana, M.1
-
87
-
-
58249088751
-
MicroRNAs: target recognition and regulatory functions
-
Bartel D.P. MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
-
(2009)
Cell
, vol.136
, Issue.2
, pp. 215-233
-
-
Bartel, D.P.1
-
88
-
-
84885185272
-
Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis
-
Cheng X., Ku C.H., Siow R.C. Regulation of the Nrf2 antioxidant pathway by microRNAs: new players in micromanaging redox homeostasis. Free Radic. Biol. Med. 2013, 64:4-11.
-
(2013)
Free Radic. Biol. Med.
, vol.64
, pp. 4-11
-
-
Cheng, X.1
Ku, C.H.2
Siow, R.C.3
-
89
-
-
84875050771
-
Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells
-
Stachurska A., et al. Cross-talk between microRNAs, nuclear factor E2-related factor 2, and heme oxygenase-1 in ochratoxin A-induced toxic effects in renal proximal tubular epithelial cells. Mol. Nutr. Food Res. 2013, 57(3):504-515.
-
(2013)
Mol. Nutr. Food Res.
, vol.57
, Issue.3
, pp. 504-515
-
-
Stachurska, A.1
-
90
-
-
84870859466
-
Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronalSH-SY5Y cells
-
Narasimhan M., et al. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronalSH-SY5Y cells. PLoS One 2012, 7(12):e51111.
-
(2012)
PLoS One
, vol.7
, Issue.12
, pp. e51111
-
-
Narasimhan, M.1
-
91
-
-
84862494503
-
The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops
-
Papp D., et al. The NRF2-related interactome and regulome contain multifunctional proteins and fine-tuned autoregulatory loops. FEBS Lett. 2012, 586(13):1795-1802.
-
(2012)
FEBS Lett.
, vol.586
, Issue.13
, pp. 1795-1802
-
-
Papp, D.1
-
92
-
-
81755171451
-
MiR-200 a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells
-
Eades G., et al. miR-200 a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells. J. Biol. Chem. 2011, 286(47):40725-40733.
-
(2011)
J. Biol. Chem.
, vol.286
, Issue.47
, pp. 40725-40733
-
-
Eades, G.1
-
93
-
-
77951460055
-
MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins
-
Hou W., et al. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology 2010, 51(5):1494-1504.
-
(2010)
Hepatology
, vol.51
, Issue.5
, pp. 1494-1504
-
-
Hou, W.1
-
94
-
-
78549277802
-
MicroRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease
-
Sangokoya C., Telen M.J., Chi J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 2010, 116(20):4338-4348.
-
(2010)
Blood
, vol.116
, Issue.20
, pp. 4338-4348
-
-
Sangokoya, C.1
Telen, M.J.2
Chi, J.T.3
-
95
-
-
80052570740
-
MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism
-
Yang M., et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res. Treat. 2011, 129(3):983-991.
-
(2011)
Breast Cancer Res. Treat.
, vol.129
, Issue.3
, pp. 983-991
-
-
Yang, M.1
-
96
-
-
84921048652
-
Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice
-
Yang H., et al. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice. Antioxid. Redox Signal. 2015, 22(3):259-274.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, Issue.3
, pp. 259-274
-
-
Yang, H.1
-
97
-
-
84904157844
-
Metformin induces microRNA-34 a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents
-
Do M.T., et al. Metformin induces microRNA-34 a to downregulate the Sirt1/Pgc-1alpha/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radic. Biol. Med. 2014, 74:21-34.
-
(2014)
Free Radic. Biol. Med.
, vol.74
, pp. 21-34
-
-
Do, M.T.1
-
98
-
-
84919341176
-
The role of miR-34 a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats
-
Huang X., et al. The role of miR-34 a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats. PLoS One 2014, 9(11):e113305.
-
(2014)
PLoS One
, vol.9
, Issue.11
, pp. e113305
-
-
Huang, X.1
-
99
-
-
79952742806
-
Increased expression of miR-34 a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1
-
Li N., et al. Increased expression of miR-34 a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech. Ageing Dev. 2011, 132(3):75-85.
-
(2011)
Mech. Ageing Dev.
, vol.132
, Issue.3
, pp. 75-85
-
-
Li, N.1
-
100
-
-
84921467662
-
MicroRNA-200 a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis
-
Yang J.J., et al. MicroRNA-200 a controls Nrf2 activation by target Keap1 in hepatic stellate cell proliferation and fibrosis. Cell Signal. 2014, 26(11):2381-2389.
-
(2014)
Cell Signal.
, vol.26
, Issue.11
, pp. 2381-2389
-
-
Yang, J.J.1
-
101
-
-
80255137252
-
Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells
-
Pulkkinen K.H., Yla-Herttuala S., Levonen A.L. Heme oxygenase 1 is induced by miR-155 via reduced BACH1 translation in endothelial cells. Free Radic. Biol. Med. 2011, 51(11):2124-2131.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, Issue.11
, pp. 2124-2131
-
-
Pulkkinen, K.H.1
Yla-Herttuala, S.2
Levonen, A.L.3
-
102
-
-
79951682474
-
Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155
-
Boesch-Saadatmandi C., et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: role of miR-155. J. Nutr. Biochem. 2011, 22(3):293-299.
-
(2011)
J. Nutr. Biochem.
, vol.22
, Issue.3
, pp. 293-299
-
-
Boesch-Saadatmandi, C.1
-
103
-
-
84863245942
-
MicroRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells
-
Li S., et al. microRNA-155 silencing inhibits proliferation and migration and induces apoptosis by upregulating BACH1 in renal cancer cells. Mol. Med. Rep. 2012, 5(4):949-954.
-
(2012)
Mol. Med. Rep.
, vol.5
, Issue.4
, pp. 949-954
-
-
Li, S.1
-
104
-
-
85015545111
-
Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis
-
Espinosa-Diez C., et al. Targeting of gamma-glutamyl-cysteine ligase by miR-433 reduces glutathione biosynthesis and promotes TGF-beta-dependent fibrogenesis. Antioxid. Redox Signal. 2014.
-
(2014)
Antioxid. Redox Signal.
-
-
Espinosa-Diez, C.1
-
105
-
-
84880569509
-
Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells
-
Ungvari Z., et al. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68(8):877-891.
-
(2013)
J. Gerontol. A Biol. Sci. Med. Sci.
, vol.68
, Issue.8
, pp. 877-891
-
-
Ungvari, Z.1
-
106
-
-
60949102130
-
Dicer is regulated by cellular stresses and interferons
-
Wiesen J.L., Tomasi T.B. Dicer is regulated by cellular stresses and interferons. Mol. Immunol. 2009, 46(6):1222-1228.
-
(2009)
Mol. Immunol.
, vol.46
, Issue.6
, pp. 1222-1228
-
-
Wiesen, J.L.1
Tomasi, T.B.2
-
107
-
-
75649139134
-
Physiological and pathological roles for microRNAs in the immune system
-
O'Connell R.M., et al. Physiological and pathological roles for microRNAs in the immune system. Nat. Rev. Immunol. 2010, 10(2):111-122.
-
(2010)
Nat. Rev. Immunol.
, vol.10
, Issue.2
, pp. 111-122
-
-
O'Connell, R.M.1
-
108
-
-
78649378267
-
MicroRNA functions in stress responses
-
Leung A.K., Sharp P.A. MicroRNA functions in stress responses. Mol. Cell 2010, 40(2):205-215.
-
(2010)
Mol. Cell
, vol.40
, Issue.2
, pp. 205-215
-
-
Leung, A.K.1
Sharp, P.A.2
-
109
-
-
79955581917
-
MicroRNAs and epigenetics
-
Sato F., et al. MicroRNAs and epigenetics. FEBS J. 2011, 278(10):1598-1609.
-
(2011)
FEBS J.
, vol.278
, Issue.10
, pp. 1598-1609
-
-
Sato, F.1
-
110
-
-
79959521749
-
The redox basis of epigenetic modifications: from mechanisms to functional consequences
-
Cyr A.R., Domann F.E. The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid. Redox Signal. 2011, 15(2):551-589.
-
(2011)
Antioxid. Redox Signal.
, vol.15
, Issue.2
, pp. 551-589
-
-
Cyr, A.R.1
Domann, F.E.2
-
111
-
-
78149352664
-
Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
-
Fu Y., et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 2010, 32(6):581-589.
-
(2010)
Am. J. Nephrol.
, vol.32
, Issue.6
, pp. 581-589
-
-
Fu, Y.1
-
112
-
-
70349478990
-
MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2
-
Chan S.Y., et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab. 2009, 10(4):273-284.
-
(2009)
Cell Metab.
, vol.10
, Issue.4
, pp. 273-284
-
-
Chan, S.Y.1
-
113
-
-
84927781929
-
MiR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor
-
Tak H., et al. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp. Mol. Med. 2014, 46:e123.
-
(2014)
Exp. Mol. Med.
, vol.46
, pp. e123
-
-
Tak, H.1
-
114
-
-
79960140833
-
MiR-335 and miR-34 a Promote renal senescence by suppressing mitochondrial antioxidative enzymes
-
Bai X.Y., et al. miR-335 and miR-34 a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J. Am. Soc. Nephrol. 2011, 22(7):1252-1261.
-
(2011)
J. Am. Soc. Nephrol.
, vol.22
, Issue.7
, pp. 1252-1261
-
-
Bai, X.Y.1
-
115
-
-
84866515571
-
MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway
-
Li R., et al. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H(2)O(2))-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 2012, 7(9):e44907.
-
(2012)
PLoS One
, vol.7
, Issue.9
, pp. e44907
-
-
Li, R.1
-
116
-
-
84940788564
-
MicroRNA-181 c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells
-
Wang H., et al. MicroRNA-181 c targets Bcl-2 and regulates mitochondrial morphology in myocardial cells. J. Cell Mol. Med. 2015.
-
(2015)
J. Cell Mol. Med.
-
-
Wang, H.1
-
117
-
-
84925852915
-
The role of hypoxia-induced miR-210 in cancer progression
-
Dang K., Myers K.A. The role of hypoxia-induced miR-210 in cancer progression. Int. J. Mol. Sci. 2015, 16(3):6353-6372.
-
(2015)
Int. J. Mol. Sci.
, vol.16
, Issue.3
, pp. 6353-6372
-
-
Dang, K.1
Myers, K.A.2
-
118
-
-
84871342129
-
MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3
-
Yamamoto H., et al. MicroRNA-494 regulates mitochondrial biogenesis in skeletal muscle through mitochondrial transcription factor A and Forkhead box j3. Am. J. Physiol. Endocrinol. Metab. 2012, 303(12):E1419-E1427.
-
(2012)
Am. J. Physiol. Endocrinol. Metab.
, vol.303
, Issue.12
, pp. E1419-E1427
-
-
Yamamoto, H.1
-
119
-
-
84891300743
-
Regulation of the unfolded protein response by microRNAs
-
Bartoszewska S., et al. Regulation of the unfolded protein response by microRNAs. Cell. Mol. Biol. Lett. 2013, 18(4):555-578.
-
(2013)
Cell. Mol. Biol. Lett.
, vol.18
, Issue.4
, pp. 555-578
-
-
Bartoszewska, S.1
-
120
-
-
84876902510
-
Micro(RNA)managing endoplasmic reticulum stress
-
Byrd A.E., Brewer J.W. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013, 65(5):373-381.
-
(2013)
IUBMB Life
, vol.65
, Issue.5
, pp. 373-381
-
-
Byrd, A.E.1
Brewer, J.W.2
-
121
-
-
84907324299
-
HypoxamiR regulation and function in ischemic cardiovascular diseases
-
Greco S., Gaetano C., Martelli F. HypoxamiR regulation and function in ischemic cardiovascular diseases. Antioxid. Redox Signal. 2014, 21(8):1202-1219.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.8
, pp. 1202-1219
-
-
Greco, S.1
Gaetano, C.2
Martelli, F.3
-
122
-
-
84913594663
-
Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia
-
Yao M., et al. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2014, 307(11):L829-L837.
-
(2014)
Am. J. Physiol.-Lung Cell. Mol. Physiol.
, vol.307
, Issue.11
, pp. L829-L837
-
-
Yao, M.1
-
124
-
-
79957649500
-
MicroRNA in ischemic stroke etiology and pathology
-
Rink C., Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol. Genomics 2011, 43(10):521-528.
-
(2011)
Physiol. Genomics
, vol.43
, Issue.10
, pp. 521-528
-
-
Rink, C.1
Khanna, S.2
-
125
-
-
84880160092
-
Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders
-
Kauppinen A., et al. Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell Signal. 2013, 25(10):1939-1948.
-
(2013)
Cell Signal.
, vol.25
, Issue.10
, pp. 1939-1948
-
-
Kauppinen, A.1
-
126
-
-
84922954051
-
Differential expression of microRNAs in ischemic heart disease
-
Song M.A., et al. Differential expression of microRNAs in ischemic heart disease. Drug Discov. Today 2015, 20(2):223-235.
-
(2015)
Drug Discov. Today
, vol.20
, Issue.2
, pp. 223-235
-
-
Song, M.A.1
-
127
-
-
84928595465
-
Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34 a/SIRT1 pathway
-
Kim H.J., et al. Carbon monoxide protects against hepatic ischemia/reperfusion injury by modulating the miR-34 a/SIRT1 pathway. Biochim. Biophys. Acta 2015, 1852(7):1550-1559.
-
(2015)
Biochim. Biophys. Acta
, vol.1852
, Issue.7
, pp. 1550-1559
-
-
Kim, H.J.1
-
129
-
-
84920903716
-
Oxidative stress: a concept in redox biology and medicine
-
Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015, 4:180-183.
-
(2015)
Redox Biol.
, vol.4
, pp. 180-183
-
-
Sies, H.1
-
131
-
-
0041761700
-
Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation
-
van der Vlies D., et al. Oxidation of ER resident proteins upon oxidative stress: effects of altering cellular redox/antioxidant status and implications for protein maturation. Antioxid. Redox Signal. 2003, 5(4):381-387.
-
(2003)
Antioxid. Redox Signal.
, vol.5
, Issue.4
, pp. 381-387
-
-
van der Vlies, D.1
-
132
-
-
0035675962
-
The action of molecular chaperones in the early secretory pathway
-
Fewell S.W., et al. The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet. 2001, 35:149-191.
-
(2001)
Annu. Rev. Genet.
, vol.35
, pp. 149-191
-
-
Fewell, S.W.1
-
133
-
-
33750902737
-
The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control
-
Gorlach A., Klappa P., Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid. Redox Signal. 2006, 8(9-10):1391-1418.
-
(2006)
Antioxid. Redox Signal.
, vol.8
, Issue.9-10
, pp. 1391-1418
-
-
Gorlach, A.1
Klappa, P.2
Kietzmann, T.3
-
134
-
-
84857582664
-
The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more
-
Ramming T., Appenzeller-Herzog C. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid. Redox Signal. 2012, 16(10):1109-1118.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, Issue.10
, pp. 1109-1118
-
-
Ramming, T.1
Appenzeller-Herzog, C.2
-
135
-
-
71549132149
-
Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation
-
Hatahet F., Ruddock L.W. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid. Redox Signal. 2009, 11(11):2807-2850.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, Issue.11
, pp. 2807-2850
-
-
Hatahet, F.1
Ruddock, L.W.2
-
136
-
-
0024404910
-
Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells
-
Dorner A.J., Wasley L.C., Kaufman R.J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 1989, 264(34):20602-20607.
-
(1989)
J. Biol. Chem.
, vol.264
, Issue.34
, pp. 20602-20607
-
-
Dorner, A.J.1
Wasley, L.C.2
Kaufman, R.J.3
-
137
-
-
0023852783
-
The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins
-
Kozutsumi Y., et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988, 332(6163):462-464.
-
(1988)
Nature
, vol.332
, Issue.6163
, pp. 462-464
-
-
Kozutsumi, Y.1
-
138
-
-
0033590451
-
Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
-
Harding H.P., Zhang Y., Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397(6716):271-274.
-
(1999)
Nature
, vol.397
, Issue.6716
, pp. 271-274
-
-
Harding, H.P.1
Zhang, Y.2
Ron, D.3
-
139
-
-
0034724520
-
Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation
-
Travers K.J., et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 2000, 101(3):249-258.
-
(2000)
Cell
, vol.101
, Issue.3
, pp. 249-258
-
-
Travers, K.J.1
-
140
-
-
0032432673
-
Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones
-
Kim P.S., Arvan P. Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocrine Rev. 1998, 19(2):173-202.
-
(1998)
Endocrine Rev.
, vol.19
, Issue.2
, pp. 173-202
-
-
Kim, P.S.1
Arvan, P.2
-
141
-
-
0036843129
-
Traffic jams II: an update of diseases of intracellular transport
-
Aridor M., Hannan L.A. Traffic jams II: an update of diseases of intracellular transport. Traffic (Copenhagen, Denmark) 2002, 3(11):781-790.
-
(2002)
Traffic (Copenhagen, Denmark)
, vol.3
, Issue.11
, pp. 781-790
-
-
Aridor, M.1
Hannan, L.A.2
-
142
-
-
2442542312
-
PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress
-
Cullinan S.B., Diehl J.A. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J. Biol. Chem. 2004, 279(19):20108-20117.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.19
, pp. 20108-20117
-
-
Cullinan, S.B.1
Diehl, J.A.2
-
143
-
-
0842266604
-
Oxidative protein folding in eukaryotes: mechanisms and consequences
-
Tu B.P., Weissman J.S. Oxidative protein folding in eukaryotes: mechanisms and consequences. J. Cell Biol. 2004, 164(3):341-346.
-
(2004)
J. Cell Biol.
, vol.164
, Issue.3
, pp. 341-346
-
-
Tu, B.P.1
Weissman, J.S.2
-
144
-
-
0037353039
-
An integrated stress response regulates amino acid metabolism and resistance to oxidative stress
-
Harding H.P., et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 2003, 11(3):619-633.
-
(2003)
Mol. Cell
, vol.11
, Issue.3
, pp. 619-633
-
-
Harding, H.P.1
-
145
-
-
0034681340
-
ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum
-
Cabibbo A., et al. ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J. Biol. Chem. 2000, 275(7):4827-4833.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.7
, pp. 4827-4833
-
-
Cabibbo, A.1
-
146
-
-
0034604675
-
Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response
-
Pagani M., et al. Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J. Biol. Chem. 2000, 275(31):23685-23692.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.31
, pp. 23685-23692
-
-
Pagani, M.1
-
147
-
-
0035834372
-
The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function
-
Pagani M., et al. The C-terminal domain of yeast Ero1p mediates membrane localization and is essential for function. FEBS Lett. 2001, 508(1):117-120.
-
(2001)
FEBS Lett.
, vol.508
, Issue.1
, pp. 117-120
-
-
Pagani, M.1
-
148
-
-
0035890070
-
Manipulation of oxidative protein folding and PDI redox state in mammalian cells
-
Mezghrani A., et al. Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J. 2001, 20(22):6288-6296.
-
(2001)
EMBO J.
, vol.20
, Issue.22
, pp. 6288-6296
-
-
Mezghrani, A.1
-
149
-
-
3543044954
-
Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum
-
Molteni S.N., et al. Glutathione limits Ero1-dependent oxidation in the endoplasmic reticulum. J. Biol. Chem. 2004, 279(31):32667-32673.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.31
, pp. 32667-32673
-
-
Molteni, S.N.1
-
150
-
-
77955708533
-
Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM)
-
Gilady S.Y., et al. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 2010, 15(5):619-629.
-
(2010)
Cell Stress Chaperones
, vol.15
, Issue.5
, pp. 619-629
-
-
Gilady, S.Y.1
-
151
-
-
0036862532
-
The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum
-
Tu B.P., Weissman J.S. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol. Cell 2002, 10(5):983-994.
-
(2002)
Mol. Cell
, vol.10
, Issue.5
, pp. 983-994
-
-
Tu, B.P.1
Weissman, J.S.2
-
152
-
-
2542475140
-
Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell
-
Gross E., et al. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell 2004, 117(5):601-610.
-
(2004)
Cell
, vol.117
, Issue.5
, pp. 601-610
-
-
Gross, E.1
-
153
-
-
78650270477
-
Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum
-
Tavender T.J., Springate J.J., Bulleid N.J. Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. EMBO J. 2010, 29(24):4185-4197.
-
(2010)
EMBO J.
, vol.29
, Issue.24
, pp. 4185-4197
-
-
Tavender, T.J.1
Springate, J.J.2
Bulleid, N.J.3
-
154
-
-
78649918283
-
Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin
-
Zito E., et al. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol. Cell 2010, 40(5):787-797.
-
(2010)
Mol. Cell
, vol.40
, Issue.5
, pp. 787-797
-
-
Zito, E.1
-
155
-
-
0034946944
-
Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport
-
Ozawa K., et al. Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J. Clin. Investig. 2001, 108(1):41-50.
-
(2001)
J. Clin. Investig.
, vol.108
, Issue.1
, pp. 41-50
-
-
Ozawa, K.1
-
156
-
-
0346034856
-
Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice
-
Tobisawa S., et al. Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice. Biochem. Biophys. Res. Commun. 2003, 303(2):496-503.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.303
, Issue.2
, pp. 496-503
-
-
Tobisawa, S.1
-
157
-
-
0030910404
-
Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease
-
Tu P.H., et al. Oxidative stress, mutant SOD1, and neurofilament pathology in transgenic mouse models of human motor neuron disease. Lab. Investig. J. Tech. Methods Pathol. 1997, 76(4):441-456.
-
(1997)
Lab. Investig. J. Tech. Methods Pathol.
, vol.76
, Issue.4
, pp. 441-456
-
-
Tu, P.H.1
-
158
-
-
0344507132
-
Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis
-
Bruening W., et al. Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 1999, 72(2):693-699.
-
(1999)
J. Neurochem.
, vol.72
, Issue.2
, pp. 693-699
-
-
Bruening, W.1
-
159
-
-
0029053881
-
An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria
-
Wong P.C., et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 1995, 14(6):1105-1116.
-
(1995)
Neuron
, vol.14
, Issue.6
, pp. 1105-1116
-
-
Wong, P.C.1
-
160
-
-
0010625474
-
Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts
-
Shiu R.P., Pouyssegur J., Pastan I. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 1977, 74(9):3840-3844.
-
(1977)
Proc. Natl. Acad. Sci. USA
, vol.74
, Issue.9
, pp. 3840-3844
-
-
Shiu, R.P.1
Pouyssegur, J.2
Pastan, I.3
-
161
-
-
0025293207
-
Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism
-
Heacock C.S., Sutherland R.M. Enhanced synthesis of stress proteins caused by hypoxia and relation to altered cell growth and metabolism. Br. J. Cancer 1990, 62(2):217-225.
-
(1990)
Br. J. Cancer
, vol.62
, Issue.2
, pp. 217-225
-
-
Heacock, C.S.1
Sutherland, R.M.2
-
162
-
-
0033525519
-
150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death
-
Ozawa K., et al. 150-kDa oxygen-regulated protein (ORP150) suppresses hypoxia-induced apoptotic cell death. J. Biol. Chem. 1999, 274(10):6397-6404.
-
(1999)
J. Biol. Chem.
, vol.274
, Issue.10
, pp. 6397-6404
-
-
Ozawa, K.1
-
163
-
-
4344648874
-
Activating transcription factor 4 is translationally regulated by hypoxic stress
-
Blais J.D., et al. Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol. Cell. Biol. 2004, 24(17):7469-7482.
-
(2004)
Mol. Cell. Biol.
, vol.24
, Issue.17
, pp. 7469-7482
-
-
Blais, J.D.1
-
164
-
-
0029112861
-
Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia
-
Estes S.D., Stoler D.L., Anderson G.R. Normal fibroblasts induce the C/EBP beta and ATF-4 bZIP transcription factors in response to anoxia. Exp. Cell Res. 1995, 220(1):47-54.
-
(1995)
Exp. Cell Res.
, vol.220
, Issue.1
, pp. 47-54
-
-
Estes, S.D.1
Stoler, D.L.2
Anderson, G.R.3
-
165
-
-
1642447143
-
A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression
-
Liu Q., et al. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc. Natl. Acad. Sci. USA 2004, 101(12):4302-4307.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, Issue.12
, pp. 4302-4307
-
-
Liu, Q.1
-
166
-
-
35648930417
-
An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha
-
Koivunen P., et al. An endoplasmic reticulum transmembrane prolyl 4-hydroxylase is induced by hypoxia and acts on hypoxia-inducible factor alpha. J. Biol. Chem. 2007, 282(42):30544-30552.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.42
, pp. 30544-30552
-
-
Koivunen, P.1
-
167
-
-
0037517089
-
The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha
-
Gess B., et al. The cellular oxygen tension regulates expression of the endoplasmic oxidoreductase ERO1-Lalpha. Eur. J. Biochem./FEBS 2003, 270(10):2228-2235.
-
(2003)
Eur. J. Biochem./FEBS
, vol.270
, Issue.10
, pp. 2228-2235
-
-
Gess, B.1
-
168
-
-
26644450729
-
Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha
-
Xue X., et al. Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J. Biol. Chem. 2005, 280(40):33917-33925.
-
(2005)
J. Biol. Chem.
, vol.280
, Issue.40
, pp. 33917-33925
-
-
Xue, X.1
-
169
-
-
0035957929
-
Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress
-
Yoneda T., et al. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 2001, 276(17):13935-13940.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.17
, pp. 13935-13940
-
-
Yoneda, T.1
-
170
-
-
0034610743
-
Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta
-
Nakagawa T., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403(6765):98-103.
-
(2000)
Nature
, vol.403
, Issue.6765
, pp. 98-103
-
-
Nakagawa, T.1
-
171
-
-
0035823579
-
Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation
-
Rao R.V., et al. Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J. Biol. Chem. 2001, 276(36):33869-33874.
-
(2001)
J. Biol. Chem.
, vol.276
, Issue.36
, pp. 33869-33874
-
-
Rao, R.V.1
-
172
-
-
0036019933
-
Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice
-
Matsuzawa A., et al. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid. Redox Signal. 2002, 4(3):415-425.
-
(2002)
Antioxid. Redox Signal.
, vol.4
, Issue.3
, pp. 415-425
-
-
Matsuzawa, A.1
-
173
-
-
0036606540
-
ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats
-
Nishitoh H., et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002, 16(11):1345-1355.
-
(2002)
Genes Dev.
, vol.16
, Issue.11
, pp. 1345-1355
-
-
Nishitoh, H.1
-
174
-
-
0034723235
-
Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
-
Urano F., et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000, 287(5453):664-666.
-
(2000)
Science
, vol.287
, Issue.5453
, pp. 664-666
-
-
Urano, F.1
-
175
-
-
0035065836
-
ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis
-
Tobiume K., et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001, 2(3):222-228.
-
(2001)
EMBO Rep.
, vol.2
, Issue.3
, pp. 222-228
-
-
Tobiume, K.1
-
176
-
-
3042636436
-
JAB1 participates in unfolded protein responses by association and dissociation with IRE1
-
Oono K., et al. JAB1 participates in unfolded protein responses by association and dissociation with IRE1. Neurochem. Int. 2004, 45(5):765-772.
-
(2004)
Neurochem. Int.
, vol.45
, Issue.5
, pp. 765-772
-
-
Oono, K.1
-
177
-
-
33644992047
-
Direct evidence for S-nitrosation of mitochondrial complex I.
-
Burwell L.S., et al. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 2006, 394(3):627-634.
-
(2006)
Biochem. J.
, vol.394
, Issue.3
, pp. 627-634
-
-
Burwell, L.S.1
-
178
-
-
33744527052
-
Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria
-
Dahm C.C., Moore K., Murphy M.P. Persistent S-nitrosation of complex I and other mitochondrial membrane proteins by S-nitrosothiols but not nitric oxide or peroxynitrite: implications for the interaction of nitric oxide with mitochondria. J. Biol. Chem. 2006, 281(15):10056-10065.
-
(2006)
J. Biol. Chem.
, vol.281
, Issue.15
, pp. 10056-10065
-
-
Dahm, C.C.1
Moore, K.2
Murphy, M.P.3
-
179
-
-
38049136885
-
S-nitrosation of mitochondrial complex I depends on its structural conformation
-
Galkin A., Moncada S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J. Biol. Chem. 2007, 282(52):37448-37453.
-
(2007)
J. Biol. Chem.
, vol.282
, Issue.52
, pp. 37448-37453
-
-
Galkin, A.1
Moncada, S.2
-
180
-
-
34548412578
-
Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer
-
Shiva S., et al. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J. Exp. Med. 2007, 204(9):2089-2102.
-
(2007)
J. Exp. Med.
, vol.204
, Issue.9
, pp. 2089-2102
-
-
Shiva, S.1
-
181
-
-
34047142614
-
Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury
-
Nadtochiy S.M., Burwell L.S., Brookes P.S. Cardioprotection and mitochondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2007, 42(4):812-825.
-
(2007)
J. Mol. Cell. Cardiol.
, vol.42
, Issue.4
, pp. 812-825
-
-
Nadtochiy, S.M.1
Burwell, L.S.2
Brookes, P.S.3
-
182
-
-
84856729192
-
Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications
-
Murphy M.P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid. Redox Signal. 2012, 16(6):476-495.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, Issue.6
, pp. 476-495
-
-
Murphy, M.P.1
-
183
-
-
67649757115
-
A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury
-
Prime T.A., et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc. Natl. Acad. Sci. USA 2009, 106(26):10764-10769.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.26
, pp. 10764-10769
-
-
Prime, T.A.1
-
184
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I
-
Chouchani E.T., et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 2013, 19(6):753-759.
-
(2013)
Nat. Med.
, vol.19
, Issue.6
, pp. 753-759
-
-
Chouchani, E.T.1
-
185
-
-
33745603712
-
S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production
-
Borutaite V., Brown G.C. S-nitrosothiol inhibition of mitochondrial complex I causes a reversible increase in mitochondrial hydrogen peroxide production. Biochim. Biophys. Acta 2006, 1757(5-6):562-566.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, Issue.5-6
, pp. 562-566
-
-
Borutaite, V.1
Brown, G.C.2
-
186
-
-
85015557459
-
Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by RISK and SAFE pathways
-
Skyschally A., et al. Across-species transfer of protection by remote ischemic preconditioning with species-specific myocardial signal transduction by RISK and SAFE pathways. Circ. Res. 2015.
-
(2015)
Circ. Res.
-
-
Skyschally, A.1
-
187
-
-
0034677535
-
Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
-
Imai S., et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403(6771):795-800.
-
(2000)
Nature
, vol.403
, Issue.6771
, pp. 795-800
-
-
Imai, S.1
-
188
-
-
84872161575
-
Post-translational modification of mitochondrial proteins by caloric restriction: possible involvement in caloric restriction-induced cardioprotection
-
Shinmura K. Post-translational modification of mitochondrial proteins by caloric restriction: possible involvement in caloric restriction-induced cardioprotection. Trends Cardiovasc. Med. 2013, 23(1):18-25.
-
(2013)
Trends Cardiovasc. Med.
, vol.23
, Issue.1
, pp. 18-25
-
-
Shinmura, K.1
-
189
-
-
84878003949
-
The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress
-
Anedda A., et al. The transcription factor Nrf2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic. Biol. Med. 2013, 61:395-407.
-
(2013)
Free Radic. Biol. Med.
, vol.61
, pp. 395-407
-
-
Anedda, A.1
-
190
-
-
33845646748
-
Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury
-
Leonard M.O., et al. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J. 2006, 20(14):2624-2626.
-
(2006)
FASEB J.
, vol.20
, Issue.14
, pp. 2624-2626
-
-
Leonard, M.O.1
-
191
-
-
84926205444
-
Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation
-
Wu J.X., et al. Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation. Neural Regen. Res. 2015, 10(3):481-489.
-
(2015)
Neural Regen. Res.
, vol.10
, Issue.3
, pp. 481-489
-
-
Wu, J.X.1
-
192
-
-
84868641492
-
Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction
-
Wang N.P., et al. Curcumin promotes cardiac repair and ameliorates cardiac dysfunction following myocardial infarction. Br. J. Pharmacol. 2012, 167(7):1550-1562.
-
(2012)
Br. J. Pharmacol.
, vol.167
, Issue.7
, pp. 1550-1562
-
-
Wang, N.P.1
-
193
-
-
84884776136
-
Renoprotective effect of the antioxidant curcumin: recent findings
-
Trujillo J., et al. Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol. 2013, 1:448-456.
-
(2013)
Redox Biol.
, vol.1
, pp. 448-456
-
-
Trujillo, J.1
-
194
-
-
84919922469
-
Novel curcumin analogue 14 p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity
-
Li W., et al. Novel curcumin analogue 14 p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. Toxicol. Appl. Pharmacol. 2015, 282(2):175-183.
-
(2015)
Toxicol. Appl. Pharmacol.
, vol.282
, Issue.2
, pp. 175-183
-
-
Li, W.1
-
195
-
-
77954560109
-
Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway
-
Zhao H.D., et al. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J. Gastroenterol. 2010, 16(24):3002-3010.
-
(2010)
World J. Gastroenterol.
, vol.16
, Issue.24
, pp. 3002-3010
-
-
Zhao, H.D.1
-
196
-
-
77951526269
-
Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation
-
Soane L., et al. Sulforaphane protects immature hippocampal neurons against death caused by exposure to hemin or to oxygen and glucose deprivation. J. Neurosci. Res. 2010, 88(6):1355-1363.
-
(2010)
J. Neurosci. Res.
, vol.88
, Issue.6
, pp. 1355-1363
-
-
Soane, L.1
-
197
-
-
65549118899
-
Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation
-
Danilov C.A., et al. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia 2009, 57(6):645-656.
-
(2009)
Glia
, vol.57
, Issue.6
, pp. 645-656
-
-
Danilov, C.A.1
-
198
-
-
77649341955
-
Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels
-
Piao C.S., et al. Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels. Pharmacol. Res. 2010, 61(4):342-348.
-
(2010)
Pharmacol. Res.
, vol.61
, Issue.4
, pp. 342-348
-
-
Piao, C.S.1
-
199
-
-
43049117465
-
Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme
-
Yoon H.Y., et al. Sulforaphane protects kidneys against ischemia-reperfusion injury through induction of the Nrf2-dependent phase 2 enzyme. Biochem. Pharmacol. 2008, 75(11):2214-2223.
-
(2008)
Biochem. Pharmacol.
, vol.75
, Issue.11
, pp. 2214-2223
-
-
Yoon, H.Y.1
-
200
-
-
84887236178
-
Sulforaphane protects hearts from early injury after experimental transplantation
-
Li Z., et al. Sulforaphane protects hearts from early injury after experimental transplantation. Ann. Transplant. 2013, 18:558-566.
-
(2013)
Ann. Transplant.
, vol.18
, pp. 558-566
-
-
Li, Z.1
-
201
-
-
84856464242
-
Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart
-
Anderson E.J., Katunga L.A., Willis M.S. Mitochondria as a source and target of lipid peroxidation products in healthy and diseased heart. Clin. Exp. Pharmacol. Physiol. 2012, 39(2):179-193.
-
(2012)
Clin. Exp. Pharmacol. Physiol.
, vol.39
, Issue.2
, pp. 179-193
-
-
Anderson, E.J.1
Katunga, L.A.2
Willis, M.S.3
-
202
-
-
79954488111
-
Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde
-
Ma H., et al. Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischaemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 2011, 32(8):1025-1038.
-
(2011)
Eur. Heart J.
, vol.32
, Issue.8
, pp. 1025-1038
-
-
Ma, H.1
-
203
-
-
77956101963
-
4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway
-
Zhang Y., et al. 4-hydroxy-2-nonenal protects against cardiac ischemia-reperfusion injury via the Nrf2-dependent pathway. J. Mol. Cell. Cardiol. 2010, 49(4):576-586.
-
(2010)
J. Mol. Cell. Cardiol.
, vol.49
, Issue.4
, pp. 576-586
-
-
Zhang, Y.1
-
204
-
-
84969858850
-
4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes
-
Lopez-Bernardo E., et al. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic. Biol. Med. 2015.
-
(2015)
Free Radic. Biol. Med.
-
-
Lopez-Bernardo, E.1
-
205
-
-
84875426064
-
The role of transcription-independent damage signals in the initiation of epithelial wound healing
-
Cordeiro J.V., Jacinto A. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nat. Rev. Mol. Cell Biol. 2013, 14(4):249-262.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, Issue.4
, pp. 249-262
-
-
Cordeiro, J.V.1
Jacinto, A.2
-
207
-
-
0038411479
-
Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate
-
Salmeen A., et al. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 2003, 423(6941):769-773.
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 769-773
-
-
Salmeen, A.1
-
208
-
-
0038749600
-
Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B
-
van Montfort R.L., et al. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 2003, 423(6941):773-777.
-
(2003)
Nature
, vol.423
, Issue.6941
, pp. 773-777
-
-
van Montfort, R.L.1
-
209
-
-
0033598677
-
Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation
-
Claiborne A., et al. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 1999, 38(47):15407-15416.
-
(1999)
Biochemistry
, vol.38
, Issue.47
, pp. 15407-15416
-
-
Claiborne, A.1
-
210
-
-
0034190297
-
Protein kinase C signaling and oxidative stress
-
Gopalakrishna R., Jaken S. Protein kinase C signaling and oxidative stress. Free Radic. Biol. Med. 2000, 28(9):1349-1361.
-
(2000)
Free Radic. Biol. Med.
, vol.28
, Issue.9
, pp. 1349-1361
-
-
Gopalakrishna, R.1
Jaken, S.2
-
211
-
-
0028152333
-
MAP kinase kinase kinase, MAP kinase kinase and MAP kinase
-
Marshall C.J. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 1994, 4(1):82-89.
-
(1994)
Curr. Opin. Genet. Dev.
, vol.4
, Issue.1
, pp. 82-89
-
-
Marshall, C.J.1
-
212
-
-
79751532260
-
Redox regulation of ERK1/2 activation induced by sphingosine 1-phosphate in fibroblasts: involvement of NADPH oxidase and platelet-derived growth factor receptor
-
Catarzi S., et al. Redox regulation of ERK1/2 activation induced by sphingosine 1-phosphate in fibroblasts: involvement of NADPH oxidase and platelet-derived growth factor receptor. Biochim. Biophys. Acta 2011, 1810(4):446-456.
-
(2011)
Biochim. Biophys. Acta
, vol.1810
, Issue.4
, pp. 446-456
-
-
Catarzi, S.1
-
213
-
-
34247230549
-
Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species
-
Meng D., et al. Insulin-like growth factor-I (IGF-I) induces epidermal growth factor receptor transactivation and cell proliferation through reactive oxygen species. Free Radic. Biol. Med. 2007, 42(11):1651-1660.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, Issue.11
, pp. 1651-1660
-
-
Meng, D.1
-
214
-
-
33846603289
-
Pathophysiological roles of ASK1-MAP kinase signaling pathways
-
Nagai H., et al. Pathophysiological roles of ASK1-MAP kinase signaling pathways. J. Biochem. Mol. Biol. 2007, 40(1):1-6.
-
(2007)
J. Biochem. Mol. Biol.
, vol.40
, Issue.1
, pp. 1-6
-
-
Nagai, H.1
-
215
-
-
33646416743
-
The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death
-
Zhou J.Y., Liu Y., Wu G.S. The role of mitogen-activated protein kinase phosphatase-1 in oxidative damage-induced cell death. Cancer Res. 2006, 66(9):4888-4894.
-
(2006)
Cancer Res.
, vol.66
, Issue.9
, pp. 4888-4894
-
-
Zhou, J.Y.1
Liu, Y.2
Wu, G.S.3
-
216
-
-
0034704079
-
Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism
-
Yu R., et al. Activation of mitogen-activated protein kinase pathways induces antioxidant response element-mediated gene expression via a Nrf2-dependent mechanism. J. Biol. Chem. 2000, 275(51):39907-39913.
-
(2000)
J. Biol. Chem.
, vol.275
, Issue.51
, pp. 39907-39913
-
-
Yu, R.1
-
217
-
-
84877596486
-
Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation
-
Kim S.U., et al. Peroxiredoxin I is a ROS/p38 MAPK-dependent inducible antioxidant that regulates NF-kappaB-mediated iNOS induction and microglial activation. J. Neuroimmunol. 2013, 259(1-2):26-36.
-
(2013)
J. Neuroimmunol.
, vol.259
, Issue.1-2
, pp. 26-36
-
-
Kim, S.U.1
-
218
-
-
4243687105
-
The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive
-
Dhar A., Young M.R., Colburn N.H. The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol. Cell. Biochem. 2002, 234-235(1-2):185-193.
-
(2002)
Mol. Cell. Biochem.
, Issue.1-2
, pp. 185-193
-
-
Dhar, A.1
Young, M.R.2
Colburn, N.H.3
-
219
-
-
0034573074
-
Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death
-
Chen C., et al. Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death. Arch. Pharm. Res. 2000, 23(6):605-612.
-
(2000)
Arch. Pharm. Res.
, vol.23
, Issue.6
, pp. 605-612
-
-
Chen, C.1
-
220
-
-
3543008400
-
Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols
-
Brown G.C., Borutaite V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta 2004, 1658(1-2):44-49.
-
(2004)
Biochim. Biophys. Acta
, vol.1658
, Issue.1-2
, pp. 44-49
-
-
Brown, G.C.1
Borutaite, V.2
-
221
-
-
46249128955
-
S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning
-
Hill B.G., Darley-Usmar V.M. S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochem. J. 2008, 412(2):e11-e13.
-
(2008)
Biochem. J.
, vol.412
, Issue.2
, pp. e11-e13
-
-
Hill, B.G.1
Darley-Usmar, V.M.2
-
222
-
-
0037490142
-
Reversible glutathionylation of complex I increases mitochondrial superoxide formation
-
Taylor E.R., et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 2003, 278(22):19603-19610.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.22
, pp. 19603-19610
-
-
Taylor, E.R.1
-
223
-
-
34248569415
-
Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase
-
Chen C.L., et al. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase. Biochemistry 2007, 46(19):5754-5765.
-
(2007)
Biochemistry
, vol.46
, Issue.19
, pp. 5754-5765
-
-
Chen, C.L.1
-
224
-
-
84864970382
-
Protein thiyl radical mediates S-glutathionylation of complex I
-
Kang P.T., et al. Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic. Biol. Med. 2012, 53(4):962-973.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, Issue.4
, pp. 962-973
-
-
Kang, P.T.1
-
225
-
-
54049146740
-
Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage
-
Hurd T.R., et al. Complex I within oxidatively stressed bovine heart mitochondria is glutathionylated on Cys-531 and Cys-704 of the 75-kDa subunit: potential role of CYS residues in decreasing oxidative damage. J. Biol. Chem. 2008, 283(36):24801-24815.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.36
, pp. 24801-24815
-
-
Hurd, T.R.1
-
226
-
-
0037105335
-
Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species
-
Brookes P.S., et al. Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2002, 33(6):755-764.
-
(2002)
Free Radic. Biol. Med.
, vol.33
, Issue.6
, pp. 755-764
-
-
Brookes, P.S.1
-
227
-
-
0141510019
-
Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry
-
Murray J., et al. Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J. Biol. Chem. 2003, 278(39):37223-37230.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.39
, pp. 37223-37230
-
-
Murray, J.1
-
228
-
-
67650354415
-
Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins
-
Abello N., et al. Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J. Proteome Res. 2009, 8(7):3222-3238.
-
(2009)
J. Proteome Res.
, vol.8
, Issue.7
, pp. 3222-3238
-
-
Abello, N.1
-
229
-
-
55549123029
-
Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium
-
Chen C.L., et al. Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J. Biol. Chem. 2008, 283(41):27991-28003.
-
(2008)
J. Biol. Chem.
, vol.283
, Issue.41
, pp. 27991-28003
-
-
Chen, C.L.1
-
230
-
-
15444370200
-
Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria
-
Yarian C.S., Rebrin I., Sohal R.S. Aconitase and ATP synthase are targets of malondialdehyde modification and undergo an age-related decrease in activity in mouse heart mitochondria. Biochem. Biophys. Res. Commun. 2005, 330(1):151-156.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.330
, Issue.1
, pp. 151-156
-
-
Yarian, C.S.1
Rebrin, I.2
Sohal, R.S.3
-
231
-
-
0242665322
-
Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development
-
Benderdour M., et al. Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem 2003, 278(46):45154-45159.
-
(2003)
J Biol Chem
, vol.278
, Issue.46
, pp. 45154-45159
-
-
Benderdour, M.1
-
232
-
-
0347695994
-
Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury
-
Lee J.H., Yang E.S., Park J.W. Inactivation of NADP+-dependent isocitrate dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J. Biol. Chem. 2003, 278(51):51360-51371.
-
(2003)
J. Biol. Chem.
, vol.278
, Issue.51
, pp. 51360-51371
-
-
Lee, J.H.1
Yang, E.S.2
Park, J.W.3
-
233
-
-
0033535948
-
Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase
-
Lucas D.T., Szweda L.I. Declines in mitochondrial respiration during cardiac reperfusion: age-dependent inactivation of alpha-ketoglutarate dehydrogenase. Proc. Natl. Acad. Sci. USA 1999, 96(12):6689-6693.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, Issue.12
, pp. 6689-6693
-
-
Lucas, D.T.1
Szweda, L.I.2
-
234
-
-
84877035408
-
Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification
-
McLain A.L., et al. Glutathionylation of alpha-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification. Free Radic. Biol. Med. 2013, 61:161-169.
-
(2013)
Free Radic. Biol. Med.
, vol.61
, pp. 161-169
-
-
McLain, A.L.1
-
235
-
-
17844393112
-
Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion
-
Bulteau A.L., et al. Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc. Natl. Acad. Sci. USA 2005, 102(17):5987-5991.
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, Issue.17
, pp. 5987-5991
-
-
Bulteau, A.L.1
-
236
-
-
0032479147
-
Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation
-
Stachowiak O., et al. Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 1998, 273(27):16694-16699.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.27
, pp. 16694-16699
-
-
Stachowiak, O.1
-
237
-
-
41549159780
-
Oxidative modification of cytochrome c by singlet oxygen
-
Kim J., et al. Oxidative modification of cytochrome c by singlet oxygen. Free Radic. Biol. Med. 2008, 44(9):1700-1711.
-
(2008)
Free Radic. Biol. Med.
, vol.44
, Issue.9
, pp. 1700-1711
-
-
Kim, J.1
-
238
-
-
84859475161
-
Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal
-
Zarse K., et al. Impaired insulin/IGF1 signaling extends life span by promoting mitochondrial l-proline catabolism to induce a transient ROS signal. Cell Metab. 2012, 15(4):451-465.
-
(2012)
Cell Metab.
, vol.15
, Issue.4
, pp. 451-465
-
-
Zarse, K.1
-
239
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena L.A., Chandel N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48(2):158-167.
-
(2012)
Mol. Cell
, vol.48
, Issue.2
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
240
-
-
84900295547
-
Mitohormesis
-
Yun J., Finkel T. Mitohormesis. Cell Metab. 2014, 19(5):757-766.
-
(2014)
Cell Metab.
, vol.19
, Issue.5
, pp. 757-766
-
-
Yun, J.1
Finkel, T.2
-
241
-
-
84856821006
-
Signal transduction by mitochondrial oxidants
-
Finkel T. Signal transduction by mitochondrial oxidants. J. Biol. Chem. 2012, 287(7):4434-4440.
-
(2012)
J. Biol. Chem.
, vol.287
, Issue.7
, pp. 4434-4440
-
-
Finkel, T.1
-
242
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
Chandel N.S., et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95(20):11715-11720.
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, Issue.20
, pp. 11715-11720
-
-
Chandel, N.S.1
-
243
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R., et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26(7):1749-1760.
-
(2007)
EMBO J.
, vol.26
, Issue.7
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
-
244
-
-
21744450416
-
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
-
Adlam V.J., et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005, 19(9):1088-1095.
-
(2005)
FASEB J.
, vol.19
, Issue.9
, pp. 1088-1095
-
-
Adlam, V.J.1
-
245
-
-
84930939650
-
Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ
-
Dare A.J., et al. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015, 5:163-168.
-
(2015)
Redox Biol.
, vol.5
, pp. 163-168
-
-
Dare, A.J.1
-
246
-
-
84885015610
-
Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells
-
Zhao W.Y., et al. Mitochondria-targeted antioxidant peptide SS31 prevents hypoxia/reoxygenation-induced apoptosis by down-regulating p66Shc in renal tubular epithelial cells. Cell. Physiol. Biochem. 2013, 32(3):591-600.
-
(2013)
Cell. Physiol. Biochem.
, vol.32
, Issue.3
, pp. 591-600
-
-
Zhao, W.Y.1
-
247
-
-
84918570887
-
Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats
-
Dai W., et al. Bendavia, a mitochondria-targeting peptide, improves postinfarction cardiac function, prevents adverse left ventricular remodeling, and restores mitochondria-related gene expression in rats. J. Cardiovasc. Pharmacol. 2014, 64(6):543-553.
-
(2014)
J. Cardiovasc. Pharmacol.
, vol.64
, Issue.6
, pp. 543-553
-
-
Dai, W.1
-
248
-
-
84925883323
-
Mitochondria-targeted therapies for acute kidney injury
-
Tabara L.C., et al. Mitochondria-targeted therapies for acute kidney injury. Expert Rev. Mol. Med. 2014, 16:e13.
-
(2014)
Expert Rev. Mol. Med.
, vol.16
, pp. e13
-
-
Tabara, L.C.1
-
249
-
-
77952236126
-
Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury
-
Ong S.B., et al. Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 2010, 121(18):2012-2022.
-
(2010)
Circulation
, vol.121
, Issue.18
, pp. 2012-2022
-
-
Ong, S.B.1
-
250
-
-
84876312885
-
A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity
-
Qi X., et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J. Cell Sci. 2013, 126(3):789-802.
-
(2013)
J. Cell Sci.
, vol.126
, Issue.3
, pp. 789-802
-
-
Qi, X.1
-
251
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer G., Marino G., Levine B. Autophagy and the integrated stress response. Mol. Cell 2010, 40(2):280-293.
-
(2010)
Mol. Cell
, vol.40
, Issue.2
, pp. 280-293
-
-
Kroemer, G.1
Marino, G.2
Levine, B.3
-
252
-
-
84913546616
-
Mitophagy is required for acute cardioprotection by simvastatin
-
Andres A.M., et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 2014, 21(14):1960-1973.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, Issue.14
, pp. 1960-1973
-
-
Andres, A.M.1
-
253
-
-
84897444272
-
2 generation: redox signaling and oxidative stress
-
2 generation: redox signaling and oxidative stress. J. Biol. Chem. 2014, 289(13):8735-8741.
-
(2014)
J. Biol. Chem.
, vol.289
, Issue.13
, pp. 8735-8741
-
-
Sies, H.1
|