-
1
-
-
0030978351
-
Betacatenin is a target for the ubiquitin-proteasome pathway
-
Aberle, H., A. Bauer, J. Stappert, A. Kispert, and R. Kemler. 1997. Betacatenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797-3804.
-
(1997)
EMBO J.
, vol.16
, pp. 3797-3804
-
-
Aberle, H.1
Bauer, A.2
Stappert, J.3
Kispert, A.4
Kemler, R.5
-
2
-
-
40549121572
-
Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells
-
Apopa, P. L., X. He, and Q. Ma. 2008. Phosphorylation of Nrf2 in the transcription activation domain by casein kinase 2 (CK2) is critical for the nuclear translocation and transcription activation function of Nrf2 in IMR-32 neuroblastoma cells. J. Biochem. Mol. Toxicol. 22:63-76.
-
(2008)
J. Biochem. Mol. Toxicol.
, vol.22
, pp. 63-76
-
-
Apopa, P.L.1
He, X.2
Ma, Q.3
-
3
-
-
58849110632
-
The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease
-
Calkins, M. J., et al. 2009. The Nrf2/ARE pathway as a potential therapeutic target in neurodegenerative disease. Antioxid. Redox Signal. 11:497-508.
-
(2009)
Antioxid. Redox Signal.
, vol.11
, pp. 497-508
-
-
Calkins, M.J.1
-
5
-
-
4544294365
-
The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase
-
Cullinan, S. B., J. D. Gordan, J. Jin, J. W. Harper, and J. A. Diehl. 2004. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol. Cell. Biol. 24:8477-8486.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 8477-8486
-
-
Cullinan, S.B.1
Gordan, J.D.2
Jin, J.3
Harper, J.W.4
Diehl, J.A.5
-
6
-
-
0141752795
-
Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival
-
Cullinan, S. B., et al. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23:7198-7209.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7198-7209
-
-
Cullinan, S.B.1
-
7
-
-
34347350211
-
Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization
-
Ding, Q., et al. 2007. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell. Biol. 27:4006-4017.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 4006-4017
-
-
Ding, Q.1
-
8
-
-
0037015035
-
Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants
-
Dinkova-Kostova, A. T., et al. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. U. S. A. 99:11908-11913.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 11908-11913
-
-
Dinkova-Kostova, A.T.1
-
9
-
-
0030695025
-
A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p
-
Feldman, R. M., C. C. Correll, K. B. Kaplan, and R. J. Deshaies. 1997. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221-230.
-
(1997)
Cell
, vol.91
, pp. 221-230
-
-
Feldman, R.M.1
Correll, C.C.2
Kaplan, K.B.3
Deshaies, R.J.4
-
10
-
-
11144264663
-
BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase
-
Furukawa, M., and Y. Xiong. 2005. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol. Cell. Biol. 25:162-171.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 162-171
-
-
Furukawa, M.1
Xiong, Y.2
-
11
-
-
15844366960
-
The FWD1/beta-TrCP-mediated degradation pathway establishes a 'turning off switch' of a Cdc42 guanine nucleotide exchange factor, FGD1
-
Hayakawa, M., H. Kitagawa, K. Miyazawa, M. Kitagawa, and K. Kikugawa. 2005. The FWD1/beta-TrCP-mediated degradation pathway establishes a 'turning off switch' of a Cdc42 guanine nucleotide exchange factor, FGD1. Genes Cells 10:241-251.
-
(2005)
Genes Cells
, vol.10
, pp. 241-251
-
-
Hayakawa, M.1
Kitagawa, H.2
Miyazawa, K.3
Kitagawa, M.4
Kikugawa, K.5
-
12
-
-
41149122298
-
FWD1/beta-TrCP -mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1
-
DOI 10.1111/j.1365-2443.2008.01168.x
-
Hayakawa, M., et al. 2008. Novel insights into FGD3, a putative GEF for Cdc42, that undergoes SCF(FWD1/beta-TrCP)-mediated proteasomal degradation analogous to that of its homologue FGD1 but regulates cell morphology and motility differently from FGD1. Genes Cells 13:329-342. (Pubitemid 351437020)
-
(2008)
Genes to Cells
, vol.13
, Issue.4
, pp. 329-342
-
-
Hayakawa, M.1
Matsushima, M.2
Hagiwara, H.3
Oshima, T.4
Fujino, T.5
Ando, K.6
Kikugawa, K.7
Tanaka, H.8
Miyazawa, K.9
Kitagawa, M.10
-
13
-
-
63549121490
-
NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer
-
Hayes, J. D., and M. McMahon. 2009. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem. Sci. 34:176-188.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 176-188
-
-
Hayes, J.D.1
McMahon, M.2
-
14
-
-
66149168685
-
Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer
-
Homma, S., et al. 2009. Nrf2 enhances cell proliferation and resistance to anticancer drugs in human lung cancer. Clin. Cancer Res. 15:3423-3432.
-
(2009)
Clin. Cancer Res.
, vol.15
, pp. 3423-3432
-
-
Homma, S.1
-
15
-
-
0033731182
-
Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2
-
Huang, H. C., T. Nguyen, and C. B. Pickett. 2000. Regulation of the antioxidant response element by protein kinase C-mediated phosphorylation of NF-E2-related factor 2. Proc. Natl. Acad. Sci. U. S. A. 97:12475-12480.
-
(2000)
Proc. Natl. Acad. Sci. U. S. A.
, vol.97
, pp. 12475-12480
-
-
Huang, H.C.1
Nguyen, T.2
Pickett, C.B.3
-
17
-
-
47949083810
-
The transcription factor Nrf2 is a therapeutic target against brain inflammation
-
Innamorato, N. G., et al. 2008. The transcription factor Nrf2 is a therapeutic target against brain inflammation. J. Immunol. 181:680-689.
-
(2008)
J. Immunol.
, vol.181
, pp. 680-689
-
-
Innamorato, N.G.1
-
18
-
-
33744953050
-
Phosphorylation of tyrosine 568 controls nuclear export of Nrf2
-
Jain, A. K., and A. K. Jaiswal. 2006. Phosphorylation of tyrosine 568 controls nuclear export of Nrf2. J. Biol. Chem. 281:12132-12142.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 12132-12142
-
-
Jain, A.K.1
Jaiswal, A.K.2
-
19
-
-
37349094929
-
GSK-3 beta Targets Cdc25A for Ubiquitin-Mediated Proteolysis, and GSK-3 beta Inactivation Correlates with Cdc25A Overproduction in Human Cancers
-
DOI 10.1016/j.ccr.2007.12.002, PII S1535610807003716
-
Kang, T., et al. 2008. GSK-3 beta targets Cdc25A for ubiquitin-mediated proteolysis, and GSK-3 beta inactivation correlates with Cdc25A overproduction in human cancers. Cancer Cell 13:36-47. (Pubitemid 350309739)
-
(2008)
Cancer Cell
, vol.13
, Issue.1
, pp. 36-47
-
-
Kang, T.1
Wei, Y.2
Honaker, Y.3
Yamaguchi, H.4
Appella, E.5
Hung, M.-C.6
Piwnica-Worms, H.7
-
20
-
-
3543008924
-
Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2
-
Kobayashi, A., et al. 2004. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol. Cell. Biol. 24:7130-7139.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 7130-7139
-
-
Kobayashi, A.1
-
21
-
-
33748052967
-
Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species
-
Kobayashi, M., and M. Yamamoto. 2006. Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul. 46:113-140.
-
(2006)
Adv. Enzyme Regul.
, vol.46
, pp. 113-140
-
-
Kobayashi, M.1
Yamamoto, M.2
-
22
-
-
0033611567
-
The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin
-
DOI 10.1038/sj.onc.1202653
-
Latres, E., D. S. Chiaur, and M. Pagano. 1999. The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. Oncogene 18:849-854. (Pubitemid 29086261)
-
(1999)
Oncogene
, vol.18
, Issue.4
, pp. 849-854
-
-
Latres, E.1
Chiaur, D.S.2
Pagano, M.3
-
23
-
-
71949128142
-
Beta-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt
-
Li, X., J. Liu, and T. Gao. 2009. Beta-TrCP-mediated ubiquitination and degradation of PHLPP1 are negatively regulated by Akt. Mol. Cell. Biol. 29:6192-6205.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 6192-6205
-
-
Li, X.1
Liu, J.2
Gao, T.3
-
24
-
-
46749100628
-
UV-induced degradation of securin is mediated by SKP1-CUL1-betaTrCP E3 ubiquitin ligase
-
DOI 10.1242/jcs.020552
-
Limon-Mortes, M. C., et al. 2008. UV-induced degradation of securin is mediated by SKP1-CUL1-beta TrCP E3 ubiquitin ligase. J. Cell Sci. 121: 1825-1831. (Pubitemid 351943375)
-
(2008)
Journal of Cell Science
, vol.121
, Issue.11
, pp. 1825-1831
-
-
Limon-Mortes, M.C.1
Mora-Santos, M.2
EspinaA, A.3
Pintor-Toro, J.A.4
Lopez-Roman, A.5
Tortolero, M.6
Romero, F.7
-
25
-
-
77649271223
-
The rise of antioxidant signaling - The evolution and hormetic actions of Nrf2
-
Maher, J., and M. Yamamoto. 2010. The rise of antioxidant signaling - the evolution and hormetic actions of Nrf2. Toxicol. Appl. Pharmacol. 244:4-15.
-
(2010)
Toxicol. Appl. Pharmacol.
, vol.244
, pp. 4-15
-
-
Maher, J.1
Yamamoto, M.2
-
26
-
-
1542335553
-
Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol
-
Martin, D., et al. 2004. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 279:8919-8929.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 8919-8929
-
-
Martin, D.1
-
27
-
-
0037044838
-
Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B
-
Martin, D., M. Salinas, N. Fujita, T. Tsuruo, and A. Cuadrado. 2002. Ceramide and reactive oxygen species generated by H2O2 induce caspase-3-independent degradation of Akt/protein kinase B. J. Biol. Chem. 277:42943-42952.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42943-42952
-
-
Martin, D.1
Salinas, M.2
Fujita, N.3
Tsuruo, T.4
Cuadrado, A.5
-
28
-
-
33747728194
-
Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: A two-site interaction model for the Nrf2-Keap1 complex
-
McMahon, M., N. Thomas, K. Itoh, M. Yamamoto, and J. D. Hayes. 2006. Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a "tethering" mechanism: a two-site interaction model for the Nrf2-Keap1 complex. J. Biol. Chem. 281:24756-24768.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 24756-24768
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
Yamamoto, M.4
Hayes, J.D.5
-
29
-
-
3843104763
-
Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron
-
McMahon, M., N. Thomas, K. Itoh, M. Yamamoto, and J. D. Hayes. 2004. Redox-regulated turnover of Nrf2 is determined by at least two separate protein domains, the redox-sensitive Neh2 degron and the redox-insensitive Neh6 degron. J. Biol. Chem. 279:31556-31567.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 31556-31567
-
-
McMahon, M.1
Thomas, N.2
Itoh, K.3
Yamamoto, M.4
Hayes, J.D.5
-
30
-
-
4344619713
-
Pharmacological inhibitors of glycogen synthase kinase 3
-
Meijer, L., M. Flajolet, and P. Greengard. 2004. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol. Sci. 25:471-480.
-
(2004)
Trends Pharmacol. Sci.
, vol.25
, pp. 471-480
-
-
Meijer, L.1
Flajolet, M.2
Greengard, P.3
-
31
-
-
34250027624
-
Beta-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation
-
DOI 10.1182/blood-2006-10-055350
-
Meyer, L., et al. 2007. Beta-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation. Blood 109:5215-5222. (Pubitemid 46890539)
-
(2007)
Blood
, vol.109
, Issue.12
, pp. 5215-5222
-
-
Meyer, L.1
Deau, B.D.2
Forejtnikova, H.3
Dumenil, D.4
Margottin-Goguet, F.5
Lacombe, C.6
Mayeux, P.7
Verdier, F.8
-
32
-
-
34548577395
-
A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity
-
Nioi, P., and T. Nguyen. 2007. A mutation of Keap1 found in breast cancer impairs its ability to repress Nrf2 activity. Biochem. Biophys. Res. Commun. 362:816-821.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.362
, pp. 816-821
-
-
Nioi, P.1
Nguyen, T.2
-
33
-
-
33646270662
-
Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation
-
Pan, Y., C. B. Bai, A. L. Joyner, and B. Wang. 2006. Sonic hedgehog signaling regulates Gli2 transcriptional activity by suppressing its processing and degradation. Mol. Cell. Biol. 26:3365-3377.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 3365-3377
-
-
Pan, Y.1
Bai, C.B.2
Joyner, A.L.3
Wang, B.4
-
34
-
-
0032577899
-
WNT-1 and HGF regulate GSK3 beta activity and beta-catenin signaling in mammary epithelial cells
-
Papkoff, J., and M. Aikawa. 1998. WNT-1 and HGF regulate GSK3 beta activity and beta-catenin signaling in mammary epithelial cells. Biochem. Biophys. Res. Commun. 247:851-858.
-
(1998)
Biochem. Biophys. Res. Commun.
, vol.247
, pp. 851-858
-
-
Papkoff, J.1
Aikawa, M.2
-
35
-
-
27644546219
-
In vitro reconstitution of SCF substrate ubiquitination with purified proteins
-
Petroski, M. D., and R. J. Deshaies. 2005. In vitro reconstitution of SCF substrate ubiquitination with purified proteins. Methods Enzymol. 398:143-158.
-
(2005)
Methods Enzymol.
, vol.398
, pp. 143-158
-
-
Petroski, M.D.1
Deshaies, R.J.2
-
36
-
-
34248593492
-
Molecular mechanism of human Nrf2 activation and degradation: Role of sequential phosphorylation by protein kinase CK2
-
Pi, J., et al. 2007. Molecular mechanism of human Nrf2 activation and degradation: role of sequential phosphorylation by protein kinase CK2. Free Radic. Biol. Med. 42:1797-1806.
-
(2007)
Free Radic. Biol. Med.
, vol.42
, pp. 1797-1806
-
-
Pi, J.1
-
37
-
-
49749117926
-
Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death
-
Rojo, A. I., et al. 2008. Functional interference between glycogen synthase kinase-3 beta and the transcription factor Nrf2 in protection against kainate-induced hippocampal cell death. Mol. Cell Neurosci. 39:125-132.
-
(2008)
Mol. Cell Neurosci.
, vol.39
, pp. 125-132
-
-
Rojo, A.I.1
-
38
-
-
41149134840
-
GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: Relevance to exposure of neuronal cells to oxidative stress
-
DOI 10.1111/j.1471-4159.2007.05124.x
-
Rojo, A. I., M. R. Sagarra, and A. Cuadrado. 2008. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J. Neurochem. 105:192-202. (Pubitemid 351441636)
-
(2008)
Journal of Neurochemistry
, vol.105
, Issue.1
, pp. 192-202
-
-
Rojo, A.I.1
Sagarra, M.R.D.2
Cuadrado, A.3
-
39
-
-
33744950387
-
Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2
-
Salazar, M., A. I. Rojo, D. Velasco, R. M. de Sagarra, and A. Cuadrado. 2006. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J. Biol. Chem. 281:14841-14851.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 14841-14851
-
-
Salazar, M.1
Rojo, A.I.2
Velasco, D.3
De Sagarra, R.M.4
Cuadrado, A.5
-
40
-
-
0342980927
-
Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells
-
Salinas, M., R. Lopez-Valdaliso, D. Martin, A. Alvarez, and A. Cuadrado. 2000. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol. Cell Neurosci. 15:156-169.
-
(2000)
Mol. Cell Neurosci.
, vol.15
, pp. 156-169
-
-
Salinas, M.1
Lopez-Valdaliso, R.2
Martin, D.3
Alvarez, A.4
Cuadrado, A.5
-
41
-
-
51649130168
-
Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy
-
Shibata, T., et al. 2008. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105:13568-13573.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 13568-13573
-
-
Shibata, T.1
-
42
-
-
0030662523
-
F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex
-
Skowyra, D., K. L. Craig, M. Tyers, S. J. Elledge, and J. W. Harper. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209-219.
-
(1997)
Cell
, vol.91
, pp. 209-219
-
-
Skowyra, D.1
Craig, K.L.2
Tyers, M.3
Elledge, S.J.4
Harper, J.W.5
-
43
-
-
1542723493
-
Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid
-
Suh, J. H., et al. 2004. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc. Natl. Acad. Sci. U. S. A. 101:3381-3386.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 3381-3386
-
-
Suh, J.H.1
-
44
-
-
68749120854
-
Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response
-
Sun, Z., Z. Huang, and D. D. Zhang. 2009. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PloS One 4:e6588.
-
(2009)
PloS One
, vol.4
-
-
Sun, Z.1
Huang, Z.2
Zhang, D.D.3
-
45
-
-
0028027308
-
Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain
-
DOI 10.1016/S0092-8674(94)90502-9
-
Treier, M., L. M. Staszewski, and D. Bohmann. 1994. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787-798. (Pubitemid 24294454)
-
(1994)
Cell
, vol.78
, Issue.5
, pp. 787-798
-
-
Treier, M.1
Staszewski, L.M.2
Bohmann, D.3
-
46
-
-
50249171794
-
Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway
-
Varghese, B., et al. 2008. Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol. Cell. Biol. 28:5275-5287.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 5275-5287
-
-
Varghese, B.1
-
47
-
-
1242296811
-
Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers
-
Wakabayashi, N., et al. 2004. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. U. S. A. 101:2040-2045.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 2040-2045
-
-
Wakabayashi, N.1
-
48
-
-
30444437000
-
Evidence for the direct involvement of βTrCP in Gli3 protein processing
-
Wang, B., and Y. Li. 2006. Evidence for the direct involvement of βTrCP in Gli3 protein processing. Proc. Natl. Acad. Sci. U. S. A. 103:33-38.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 33-38
-
-
Wang, B.1
Li, Y.2
-
50
-
-
0242580049
-
Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress
-
Zhang, D. D., and M. Hannink. 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23: 8137-8151.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8137-8151
-
-
Zhang, D.D.1
Hannink, M.2
-
51
-
-
10044228504
-
Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex
-
Zhang, D. D., S. C. Lo, J. V. Cross, D. J. Templeton, and M. Hannink. 2004. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol. Cell. Biol. 24:10941-10953.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 10941-10953
-
-
Zhang, D.D.1
Lo, S.C.2
Cross, J.V.3
Templeton, D.J.4
Hannink, M.5
-
52
-
-
73549095761
-
A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP)
-
Zhao, B., L. Li, K. Tumaneng, C. Y. Wang, and K. L. Guan. 2010. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 24:72-85.
-
(2010)
Genes Dev.
, vol.24
, pp. 72-85
-
-
Zhao, B.1
Li, L.2
Tumaneng, K.3
Wang, C.Y.4
Guan, K.L.5
-
53
-
-
68349155690
-
Nrf2 promotes neuronal cell differentiation
-
Zhao, F., et al. 2009. Nrf2 promotes neuronal cell differentiation. Free Radic. Biol. Med. 47:867-879.
-
(2009)
Free Radic. Biol. Med.
, vol.47
, pp. 867-879
-
-
Zhao, F.1
-
54
-
-
5444269904
-
Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition
-
Zhou, B. P., et al. 2004. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell biol. 6:931-940.
-
(2004)
Nat. Cell Biol.
, vol.6
, pp. 931-940
-
-
Zhou, B.P.1
-
55
-
-
0036774807
-
Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development
-
DOI 10.1016/S1534-5807(02)00270-8
-
Zhu, Z., and M. Kirschner. 2002. Regulated proteolysis of Xom mediates dorsoventral pattern formation during early Xenopus development. Dev. Cell 3:557-568. (Pubitemid 35252264)
-
(2002)
Developmental Cell
, vol.3
, Issue.4
, pp. 557-568
-
-
Zhu, Z.1
Kirschner, M.2
|