-
1
-
-
33745561205
-
An introduction to variable, and feature selection
-
Jan
-
I. Guyon, and A. Elisseeff, "An introduction to variable, and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
2
-
-
17044405923
-
Toward integrating feature selection algorithms for classification, and clustering
-
Apr
-
H. Liu, and L. Yu, "Toward integrating feature selection algorithms for classification, and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
3
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
4
-
-
84889672040
-
Feature selection for clustering: A review
-
C. C. Aggarwal, and C. K. Reddy, Eds. Boca Raton, FL, USA CRC Press
-
S. Alelyani, J. Tang, and H. Liu, "Feature selection for clustering: A review," in Data Clustering: Algorithms, and Applications, C. C. Aggarwal, and C. K. Reddy, Eds. Boca Raton, FL, USA: CRC Press, 2013
-
(2013)
Data Clustering: Algorithms, and Applications
-
-
Alelyani, S.1
Tang, J.2
Liu, H.3
-
5
-
-
84923766456
-
Feature selection for classification: A review
-
C. C. Aggarwal, Ed. Boca Raton, FL, USA CRC Press
-
J. Tang, S. Alelyani, and H. Liu, "Feature selection for classification: A review," in Data Classification: Algorithms, and Applications, C. C. Aggarwal, Ed. Boca Raton, FL, USA: CRC Press, 2013
-
(2013)
Data Classification: Algorithms, and Applications
-
-
Tang, J.1
Alelyani, S.2
Liu, H.3
-
6
-
-
84921784324
-
An evaluation of classifier-specific filter measure performance for feature selection
-
Freeman, D. Kulić, and O. Basir
-
C. Freeman, D. Kulić, and O. Basir, "An evaluation of classifier-specific filter measure performance for feature selection," Pattern Recognit., vol. 48, no. 5, pp. 1812-1826, 2015
-
(2015)
Pattern Recognit
, vol.48
, Issue.5
, pp. 1812-1826
-
-
-
7
-
-
83755163963
-
The influence of feature selection methods on accuracy, stability, and interpretability of molecular signatures
-
A.-C. Haury, P. Gestraud, and J.-P. Vert, "The influence of feature selection methods on accuracy, stability, and interpretability of molecular signatures," PLoS ONE, vol. 6, no. 12, p. e28210, 2011
-
(2011)
Plos One
, vol.6
, Issue.12
, pp. e28210
-
-
Haury, A.-C.1
Gestraud, P.2
Vert, J.-P.3
-
8
-
-
33746424489
-
Asymmetric bagging, and random subspace for support vector machines-based relevance feedback in image retrieval
-
Jul
-
D. Tao, X. Tang, X. Li, and X. Wu, "Asymmetric bagging, and random subspace for support vector machines-based relevance feedback in image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1088-1099, Jul. 2006
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
Wu, X.4
-
9
-
-
0031185845
-
Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
-
Jul
-
P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.19
, Issue.7
, pp. 711-720
-
-
Belhumeur, P.N.1
Hespanha, J.P.2
Kriegman, D.3
-
10
-
-
36048992886
-
General tensor discriminant analysis, and Gabor features for gait recognition
-
Oct
-
D. Tao, X. Li, X. Wu, and S. J. Maybank, "General tensor discriminant analysis, and Gabor features for gait recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700-1715, Oct. 2007
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.29
, Issue.10
, pp. 1700-1715
-
-
Tao, D.1
Li, X.2
Wu, X.3
Maybank, S.J.4
-
11
-
-
84939132379
-
Manifold ranking-based matrix factorization for saliency detection
-
to be published
-
D. Tao, J. Cheng, M. Song, and X. Lin, "Manifold ranking-based matrix factorization for saliency detection," IEEE Trans. Neural Netw. Learn. Syst., to be published
-
IEEE Trans. Neural Netw. Learn. Syst
-
-
Tao, D.1
Cheng, J.2
Song, M.3
Lin, X.4
-
12
-
-
0003922190
-
-
2nd ed. Hoboken, NJ, USA Wiley
-
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. Hoboken, NJ, USA: Wiley, 2001
-
(2001)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
13
-
-
80053144252
-
Generalized Fisher score for feature selection
-
Q. Gu, Z. Li, and J. Han, "Generalized Fisher score for feature selection," in Proc. 27th Conf. Uncertainty Artif. Intell., 2011, pp. 266-273
-
(2011)
Proc. 27th Conf. Uncertainty Artif. Intell
, pp. 266-273
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
14
-
-
84875252662
-
Sparse representation, and learning in visual recognition: Theory, and applications
-
H. Cheng, Z. Liu, L. Yang, and X. Chen, "Sparse representation, and learning in visual recognition: Theory, and applications," Signal Process., vol. 93, no. 6, pp. 1408-1425, 2013
-
(2013)
Signal Process
, vol.93
, Issue.6
, pp. 1408-1425
-
-
Cheng, H.1
Liu, Z.2
Yang, L.3
Chen, X.4
-
17
-
-
84916882621
-
Deep sparse feature selection for computer aided endoscopy diagnosis
-
Y. Cong, S. Wang, J. Liu, J. Cao, Y. Yang, and J. Luo, "Deep sparse feature selection for computer aided endoscopy diagnosis," Pattern Recognit., vol. 48, no. 3, pp. 907-917, 2015
-
(2015)
Pattern Recognit
, vol.48
, Issue.3
, pp. 907-917
-
-
Cong, Y.1
Wang, S.2
Liu, J.3
Cao, J.4
Yang, Y.5
Luo, J.6
-
18
-
-
84921804171
-
Sparse discriminative feature selection
-
H. Yan, and J. Yang, "Sparse discriminative feature selection," Pattern Recognit., vol. 48, no. 5, pp. 1827-1835, 2015
-
(2015)
Pattern Recognit
, vol.48
, Issue.5
, pp. 1827-1835
-
-
Yan, H.1
Yang, J.2
-
19
-
-
84911457687
-
Matrix-similarity based loss function, and feature selection for Alzheimer's disease diagnosis
-
Jun
-
X. Zhu, H.-I. Suk, and D. Shen, "Matrix-similarity based loss function, and feature selection for Alzheimer's disease diagnosis," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3089-3096
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3089-3096
-
-
Zhu, X.1
Suk, H.-I.2
Shen, D.3
-
20
-
-
84925439254
-
Efficient nonconvex sparse group feature selection via continuous, and discrete optimization
-
Jul
-
S. Xiang, X. Shen, and J. Ye, "Efficient nonconvex sparse group feature selection via continuous, and discrete optimization," Artif. Intell., vol. 224, pp. 28-50, Jul. 2015
-
(2015)
Artif. Intell
, vol.224
, pp. 28-50
-
-
Xiang, S.1
Shen, X.2
Ye, J.3
-
21
-
-
84976223503
-
Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint
-
J. Liu, J. Ye, and R. Fujimaki, "Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint," in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 503-511
-
(2014)
Proc. 31st Int. Conf. Mach. Learn
, pp. 503-511
-
-
Liu, J.1
Ye, J.2
Fujimaki, R.3
-
22
-
-
84856647878
-
Informative feature selection for object recognition via sparse PCA
-
Nov
-
N. Naikal, A. Y. Yang, and S. S. Sastry, "Informative feature selection for object recognition via sparse PCA," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 818-825
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 818-825
-
-
Naikal, N.1
Yang, A.Y.2
Sastry, S.S.3
-
23
-
-
77949425006
-
Clustering, and feature selection using sparse principal component analysis
-
R. Luss, and A. d'Aspremont, "Clustering, and feature selection using sparse principal component analysis," Optim. Eng., vol. 11, no. 1, pp. 145-157, 2010
-
(2010)
Optim. Eng
, vol.11
, Issue.1
, pp. 145-157
-
-
Luss, R.1
D'Aspremont, A.2
-
24
-
-
63049089490
-
A regularized framework for feature selection in face detection, and authentication
-
A. Destrero, C. De Mol, F. Odone, and A. Verri, "A regularized framework for feature selection in face detection, and authentication," Int. J. Comput. Vis., vol. 83, no. 2, pp. 164-177, 2009
-
(2009)
Int. J. Comput. Vis
, vol.83
, Issue.2
, pp. 164-177
-
-
Destrero, A.1
De Mol, C.2
Odone, F.3
Verri, A.4
-
25
-
-
58049206648
-
A sparsity-enforcing method for learning face features
-
Jan
-
A. Destrero, C. De Mol, F. Odone, and A. Verri, "A sparsity-enforcing method for learning face features," IEEE Trans. Image Process., vol. 18, no. 1, pp. 188-201, Jan. 2009
-
(2009)
IEEE Trans. Image Process
, vol.18
, Issue.1
, pp. 188-201
-
-
Destrero, A.1
De Mol, C.2
Odone, F.3
Verri, A.4
-
26
-
-
85135939782
-
Efficient, and robust feature selection via joint l2,1-norms minimization
-
F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient, and robust feature selection via joint l2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
27
-
-
84863418938
-
Discriminant sparse neighborhood preserving embedding for face recognition
-
J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, and S. Ji, "Discriminant sparse neighborhood preserving embedding for face recognition," Pattern Recognit., vol. 45, no. 8, pp. 2884-2893, 2012
-
(2012)
Pattern Recognit
, vol.45
, Issue.8
, pp. 2884-2893
-
-
Gui, J.1
Sun, Z.2
Jia, W.3
Hu, R.4
Lei, Y.5
Ji, S.6
-
28
-
-
84871604261
-
Structured sparsity through convex optimization
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Structured sparsity through convex optimization," Statist. Sci., vol. 27, no. 4, pp. 450-468, 2012
-
(2012)
Statist. Sci
, vol.27
, Issue.4
, pp. 450-468
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
29
-
-
84969759651
-
A nearly-linear time framework for graph-structured sparsity
-
C. Hegde, P. Indyk, and L. Schmidt, "A nearly-linear time framework for graph-structured sparsity," in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 928-937
-
(2015)
Proc. 32nd Int. Conf. Mach. Learn
, pp. 928-937
-
-
Hegde, C.1
Indyk, P.2
Schmidt, L.3
-
30
-
-
84949805508
-
A soft version of predicate invention based on structured sparsity
-
W. Y. Wang, K. Mazaitis, and W.W. Cohen, "A soft version of predicate invention based on structured sparsity," in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 3918-3924
-
(2015)
Proc. 24th Int. Joint Conf. Artif. Intell
, pp. 3918-3924
-
-
Wang, W.Y.1
Mazaitis, K.2
Cohen, W.W.3
-
31
-
-
84860682231
-
A multi-stage framework for dantzig selector, and lasso
-
J. Liu, P. Wonka, and J. Ye, "A multi-stage framework for Dantzig selector, and Lasso," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1189-1219, 2012
-
(2012)
J. Mach. Learn. Res
, vol.13
, Issue.1
, pp. 1189-1219
-
-
Liu, J.1
Wonka, P.2
Ye, J.3
-
32
-
-
77952717202
-
Sparse representation for computer vision, and pattern recognition
-
Jun
-
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, "Sparse representation for computer vision, and pattern recognition," Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010
-
(2010)
Proc. IEEE
, vol.98
, Issue.6
, pp. 1031-1044
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
-
33
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
Jan
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Optimization with sparsity-inducing penalties," Found. Trends Mach. Learn., vol. 4, no. 1, pp. 1-106, Jan. 2012
-
(2012)
Found. Trends Mach. Learn
, vol.4
, Issue.1
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
35
-
-
84947957519
-
-
Cambridge MA USA MIT Press
-
I. Rish, G. A. Cecchi, A. Lozano, and A. Niculescu-Mizil, Practical Applications of Sparse Modeling. Cambridge, MA, USA: MIT Press, 2014
-
(2014)
Practical Applications of Sparse Modeling
-
-
Rish, I.1
Cecchi, G.A.2
Lozano, A.3
Niculescu-Mizil, A.4
-
36
-
-
84959851975
-
A survey of sparse representation: Algorithms, and applications
-
May
-
Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, "A survey of sparse representation: Algorithms, and applications," IEEE Access, vol. 3, pp. 490-530, May 2015
-
(2015)
IEEE Access
, vol.3
, pp. 490-530
-
-
Zhang, Z.1
Xu, Y.2
Yang, J.3
Li, X.4
Zhang, D.5
-
37
-
-
85194972808
-
Regression shrinkage, and selection via the Lasso
-
R. Tibshirani, "Regression shrinkage, and selection via the Lasso," J. Roy. Statist. Soc. B (Methodol.), vol. 58, no. 1, pp. 267-288, 1996
-
(1996)
J. Roy. Statist. Soc. B (Methodol
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
38
-
-
85027920848
-
FREL: A stable feature selection algorithm
-
Jul
-
Y. Li, J. Si, G. Zhou, S. Huang, and S. Chen, "FREL: A stable feature selection algorithm," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 7, pp. 1388-1402, Jul. 2015
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst
, vol.26
, Issue.7
, pp. 1388-1402
-
-
Li, Y.1
Si, J.2
Zhou, G.3
Huang, S.4
Chen, S.5
-
39
-
-
33646365077
-
For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution
-
D. L. Donoho, "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797-829, 2006
-
(2006)
Commun. Pure Appl. Math
, vol.59
, Issue.6
, pp. 797-829
-
-
Donoho, D.L.1
-
40
-
-
38149136596
-
A regularized approach to feature selection for face detection
-
A. Destrero, C. De Mol, F. Odone, and A. Verri, "A regularized approach to feature selection for face detection," in Proc. 8th Asian Conf. Comput. Vis., 2007, pp. 881-890
-
(2007)
Proc. 8th Asian Conf. Comput. Vis
, pp. 881-890
-
-
Destrero, A.1
De Mol, C.2
Odone, F.3
Verri, A.4
-
41
-
-
33846114377
-
The adaptive Lasso, and its oracle properties
-
Dec
-
H. Zou, "The adaptive Lasso, and its oracle properties," J. Amer. Statist. Assoc., vol. 101, no. 476, pp. 1418-1429, Dec. 2006
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
-
42
-
-
12844266177
-
Sparsity, and smoothness via the fused Lasso
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, "Sparsity, and smoothness via the fused Lasso," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 67, no. 1, pp. 91-108, 2005
-
(2005)
J. Roy. Statist. Soc. B (Statist. Methodol
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
43
-
-
84954165159
-
Linkage: An approach for comprehensive risk prediction for care management
-
Z. Sun, F. Wang, and J. Hu, "LINKAGE: An approach for comprehensive risk prediction for care management," in Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015, pp. 1145-1154
-
(2015)
Proc. 21st ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1145-1154
-
-
Sun, Z.1
Wang, F.2
Hu, J.3
-
44
-
-
84867114870
-
Pairwise fused lasso
-
S. Petry, C. Flexeder, and G. Tutz, "Pairwise fused Lasso," Dept. Statist., Ludwig Maximilian Univ. Munich, Munich, Germany, Tech. Rep. 102, 2011
-
(2011)
Dept. Statist., Ludwig Maximilian Univ. Munich, Munich, Germany, Tech. Rep
, vol.102
-
-
Petry, S.1
Flexeder, C.2
Tutz, G.3
-
45
-
-
49949115667
-
Asymptotic properties of bridge estimators in sparse high-dimensional regression models
-
J. Huang, J. L. Horowitz, and S. Ma, "Asymptotic properties of bridge estimators in sparse high-dimensional regression models," Ann. Statist., vol. 36, no. 2, pp. 587-613, 2008
-
(2008)
Ann. Statist
, vol.36
, Issue.2
, pp. 587-613
-
-
Huang, J.1
Horowitz, J.L.2
Ma, S.3
-
46
-
-
16244401458
-
Regularization, and variable selection via the elastic net
-
H. Zou, and T. Hastie, "Regularization, and variable selection via the elastic net," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 67, no. 2, pp. 301-320, 2005
-
(2005)
J. Roy. Statist. Soc. B (Statist. Methodol
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
47
-
-
33847007697
-
Sparse logistic regression with Lp penalty for biomarker identification
-
Z. Liu, et al., "Sparse logistic regression with Lp penalty for biomarker identification," Statist. Appl. Genet. Molecular Biol., vol. 6, no. 1, pp. 1-20, 2007
-
(2007)
Statist. Appl. Genet. Molecular Biol
, vol.6
, Issue.1
, pp. 1-20
-
-
Liu, Z.1
-
48
-
-
84874561081
-
Robust regularized feature selection for iris recognition via linear programming
-
Nov
-
L. Wang, Z. Sun, and T. Tan, "Robust regularized feature selection for iris recognition via linear programming," in Proc. 21st Int. Conf. Pattern Recognit., Nov. 2012, pp. 3358-3361
-
(2012)
Proc. 21st Int. Conf. Pattern Recognit
, pp. 3358-3361
-
-
Wang, L.1
Sun, Z.2
Tan, T.3
-
49
-
-
84905259141
-
Ordinal feature selection for iris, and palmprint recognition
-
Sep
-
Z. Sun, L. Wang, and T. Tan, "Ordinal feature selection for iris, and palmprint recognition," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3922-3934, Sep. 2014
-
(2014)
IEEE Trans. Image Process
, vol.23
, Issue.9
, pp. 3922-3934
-
-
Sun, Z.1
Wang, L.2
Tan, T.3
-
50
-
-
85162319557
-
Trace Lasso: A trace norm regularization for correlated designs
-
E. Grave, G. Obozinski, and F. Bach, "Trace Lasso: A trace norm regularization for correlated designs," in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2187-2195
-
(2011)
Proc. Adv. Neural Inf. Process. Syst
, pp. 2187-2195
-
-
Grave, E.1
Obozinski, G.2
Bach, F.3
-
51
-
-
84880544524
-
Sparse methods for biomedical data
-
J. Ye, and J. Liu, "Sparse methods for biomedical data," ACM SIGKDD Explorations Newslett., vol. 14, no. 1, pp. 4-15, 2012
-
(2012)
ACM SIGKDD Explorations Newslett
, vol.14
, Issue.1
, pp. 4-15
-
-
Ye, J.1
Liu, J.2
-
52
-
-
33645035051
-
Model selection, and estimation in regression with grouped variables
-
M. Yuan, and Y. Lin, "Model selection, and estimation in regression with grouped variables," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 68, no. 1, pp. 49-67, 2006
-
(2006)
J. Roy. Statist. Soc. B (Statist. Methodol
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
53
-
-
84862808427
-
Automatic image annotation, and retrieval using group sparsity
-
Jun
-
S. Zhang, J. Huang, H. Li, and D. N. Metaxas, "Automatic image annotation, and retrieval using group sparsity," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 3, pp. 838-849, Jun. 2012
-
(2012)
IEEE Trans. Syst., Man, Cybern. B, Cybern
, vol.42
, Issue.3
, pp. 838-849
-
-
Zhang, S.1
Huang, J.2
Li, H.3
Metaxas, D.N.4
-
54
-
-
80555129673
-
Structured variable selection with sparsity-inducing norms
-
Feb
-
R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," J. Mach. Learn. Res., vol. 12, pp. 2777-2824, Feb. 2011
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2777-2824
-
-
Jenatton, R.1
Audibert, J.-Y.2
Bach, F.3
-
55
-
-
84855392809
-
Learning with structured sparsity
-
Jan
-
J. Huang, T. Zhang, and D. Metaxas, "Learning with structured sparsity," J. Mach. Learn. Res., vol. 12, pp. 3371-3412, Jan. 2011
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 3371-3412
-
-
Huang, J.1
Zhang, T.2
Metaxas, D.3
-
56
-
-
77956548668
-
Tree-guided group Lasso for multi-task regression with structured sparsity
-
S. Kim, and E. P. Xing, "Tree-guided group Lasso for multi-task regression with structured sparsity," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 543-550
-
(2010)
Proc. 27th Int. Conf. Mach. Learn
, pp. 543-550
-
-
Kim, S.1
Xing, E.P.2
-
57
-
-
84866037290
-
Modeling disease progression via fused sparse group Lasso
-
J. Zhou, J. Liu, V. A. Narayan, and J. Ye, "Modeling disease progression via fused sparse group Lasso," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 1095-1103
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 1095-1103
-
-
Zhou, J.1
Liu, J.2
Narayan, V.A.3
Ye, J.4
-
58
-
-
84929043171
-
Exclusive feature learning on arbitrary structures via 1,2-norm
-
D. Kong, R. Fujimaki, J. Liu, F. Nie, and C. Ding, "Exclusive feature learning on arbitrary structures via 1,2-norm," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1655-1663
-
(2014)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1655-1663
-
-
Kong, D.1
Fujimaki, R.2
Liu, J.3
Nie, F.4
Ding, C.5
-
59
-
-
85161968806
-
Moreau-Yosida regularization for grouped tree structure learning
-
J. Liu, and J. Ye, "Moreau-Yosida regularization for grouped tree structure learning," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1459-1467
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1459-1467
-
-
Liu, J.1
Ye, J.2
-
60
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction, and data representation
-
M. Belkin, and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction, and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003
-
(2003)
Neural Comput
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
61
-
-
77955405900
-
Feature selection guided by structural information
-
M. Slawski, W. Zu Castell, and G. Tutz, "Feature selection guided by structural information," Ann. Appl. Statist., vol. 4, no. 2, pp. 1056-1080, 2010
-
(2010)
Ann. Appl. Statist
, vol.4
, Issue.2
, pp. 1056-1080
-
-
Slawski, M.1
Zu Castell, W.2
Tutz, G.3
-
62
-
-
70149098541
-
Statistical estimation of correlated genome associations to a quantitative trait network
-
S. Kim, and E. P. Xing, "Statistical estimation of correlated genome associations to a quantitative trait network," PLoS Genet., vol. 5, no. 8, p. e1000587, 2009
-
(2009)
Plos Genet
, vol.5
, Issue.8
, pp. e1000587
-
-
Kim, S.1
Xing, E.P.2
-
63
-
-
84890017055
-
Simultaneous grouping pursuit, and feature selection over an undirected graph
-
Y. Zhu, X. Shen, and W. Pan, "Simultaneous grouping pursuit, and feature selection over an undirected graph," J. Amer. Statist. Assoc., vol. 108, no. 502, pp. 713-725, 2013
-
(2013)
J. Amer. Statist. Assoc
, vol.108
, Issue.502
, pp. 713-725
-
-
Zhu, Y.1
Shen, X.2
Pan, W.3
-
64
-
-
84866045483
-
Feature grouping, and selection over an undirected graph
-
S. Yang, L. Yuan, Y.-C. Lai, X. Shen, P. Wonka, and J. Ye, "Feature grouping, and selection over an undirected graph," in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 922-930
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 922-930
-
-
Yang, S.1
Yuan, L.2
Lai, Y.-C.3
Shen, X.4
Wonka, P.5
Ye, J.6
-
65
-
-
84875452657
-
Online feature selection with streaming features
-
May
-
X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu, "Online feature selection with streaming features," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 5, pp. 1178-1192, May 2013
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.5
, pp. 1178-1192
-
-
Wu, X.1
Yu, K.2
Ding, W.3
Wang, H.4
Zhu, X.5
-
67
-
-
34250776571
-
R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization
-
C. Ding, D. Zhou, X. He, and H. Zha, "R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 281-288
-
(2006)
Proc. 23rd Int. Conf. Mach. Learn
, pp. 281-288
-
-
Ding, C.1
Zhou, D.2
He, X.3
Zha, H.4
-
68
-
-
84864063089
-
Multi-task feature learning
-
A. Argyriou, A. Evgeniou, and M. Pontil, "Multi-task feature learning," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 41-48
-
(2007)
Proc. Adv. Neural Inf. Process. Syst
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, A.2
Pontil, M.3
-
69
-
-
34948865158
-
Multi-task feature selection
-
G. Obozinski, B. Taskar, and M. Jordan, "Multi-task feature selection," Dept. Statist, Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. 743, 2006
-
(2006)
Dept. Statist, Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep
, vol.743
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
70
-
-
84921514115
-
Semisupervised feature selection via spline regression for video semantic recognition
-
Feb
-
Y. Han, Y. Yang, Y. Yan, Z. Ma, N. Sebe, and X. Zhou, "Semisupervised feature selection via spline regression for video semantic recognition," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 252-264, Feb. 2015
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst
, vol.26
, Issue.2
, pp. 252-264
-
-
Han, Y.1
Yang, Y.2
Yan, Y.3
Ma, Z.4
Sebe, N.5
Zhou, X.6
-
71
-
-
79951737392
-
Towards structural sparsity: An explicit 2/0 approach
-
Dec
-
D. Luo, C. Ding, and H. Huang, "Towards structural sparsity: An explicit 2/0 approach," in Proc. IEEE 10th Int. Conf. Data Mining, Dec. 2010, pp. 344-353
-
(2010)
Proc. IEEE 10th Int. Conf. Data Mining
, pp. 344-353
-
-
Luo, D.1
Ding, C.2
Huang, H.3
-
72
-
-
84901189483
-
A unified algorithm for mixed l2, p -minimizations, and its application in feature selection
-
L. Wang, S. Chen, and Y. Wang, "A unified algorithm for mixed l2, p -minimizations, and its application in feature selection," Comput. Optim. Appl., vol. 58, no. 2, pp. 409-421, 2014
-
(2014)
Comput. Optim. Appl
, vol.58
, Issue.2
, pp. 409-421
-
-
Wang, L.1
Chen, S.2
Wang, Y.3
-
73
-
-
84908156166
-
Feature selection at the discrete limit
-
M. Zhang, C. Ding, Y. Zhang, and F. Nie, "Feature selection at the discrete limit," in Proc. 38th AAAI Conf. Artif. Intell., 2014, pp. 1355-1361
-
(2014)
Proc. 38th AAAI Conf. Artif. Intell
, pp. 1355-1361
-
-
Zhang, M.1
Ding, C.2
Zhang, Y.3
Nie, F.4
-
74
-
-
23844431650
-
Simultaneous variable selection
-
B. A. Turlach, W. N. Venables, and S. J. Wright, "Simultaneous variable selection," Technometrics, vol. 47, no. 3, pp. 349-363, 2005
-
(2005)
Technometrics
, vol.47
, Issue.3
, pp. 349-363
-
-
Turlach, B.A.1
Venables, W.N.2
Wright, S.J.3
-
75
-
-
30844461481
-
Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
-
Mar
-
J. A. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Process., vol. 86, no. 3, pp. 589-602, Mar. 2006
-
(2006)
Signal Process
, vol.86
, Issue.3
, pp. 589-602
-
-
Tropp, J.A.1
-
76
-
-
51949094374
-
Transfer learning for image classification with sparse prototype representations
-
Jun
-
A. Quattoni, M. Collins, and T. Darrell, "Transfer learning for image classification with sparse prototype representations," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1-8
-
(2008)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1-8
-
-
Quattoni, A.1
Collins, M.2
Darrell, T.3
-
77
-
-
51949118201
-
Structure learning in random fields for heart motion abnormality detection
-
Jun
-
M. Schmidt, K. Murphy, G. Fung, and R. Rosales, "Structure learning in random fields for heart motion abnormality detection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2008, pp. 1-8
-
(2008)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 1-8
-
-
Schmidt, M.1
Murphy, K.2
Fung, G.3
Rosales, R.4
-
78
-
-
85162037528
-
Factorized latent spaces with structured sparsity
-
Y. Jia, M. Salzmann, and T. Darrell, "Factorized latent spaces with structured sparsity," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 982-990
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, pp. 982-990
-
-
Jia, Y.1
Salzmann, M.2
Darrell, T.3
-
79
-
-
70049097965
-
An efficient projection for l1,8 regularization
-
A. Quattoni, X. Carreras, M. Collins, and T. Darrell, "An efficient projection for l1,8 regularization," in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 857-864
-
(2009)
Proc. 26th Annu. Int. Conf. Mach. Learn
, pp. 857-864
-
-
Quattoni, A.1
Carreras, X.2
Collins, M.3
Darrell, T.4
-
80
-
-
80053162594
-
A convex formulation for learning task relationships in multi-task learning
-
Y. Zhang, and D.-Y. Yeung, "A convex formulation for learning task relationships in multi-task learning," in Proc. Conf. Uncertainty Artif. Intell., 2010, pp. 733-742
-
(2010)
Proc. Conf. Uncertainty Artif. Intell
, pp. 733-742
-
-
Zhang, Y.1
Yeung, D.-Y.2
-
81
-
-
84862287140
-
Exclusive Lasso for multi-task feature selection
-
Y. Zhou, R. Jin, and S. C. H. Hoi, "Exclusive Lasso for multi-task feature selection," in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010, pp. 988-995
-
(2010)
Proc. 13th Int. Conf. Artif. Intell. Statist
, pp. 988-995
-
-
Zhou, Y.1
Jin, R.2
Hoi, S.C.H.3
-
82
-
-
84873278481
-
On similarity preserving feature selection
-
Mar
-
Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013
-
(2013)
IEEE Trans. Knowl. Data Eng
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
83
-
-
84901431072
-
Global, and local structure preservation for feature selection
-
Jun
-
X. Liu, L. Wang, J. Zhang, J. Yin, and H. Liu, "Global, and local structure preservation for feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1083-1095, Jun. 2013
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.25
, Issue.6
, pp. 1083-1095
-
-
Liu, X.1
Wang, L.2
Zhang, J.3
Yin, J.4
Liu, H.5
-
84
-
-
85027955224
-
Unsupervised feature selection by regularized self-representation
-
P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. K. Shiu, "Unsupervised feature selection by regularized self-representation," Pattern Recognit., vol. 48, no. 2, pp. 438-446, 2015
-
(2015)
Pattern Recognit
, vol.48
, Issue.2
, pp. 438-446
-
-
Zhu, P.1
Zuo, W.2
Zhang, L.3
Hu, Q.4
Shiu, S.C.K.5
-
85
-
-
36249029853
-
Correntropy: Properties, and applications in non-Gaussian signal processing
-
Nov
-
W. Liu, P. P. Pokharel, and J. C. Príncipe, "Correntropy: Properties, and applications in non-Gaussian signal processing," IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5286-5298, Nov. 2007
-
(2007)
IEEE Trans. Signal Process
, vol.55
, Issue.11
, pp. 5286-5298
-
-
Liu, W.1
Pokharel, P.P.2
Príncipe, J.C.3
-
86
-
-
84866674130
-
L2,1 regularized correntropy for robust feature selection
-
Jun
-
R. He, T. Tan, L. Wang, and W.-S. Zheng, "l2,1 regularized correntropy for robust feature selection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012, pp. 2504-2511
-
(2012)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 2504-2511
-
-
He, R.1
Tan, T.2
Wang, L.3
Zheng, W.-S.4
-
87
-
-
33646596282
-
Analysis of half-quadratic minimization methods for signal, and image recovery
-
M. Nikolova, and M. K. Ng, "Analysis of half-quadratic minimization methods for signal, and image recovery," SIAM J. Sci. Comput., vol. 27, no. 3, pp. 937-966, 2005
-
(2005)
SIAM J. Sci. Comput
, vol.27
, Issue.3
, pp. 937-966
-
-
Nikolova, M.1
Ng, M.K.2
-
88
-
-
84875878163
-
Discriminative least squares regression for multiclass classification, and feature selection
-
Nov
-
S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, "Discriminative least squares regression for multiclass classification, and feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1738-1754, Nov. 2012
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst
, vol.23
, Issue.11
, pp. 1738-1754
-
-
Xiang, S.1
Nie, F.2
Meng, G.3
Pan, C.4
Zhang, C.5
-
89
-
-
84866678530
-
Feature selection via joint embedding learning, and sparse regression
-
C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning, and sparse regression," in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1324-1329
-
(2011)
Proc. 22nd Int. Joint Conf. Artif. Intell
, pp. 1324-1329
-
-
Hou, C.1
Nie, F.2
Yi, D.3
Wu, Y.4
-
90
-
-
84901250680
-
Joint embedding learning, and sparse regression: A framework for unsupervised feature selection
-
Jun
-
C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, "Joint embedding learning, and sparse regression: A framework for unsupervised feature selection," IEEE Trans. Cybern., vol. 44, no. 6, pp. 793-804, Jun. 2014
-
(2014)
IEEE Trans. Cybern
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
Wu, Y.5
-
91
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
Dec
-
S. T. Roweis, and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
92
-
-
77956216411
-
Unsupervised feature selection for multicluster data
-
D. Cai, C. Zhang, and X. He, "Unsupervised feature selection for multicluster data," in Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2010, pp. 333-342
-
(2010)
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
93
-
-
77958565426
-
Efficient spectral feature selection with minimum redundancy
-
Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 673-678
-
(2010)
Proc. 24th AAAI Conf. Artif. Intell
, pp. 673-678
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
-
94
-
-
84903907116
-
Feature selection by joint graph sparse coding
-
X. Zhu, X. Wu, W. Ding, and S. Zhang, "Feature selection by joint graph sparse coding," in Proc. SIAM Int. Conf. Data Mining, 2013, pp. 803-811
-
(2013)
Proc. SIAM Int. Conf. Data Mining
, pp. 803-811
-
-
Zhu, X.1
Wu, X.2
Ding, W.3
Zhang, S.4
-
95
-
-
33144458972
-
Efficient, and robust feature extraction by maximum margin criterion
-
Feb
-
H. Li, T. Jiang, and K. Zhang, "Efficient, and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 157-165, Feb. 2006
-
(2006)
IEEE Trans. Neural Netw
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
96
-
-
36348944726
-
Comments on efficient, and robust feature extraction by maximum margin criterion
-
Nov
-
J. Liu, S. Chen, X. Tan, and D. Zhang, "Comments on efficient, and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1862-1864, Nov. 2007
-
(2007)
IEEE Trans. Neural Netw
, vol.18
, Issue.6
, pp. 1862-1864
-
-
Liu, J.1
Chen, S.2
Tan, X.3
Zhang, D.4
-
97
-
-
84866440970
-
Unsupervised maximum margin feature selection via L2,1-norm minimization
-
S. Yang, C. Hou, F. Nie, and Y. Wu, "Unsupervised maximum margin feature selection via L2,1-norm minimization," Neural Comput. Appl., vol. 21, no. 7, pp. 1791-1799, 2012
-
(2012)
Neural Comput. Appl
, vol.21
, Issue.7
, pp. 1791-1799
-
-
Yang, S.1
Hou, C.2
Nie, F.3
Wu, Y.4
-
98
-
-
84881041271
-
L2,1-norm regularized discriminative feature selection for unsupervised learning
-
Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou, "l2,1-norm regularized discriminative feature selection for unsupervised learning," in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1589-1594
-
(2011)
Proc. 22nd Int. Joint Conf. Artif. Intell
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
99
-
-
84870535269
-
Joint feature selection, and subspace learning
-
Q. Gu, Z. Li, and J. Han, "Joint feature selection, and subspace learning," in Proc. Int. Joint Conf. Artif. Intell., 2011, pp. 1294-1299
-
(2011)
Proc. Int. Joint Conf. Artif. Intell
, pp. 1294-1299
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
100
-
-
33947194180
-
Graph embedding, and extensions: A general framework for dimensionality reduction
-
Jan
-
S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, "Graph embedding, and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
102
-
-
0003882879
-
-
Providence, RI, USA: AMS
-
F. Chung, Spectral Graph Theory, vol. 92. Providence, RI, USA: AMS, 1997
-
(1997)
Spectral Graph Theory
, vol.92
-
-
Chung, F.1
-
103
-
-
77956531771
-
From transformation-based dimensionality reduction to feature selection
-
M. Masaeli, G. Fung, and J. G. Dy, "From transformation-based dimensionality reduction to feature selection," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 751-758
-
(2010)
Proc. 27th Int. Conf. Mach. Learn
, pp. 751-758
-
-
Masaeli, M.1
Fung, G.2
Dy, J.G.3
-
104
-
-
84896061418
-
Exact top-k feature selection via 2,0-norm constraint
-
X. Cai, F. Nie, and H. Huang, "Exact top-k feature selection via 2,0-norm constraint," in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1240-1246
-
(2013)
Proc. Int. Joint Conf. Artif. Intell
, pp. 1240-1246
-
-
Cai, X.1
Nie, F.2
Huang, H.3
-
105
-
-
84969900712
-
A probabilistic model for dirty multi-task feature selection
-
D. Hernández-Lobato, J. M. Hernández-Lobato, and Z. Ghahramani, "A probabilistic model for dirty multi-task feature selection," in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 1073-1082
-
(2015)
Proc. 32nd Int. Conf. Mach. Learn
, pp. 1073-1082
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Ghahramani, Z.3
-
106
-
-
84959239518
-
Unsupervised simultaneous orthogonal basis clustering feature selection
-
Jun
-
D. Han, and J. Kim, "Unsupervised simultaneous orthogonal basis clustering feature selection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 5016-5023
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 5016-5023
-
-
Han, D.1
Kim, J.2
-
107
-
-
80053145416
-
Multi-task feature learning via efficient l2,1-norm minimization
-
J. Liu, S. Ji, and J. Ye, "Multi-task feature learning via efficient l2,1-norm minimization," in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 339-348
-
(2009)
Proc. 25th Conf. Uncertainty Artif. Intell
, pp. 339-348
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
108
-
-
84863059819
-
Sparse multi-task regression, and feature selection to identify brain imaging predictors for memory performance
-
Nov
-
H. Wang, et al., "Sparse multi-task regression, and feature selection to identify brain imaging predictors for memory performance," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 557-562
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 557-562
-
-
Wang, H.1
-
109
-
-
85162048536
-
Adaptive multi-task lasso: With application to eQTL detection
-
S. Lee, J. Zhu, and E. P. Xing, "Adaptive multi-task Lasso: With application to eQTL detection," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1306-1314
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1306-1314
-
-
Lee, S.1
Zhu, J.2
Xing, E.P.3
-
110
-
-
84880191846
-
Feature selection with linked data in social media
-
J. Tang, and H. Liu, "Feature selection with linked data in social media," in Proc. SIAM Int. Conf. Data Mining, 2012, pp. 118-128
-
(2012)
Proc. SIAM Int. Conf. Data Mining
, pp. 118-128
-
-
Tang, J.1
Liu, H.2
-
111
-
-
80052405668
-
Linear discriminant dimensionality reduction
-
Q. Gu, Z. Li, and J. Han, "Linear discriminant dimensionality reduction," in Proc. Eur. Conf. Mach. Learn., 2011, pp. 549-564
-
(2011)
Proc. Eur. Conf. Mach. Learn
, pp. 549-564
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
112
-
-
77953322499
-
Joint covariate selection, and joint subspace selection for multiple classification problems
-
Apr
-
G. Obozinski, B. Taskar, and M. I. Jordan, "Joint covariate selection, and joint subspace selection for multiple classification problems," Statist. Comput., vol. 20, no. 2, pp. 231-252, Apr. 2010
-
(2010)
Statist. Comput
, vol.20
, Issue.2
, pp. 231-252
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.I.3
-
113
-
-
84863057525
-
Exploring regularized feature selection for person specific face verification
-
Nov
-
Y. Liang, S. Liao, L. Wang, and B. Zou, "Exploring regularized feature selection for person specific face verification," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 1676-1683
-
(2011)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 1676-1683
-
-
Liang, Y.1
Liao, S.2
Wang, L.3
Zou, B.4
-
114
-
-
79551660140
-
Multitask sparsity via maximum entropy discrimination
-
T. Jebara, "Multitask sparsity via maximum entropy discrimination," J. Mach. Learn. Res., vol. 12, no. 1, pp. 75-110, 2011
-
(2011)
J. Mach. Learn. Res
, vol.12
, Issue.1
, pp. 75-110
-
-
Jebara, T.1
-
115
-
-
84908211928
-
A convex formulation for semi-supervised multi-label feature selection
-
X. Chang, F. Nie, Y. Yang, and H. Huang, "A convex formulation for semi-supervised multi-label feature selection," in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 1171-1177
-
(2014)
Proc. 28th AAAI Conf. Artif. Intell
, pp. 1171-1177
-
-
Chang, X.1
Nie, F.2
Yang, Y.3
Huang, H.4
-
116
-
-
84896063365
-
Probabilistic multi-label classification with sparse feature learning
-
Y. Guo, and W. Xue, "Probabilistic multi-label classification with sparse feature learning," in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1373-1379
-
(2013)
Proc. Int. Joint Conf. Artif. Intell
, pp. 1373-1379
-
-
Guo, Y.1
Xue, W.2
-
117
-
-
84892941650
-
An efficient algorithm for feature selection with feature correlation
-
L.-L. Huang, J. Tang, S.-B. Chen, C. Ding, and B. Luo, "An efficient algorithm for feature selection with feature correlation," in Proc. Intell. Sci. Intell. Data Eng., 2013, pp. 639-646
-
(2013)
Proc. Intell. Sci. Intell. Data Eng
, pp. 639-646
-
-
Huang, L.-L.1
Tang, J.2
Chen, S.-B.3
Ding, C.4
Luo, B.5
-
118
-
-
77953216761
-
A shared-subspace learning framework for multi-label classification
-
S. Ji, L. Tang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Discovery Data, vol. 4, no. 2, pp. 1-29, 2010
-
(2010)
ACM Trans. Knowl. Discovery Data
, vol.4
, Issue.2
, pp. 1-29
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
119
-
-
84864065280
-
Web image annotation via subspace-sparsity collaborated feature selection
-
Aug
-
Z. Ma, F. Nie, Y. Yang, J. R. R. Uijlings, and N. Sebe, "Web image annotation via subspace-sparsity collaborated feature selection," IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021-1030, Aug. 2012
-
(2012)
IEEE Trans. Multimedia
, vol.14
, Issue.4
, pp. 1021-1030
-
-
Ma, Z.1
Nie, F.2
Yang, Y.3
Uijlings, J.R.R.4
Sebe, N.5
-
120
-
-
84960497436
-
Multi-view intact space learning
-
Dec
-
C. Xu, D. Tao, and C. Xu, "Multi-view intact space learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2531-2544, Dec. 2015
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.37
, Issue.12
, pp. 2531-2544
-
-
Xu, C.1
Tao, D.2
Xu, C.3
-
121
-
-
84893719802
-
Coupled feature selection for cross-sensor iris recognition
-
Sep./Oct
-
L. Xiao, Z. Sun, R. He, and T. Tan, "Coupled feature selection for cross-sensor iris recognition," in Proc. IEEE 6th Int. Conf. Biometrics, Theory, Appl. Syst., Sep./Oct. 2013, pp. 1-6
-
(2013)
Proc. IEEE 6th Int. Conf. Biometrics, Theory, Appl. Syst
, pp. 1-6
-
-
Xiao, L.1
Sun, Z.2
He, R.3
Tan, T.4
-
122
-
-
84899113134
-
Margin based feature selection for cross-sensor iris recognition via linear programming
-
L. Xiao, Z. Sun, R. He, and T. Tan, "Margin based feature selection for cross-sensor iris recognition via linear programming," in Proc. 2nd IAPR Asia Conf. Pattern Recognit., 2013, pp. 246-250
-
(2013)
Proc. 2nd IAPR Asia Conf. Pattern Recognit
, pp. 246-250
-
-
Xiao, L.1
Sun, Z.2
He, R.3
Tan, T.4
-
123
-
-
84887363909
-
Heterogeneous visual features fusion via sparse multimodal machine
-
Jun
-
H. Wang, F. Nie, H. Huang, and C. Ding, "Heterogeneous visual features fusion via sparse multimodal machine," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 3097-3102
-
(2013)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit
, pp. 3097-3102
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Ding, C.4
-
124
-
-
84897568262
-
Multi-view clustering, and feature learning via structured sparsity
-
H. Wang, F. Nie, and H. Huang, "Multi-view clustering, and feature learning via structured sparsity," in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 352-360
-
(2013)
Proc. 30th Int. Conf. Mach. Learn
, pp. 352-360
-
-
Wang, H.1
Nie, F.2
Huang, H.3
-
125
-
-
84862970066
-
Identifying quantitative trait loci via group-sparse multitask regression, and feature selection: An imaging genetics study of the ADNI cohort
-
H. Wang, et al., "Identifying quantitative trait loci via group-sparse multitask regression, and feature selection: An imaging genetics study of the ADNI cohort," Bioinformatics, vol. 28, no. 2, pp. 229-237, 2012
-
(2012)
Bioinformatics
, vol.28
, Issue.2
, pp. 229-237
-
-
Wang, H.1
-
126
-
-
84863509119
-
Identifying disease sensitive, and quantitative traitrelevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
-
H. Wang, et al., "Identifying disease sensitive, and quantitative traitrelevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning," Bioinformatics, vol. 28, no. 12, pp. i127-i136, 2012
-
(2012)
Bioinformatics
, vol.28
, Issue.12
, pp. i127-i136
-
-
Wang, H.1
-
127
-
-
84903120310
-
Group sparse multiview patch alignment framework with view consistency for image classification
-
Jul
-
J. Gui, D. Tao, Z. Sun, Y. Luo, X. You, and Y. Y. Tang, "Group sparse multiview patch alignment framework with view consistency for image classification," IEEE Trans. Image Process., vol. 23, no. 7, pp. 3126-3137, Jul. 2014
-
(2014)
IEEE Trans. Image Process
, vol.23
, Issue.7
, pp. 3126-3137
-
-
Gui, J.1
Tao, D.2
Sun, Z.3
Luo, Y.4
You, X.5
Tang, Y.Y.6
-
128
-
-
84962090090
-
Classification with noisy labels by importance reweighting
-
Mar
-
T. Liu, and D. Tao, "Classification with noisy labels by importance reweighting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 3, pp. 447-461, Mar. 2016
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.38
, Issue.3
, pp. 447-461
-
-
Liu, T.1
Tao, D.2
-
129
-
-
0002709342
-
Feature selection via concave minimization, and support vector machines
-
P. S. Bradley, and O. L. Mangasarian, "Feature selection via concave minimization, and support vector machines," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 82-90
-
(1998)
Proc. 15th Int. Conf. Mach. Learn
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
130
-
-
84901467383
-
Nonconvex regularizations for feature selection in ranking with sparse SVM
-
Jun
-
L. Laporte, R. Flamary, S. Canu, S. Déjean, and J. Mothe, "Nonconvex regularizations for feature selection in ranking with sparse SVM," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1118-1130, Jun. 2014
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst
, vol.25
, Issue.6
, pp. 1118-1130
-
-
Laporte, L.1
Flamary, R.2
Canu, S.3
Déjean, S.4
Mothe, J.5
-
131
-
-
38849091390
-
Hybrid huberized support vector machines for microarray classification, and gene selection
-
L. Wang, J. Zhu, and H. Zou, "Hybrid huberized support vector machines for microarray classification, and gene selection," Bioinformatics, vol. 24, no. 3, pp. 412-419, 2008
-
(2008)
Bioinformatics
, vol.24
, Issue.3
, pp. 412-419
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
132
-
-
77956551904
-
Learning sparse SVM for feature selection on very high dimensional datasets
-
M. Tan, L. Wang, and I. W. Tsang, "Learning sparse SVM for feature selection on very high dimensional datasets," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 1047-1054
-
(2010)
Proc. 27th Int. Conf. Mach. Learn
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.W.3
-
134
-
-
80052871516
-
Combined feature selection, and cancer prognosis using support vector machine regression
-
Nov./Dec
-
B.-Y. Sun, Z.-H. Zhu, J. Li, and B. Linghu, "Combined feature selection, and cancer prognosis using support vector machine regression," IEEE-ACM Trans. Comput. Biol. Bioinformatics, vol. 8, no. 6, pp. 1671-1677, Nov./Dec. 2011
-
(2011)
IEEE -ACM Trans. Comput. Biol. Bioinformatics
, vol.8
, Issue.6
, pp. 1671-1677
-
-
Sun, B.-Y.1
Zhu, Z.-H.2
Li, J.3
Linghu, B.4
-
135
-
-
76849090053
-
Sparse support vector machines with L p penalty for biomarker identification
-
Jan./Mar
-
Z. Liu, S. Lin, and M. T. Tan, "Sparse support vector machines with L p penalty for biomarker identification," IEEE-ACM Trans. Comput. Biol. Bioinformatics, vol. 7, no. 1, pp. 100-107, Jan./Mar. 2010
-
(2010)
IEEE -ACM Trans. Comput. Biol. Bioinformatics
, vol.7
, Issue.1
, pp. 100-107
-
-
Liu, Z.1
Lin, S.2
Tan, M.T.3
-
136
-
-
34547976903
-
Sparse multinomial logistic regression via Bayesian L1 regularisation
-
G. C. Cawley, N. L. C. Talbot, and M. Girolami, "Sparse multinomial logistic regression via Bayesian L1 regularisation," in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 209-216
-
(2007)
Proc. Adv. Neural Inf. Process. Syst
, pp. 209-216
-
-
Cawley, G.C.1
Talbot, N.L.C.2
Girolami, M.3
-
137
-
-
0345327592
-
A simple, and efficient algorithm for gene selection using sparse logistic regression
-
S. K. Shevade, and S. S. Keerthi, "A simple, and efficient algorithm for gene selection using sparse logistic regression," Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2246-2253
-
-
Shevade, S.K.1
Keerthi, S.S.2
-
138
-
-
33750012146
-
Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
-
G. C. Cawley, and N. L. C. Talbot, "Gene selection in cancer classification using sparse logistic regression with Bayesian regularization," Bioinformatics, vol. 22, no. 19, pp. 2348-2355, 2006
-
(2006)
Bioinformatics
, vol.22
, Issue.19
, pp. 2348-2355
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
139
-
-
80955131878
-
Structured sparse model based feature selection, and classification for hyperspectral imagery
-
Jul
-
Y. Qian, J. Zhou, M. Ye, and Q. Wang, "Structured sparse model based feature selection, and classification for hyperspectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2011, pp. 1771-1774
-
(2011)
Proc. IEEE Int. Geosci. Remote Sens. Symp
, pp. 1771-1774
-
-
Qian, Y.1
Zhou, J.2
Ye, M.3
Wang, Q.4
-
140
-
-
84863167108
-
Multi-class 2,1-norm support vector machine
-
Dec
-
X. Cai, F. Nie, H. Huang, and C. Ding, "Multi-class 2,1-norm support vector machine," in Proc. IEEE 11th Int. Conf. Data Mining, Dec. 2011, pp. 91-100
-
(2011)
Proc. IEEE 11th Int. Conf. Data Mining
, pp. 91-100
-
-
Cai, X.1
Nie, F.2
Huang, H.3
Ding, C.4
-
141
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. AAAI Conf. Artif. Intell., 2012, pp. 1026-1032
-
(2012)
Proc. AAAI Conf. Artif. Intell
, pp. 1026-1032
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
142
-
-
80055026446
-
Nonnegative spectral clustering with discriminative regularization
-
Y. Yang, H. T. Shen, F. Nie, R. Ji, and X. Zhou, "Nonnegative spectral clustering with discriminative regularization," in Proc. AAAI Conf. Artif. Intell., 2011, pp. 555-560
-
(2011)
Proc. AAAI Conf. Artif. Intell
, pp. 555-560
-
-
Yang, Y.1
Shen, H.T.2
Nie, F.3
Ji, R.4
Zhou, X.5
-
143
-
-
0034244751
-
Normalized cuts, and image segmentation
-
Aug
-
J. Shi, and J. Malik, "Normalized cuts, and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
145
-
-
77954603019
-
A framework for feature selection in clustering
-
D. M. Witten, and R. Tibshirani, "A framework for feature selection in clustering," J. Amer. Statistical Assoc., vol. 105, no. 490, pp. 713-726, 2010
-
(2010)
J. Amer. Statistical Assoc
, vol.105
, Issue.490
, pp. 713-726
-
-
Witten, D.M.1
Tibshirani, R.2
-
146
-
-
79959501613
-
Feature selection, and kernel learning for local learning-based clustering
-
Aug
-
H. Zeng, and Y.-M. Cheung, "Feature selection, and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.8
, pp. 1532-1547
-
-
Zeng, H.1
Cheung, Y.-M.2
-
147
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Proc. Adv. Neural Inf. Process. Syst., 2006, pp. 507-514
-
(2006)
Proc. Adv. Neural Inf. Process. Syst
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
148
-
-
84880715885
-
L1 graph based on sparse coding for feature selection
-
J. Xu, G. Yang, H. Man, and H. He, "L1 graph based on sparse coding for feature selection," in Proc. 10th Int. Symp. Neural Netw., 2013, pp. 594-601
-
(2013)
Proc. 10th Int. Symp. Neural Netw
, pp. 594-601
-
-
Xu, J.1
Yang, G.2
Man, H.3
He, H.4
-
149
-
-
14344249889
-
Feature selection, L1 vs. L2 regularization, and rotational invariance
-
A. Y. Ng, "Feature selection, L1 vs. L2 regularization, and rotational invariance," in Proc. 21st Int. Conf. Mach. Learn., 2004, pp. 78-85
-
(2004)
Proc. 21st Int. Conf. Mach. Learn
, pp. 78-85
-
-
Ng, A.Y.1
-
150
-
-
77955397866
-
Local-learning-based feature selection for high-dimensional data analysis
-
Sep
-
Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.9
, pp. 1610-1626
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
151
-
-
27844550205
-
Feature selection for unsupervised, and supervised inference: The emergence of sparsity in a weight-based approach
-
Jan
-
L. Wolf, and A. Shashua, "Feature selection for unsupervised, and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Jan. 2005
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
152
-
-
84880901313
-
A feature selection method for multivariate performance measures
-
Sep
-
Q. Mao, and I. W.-H. Tsang, "A feature selection method for multivariate performance measures," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2051-2063, Sep. 2013
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, Issue.9
, pp. 2051-2063
-
-
Mao, Q.1
Tsang, I.W.-H.2
-
153
-
-
0003840341
-
Columbia object image library (COIL-20
-
Columbia Univ., New York, NY, USA, Tech. Rep. CUCS 005-96
-
S. A. Nene, S. K. Nayar, and H. Murase, "Columbia object image library (COIL-20)," Dept. Comput. Sci., Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-005-96, 1996
-
(1996)
Dept. Comput. Sci
-
-
Nene, S.A.1
Nayar, S.K.2
Murase, H.3
-
154
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
C. L. Nutt, et al., "Gene expression-based classification of malignant gliomas correlates better with survival than histological classification," Cancer Res., vol. 63, no. 7, pp. 1602-1607, 2003
-
(2003)
Cancer Res
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
-
155
-
-
0035923521
-
Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
-
A. Bhattacharjee, et al., "Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses," Proc. Nat. Acad. Sci. USA, vol. 98, no. 24, pp. 13790-13795, 2001
-
(2001)
Proc. Nat. Acad. Sci. USA
, vol.98
, Issue.24
, pp. 13790-13795
-
-
Bhattacharjee, A.1
-
156
-
-
18544375333
-
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
-
S. A. Armstrong, et al., "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia," Nature Genet., vol. 30, no. 1, pp. 41-47, 2002
-
(2002)
Nature Genet
, vol.30
, Issue.1
, pp. 41-47
-
-
Armstrong, S.A.1
-
157
-
-
33645772227
-
Neuronal, and glioma-derived stem cell factor induces angiogenesis within the brain
-
L. Sun, et al., "Neuronal, and glioma-derived stem cell factor induces angiogenesis within the brain," Cancer Cell, vol. 9, no. 4, pp. 287-300, 2006
-
(2006)
Cancer Cell
, vol.9
, Issue.4
, pp. 287-300
-
-
Sun, L.1
-
158
-
-
0004171986
-
The AR face database
-
Ohio State Univ., Columbus, OH USA, Tech. Rep. 24, Jun
-
A. Martínez, and R. Benavente, "The AR face database," Dept. Elect. Comput. Eng., Ohio State Univ., Columbus, OH USA, Tech. Rep. 24, Jun. 1998
-
(1998)
Dept. Elect. Comput. Eng
-
-
Martínez, A.1
Benavente, R.2
-
159
-
-
77953517919
-
Empirical evaluation of feature selection methods in classification
-
L. Čehovin, and Z. Bosnić, "Empirical evaluation of feature selection methods in classification," Intell. Data Anal., vol. 14, no. 3, pp. 265-281, 2010
-
(2010)
Intell. Data Anal
, vol.14
, Issue.3
, pp. 265-281
-
-
Čehovin, L.1
Bosnić, Z.2
-
160
-
-
84889281816
-
-
2nd ed. New York, NY, USA Wiley
-
T. M. Cover, and J. A. Thomas, Elements of Information Theory, 2nd ed. New York, NY, USA: Wiley, 2006
-
(2006)
Elements of Information Theory
-
-
Cover, T.M.1
Thomas, J.A.2
-
161
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
-
Aug
-
H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
162
-
-
84992726552
-
Estimating attributes: Analysis, and extensions of relief
-
I. Kononenko, "Estimating attributes: Analysis, and extensions of RELIEF," in Proc. Eur. Conf. Mach. Learn., 1994, pp. 171-182
-
(1994)
Proc. Eur. Conf. Mach. Learn
, pp. 171-182
-
-
Kononenko, I.1
-
164
-
-
12244287909
-
A rank sum test method for informative gene discovery
-
L. Deng, J. Pei, J. Ma, and D. L. Lee, "A rank sum test method for informative gene discovery," in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2004, pp. 410-419
-
(2004)
Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 410-419
-
-
Deng, L.1
Pei, J.2
Ma, J.3
Lee, D.L.4
-
165
-
-
84926214098
-
Principal component 2-D long shortterm memory for font recognition on single Chinese characters
-
Mar
-
D. Tao, X. Lin, L. Jin, and X. Li, "Principal component 2-D long shortterm memory for font recognition on single Chinese characters," IEEE Trans. Cybern., vol. 46, no. 3, pp. 756-765, Mar. 2016
-
(2016)
IEEE Trans. Cybern
, vol.46
, Issue.3
, pp. 756-765
-
-
Tao, D.1
Lin, X.2
Jin, L.3
Li, X.4
-
166
-
-
0003076895
-
Feature selection for highdimensional genomic microarray data
-
E. P. Xing, M. I. Jordan, and R. M. Karp, "Feature selection for highdimensional genomic microarray data," in Proc. 18th Int. Conf. Mach. Learn., 2001, pp. 601-608
-
(2001)
Proc. 18th Int. Conf. Mach. Learn
, pp. 601-608
-
-
Xing, E.P.1
Jordan, M.I.2
Karp, R.M.3
-
168
-
-
4644260621
-
Sampling: Knowing whole from its part
-
Boston, MA, USA Kluwer Academic Publishers
-
B. Gu, F. Hu, and H. Liu, "Sampling: Knowing whole from its part," in Instance Selection, and Construction for Data Mining. Boston, MA, USA: Kluwer Academic Publishers, 2001, pp. 21-38
-
(2001)
Instance Selection, and Construction for Data Mining
, pp. 21-38
-
-
Gu, B.1
Hu, F.2
Liu, H.3
-
169
-
-
1942514154
-
Feature selection with selective sampling
-
H. Liu, H. Motoda, and L. Yu, "Feature selection with selective sampling," in Proc. Int. Conf. Mach. Learn., 2002, pp. 395-402
-
(2002)
Proc. Int. Conf. Mach. Learn
, pp. 395-402
-
-
Liu, H.1
Motoda, H.2
Yu, L.3
|