메뉴 건너뛰기




Volumn 28, Issue 7, 2017, Pages 1490-1507

Feature selection based on structured sparsity: a comprehensive study

Author keywords

Dimensionality reduction; feature selection; sparse; structured sparsity

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; DATA MINING; LEARNING ALGORITHMS; LEARNING SYSTEMS; PATTERN RECOGNITION;

EID: 84964546292     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2016.2551724     Document Type: Article
Times cited : (300)

References (169)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable, and feature selection
    • Jan
    • I. Guyon, and A. Elisseeff, "An introduction to variable, and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Jan. 2003
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification, and clustering
    • Apr
    • H. Liu, and L. Yu, "Toward integrating feature selection algorithms for classification, and clustering," IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 3
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 4
    • 84889672040 scopus 로고    scopus 로고
    • Feature selection for clustering: A review
    • C. C. Aggarwal, and C. K. Reddy, Eds. Boca Raton, FL, USA CRC Press
    • S. Alelyani, J. Tang, and H. Liu, "Feature selection for clustering: A review," in Data Clustering: Algorithms, and Applications, C. C. Aggarwal, and C. K. Reddy, Eds. Boca Raton, FL, USA: CRC Press, 2013
    • (2013) Data Clustering: Algorithms, and Applications
    • Alelyani, S.1    Tang, J.2    Liu, H.3
  • 5
    • 84923766456 scopus 로고    scopus 로고
    • Feature selection for classification: A review
    • C. C. Aggarwal, Ed. Boca Raton, FL, USA CRC Press
    • J. Tang, S. Alelyani, and H. Liu, "Feature selection for classification: A review," in Data Classification: Algorithms, and Applications, C. C. Aggarwal, Ed. Boca Raton, FL, USA: CRC Press, 2013
    • (2013) Data Classification: Algorithms, and Applications
    • Tang, J.1    Alelyani, S.2    Liu, H.3
  • 6
    • 84921784324 scopus 로고    scopus 로고
    • An evaluation of classifier-specific filter measure performance for feature selection
    • Freeman, D. Kulić, and O. Basir
    • C. Freeman, D. Kulić, and O. Basir, "An evaluation of classifier-specific filter measure performance for feature selection," Pattern Recognit., vol. 48, no. 5, pp. 1812-1826, 2015
    • (2015) Pattern Recognit , vol.48 , Issue.5 , pp. 1812-1826
  • 7
    • 83755163963 scopus 로고    scopus 로고
    • The influence of feature selection methods on accuracy, stability, and interpretability of molecular signatures
    • A.-C. Haury, P. Gestraud, and J.-P. Vert, "The influence of feature selection methods on accuracy, stability, and interpretability of molecular signatures," PLoS ONE, vol. 6, no. 12, p. e28210, 2011
    • (2011) Plos One , vol.6 , Issue.12 , pp. e28210
    • Haury, A.-C.1    Gestraud, P.2    Vert, J.-P.3
  • 8
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging, and random subspace for support vector machines-based relevance feedback in image retrieval
    • Jul
    • D. Tao, X. Tang, X. Li, and X. Wu, "Asymmetric bagging, and random subspace for support vector machines-based relevance feedback in image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 7, pp. 1088-1099, Jul. 2006
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 9
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    • Jul
    • P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 711-720, Jul. 1997
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1    Hespanha, J.P.2    Kriegman, D.3
  • 10
    • 36048992886 scopus 로고    scopus 로고
    • General tensor discriminant analysis, and Gabor features for gait recognition
    • Oct
    • D. Tao, X. Li, X. Wu, and S. J. Maybank, "General tensor discriminant analysis, and Gabor features for gait recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 10, pp. 1700-1715, Oct. 2007
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.10 , pp. 1700-1715
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.J.4
  • 14
    • 84875252662 scopus 로고    scopus 로고
    • Sparse representation, and learning in visual recognition: Theory, and applications
    • H. Cheng, Z. Liu, L. Yang, and X. Chen, "Sparse representation, and learning in visual recognition: Theory, and applications," Signal Process., vol. 93, no. 6, pp. 1408-1425, 2013
    • (2013) Signal Process , vol.93 , Issue.6 , pp. 1408-1425
    • Cheng, H.1    Liu, Z.2    Yang, L.3    Chen, X.4
  • 17
    • 84916882621 scopus 로고    scopus 로고
    • Deep sparse feature selection for computer aided endoscopy diagnosis
    • Y. Cong, S. Wang, J. Liu, J. Cao, Y. Yang, and J. Luo, "Deep sparse feature selection for computer aided endoscopy diagnosis," Pattern Recognit., vol. 48, no. 3, pp. 907-917, 2015
    • (2015) Pattern Recognit , vol.48 , Issue.3 , pp. 907-917
    • Cong, Y.1    Wang, S.2    Liu, J.3    Cao, J.4    Yang, Y.5    Luo, J.6
  • 18
    • 84921804171 scopus 로고    scopus 로고
    • Sparse discriminative feature selection
    • H. Yan, and J. Yang, "Sparse discriminative feature selection," Pattern Recognit., vol. 48, no. 5, pp. 1827-1835, 2015
    • (2015) Pattern Recognit , vol.48 , Issue.5 , pp. 1827-1835
    • Yan, H.1    Yang, J.2
  • 19
    • 84911457687 scopus 로고    scopus 로고
    • Matrix-similarity based loss function, and feature selection for Alzheimer's disease diagnosis
    • Jun
    • X. Zhu, H.-I. Suk, and D. Shen, "Matrix-similarity based loss function, and feature selection for Alzheimer's disease diagnosis," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 3089-3096
    • (2014) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 3089-3096
    • Zhu, X.1    Suk, H.-I.2    Shen, D.3
  • 20
    • 84925439254 scopus 로고    scopus 로고
    • Efficient nonconvex sparse group feature selection via continuous, and discrete optimization
    • Jul
    • S. Xiang, X. Shen, and J. Ye, "Efficient nonconvex sparse group feature selection via continuous, and discrete optimization," Artif. Intell., vol. 224, pp. 28-50, Jul. 2015
    • (2015) Artif. Intell , vol.224 , pp. 28-50
    • Xiang, S.1    Shen, X.2    Ye, J.3
  • 21
    • 84976223503 scopus 로고    scopus 로고
    • Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint
    • J. Liu, J. Ye, and R. Fujimaki, "Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint," in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 503-511
    • (2014) Proc. 31st Int. Conf. Mach. Learn , pp. 503-511
    • Liu, J.1    Ye, J.2    Fujimaki, R.3
  • 22
    • 84856647878 scopus 로고    scopus 로고
    • Informative feature selection for object recognition via sparse PCA
    • Nov
    • N. Naikal, A. Y. Yang, and S. S. Sastry, "Informative feature selection for object recognition via sparse PCA," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 818-825
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 818-825
    • Naikal, N.1    Yang, A.Y.2    Sastry, S.S.3
  • 23
    • 77949425006 scopus 로고    scopus 로고
    • Clustering, and feature selection using sparse principal component analysis
    • R. Luss, and A. d'Aspremont, "Clustering, and feature selection using sparse principal component analysis," Optim. Eng., vol. 11, no. 1, pp. 145-157, 2010
    • (2010) Optim. Eng , vol.11 , Issue.1 , pp. 145-157
    • Luss, R.1    D'Aspremont, A.2
  • 24
    • 63049089490 scopus 로고    scopus 로고
    • A regularized framework for feature selection in face detection, and authentication
    • A. Destrero, C. De Mol, F. Odone, and A. Verri, "A regularized framework for feature selection in face detection, and authentication," Int. J. Comput. Vis., vol. 83, no. 2, pp. 164-177, 2009
    • (2009) Int. J. Comput. Vis , vol.83 , Issue.2 , pp. 164-177
    • Destrero, A.1    De Mol, C.2    Odone, F.3    Verri, A.4
  • 25
    • 58049206648 scopus 로고    scopus 로고
    • A sparsity-enforcing method for learning face features
    • Jan
    • A. Destrero, C. De Mol, F. Odone, and A. Verri, "A sparsity-enforcing method for learning face features," IEEE Trans. Image Process., vol. 18, no. 1, pp. 188-201, Jan. 2009
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.1 , pp. 188-201
    • Destrero, A.1    De Mol, C.2    Odone, F.3    Verri, A.4
  • 26
    • 85135939782 scopus 로고    scopus 로고
    • Efficient, and robust feature selection via joint l2,1-norms minimization
    • F. Nie, H. Huang, X. Cai, and C. Ding, "Efficient, and robust feature selection via joint l2,1-norms minimization," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1813-1821
    • (2010) Proc. Adv. Neural Inf. Process. Syst , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.4
  • 27
    • 84863418938 scopus 로고    scopus 로고
    • Discriminant sparse neighborhood preserving embedding for face recognition
    • J. Gui, Z. Sun, W. Jia, R. Hu, Y. Lei, and S. Ji, "Discriminant sparse neighborhood preserving embedding for face recognition," Pattern Recognit., vol. 45, no. 8, pp. 2884-2893, 2012
    • (2012) Pattern Recognit , vol.45 , Issue.8 , pp. 2884-2893
    • Gui, J.1    Sun, Z.2    Jia, W.3    Hu, R.4    Lei, Y.5    Ji, S.6
  • 28
    • 84871604261 scopus 로고    scopus 로고
    • Structured sparsity through convex optimization
    • F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, "Structured sparsity through convex optimization," Statist. Sci., vol. 27, no. 4, pp. 450-468, 2012
    • (2012) Statist. Sci , vol.27 , Issue.4 , pp. 450-468
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozinski, G.4
  • 29
    • 84969759651 scopus 로고    scopus 로고
    • A nearly-linear time framework for graph-structured sparsity
    • C. Hegde, P. Indyk, and L. Schmidt, "A nearly-linear time framework for graph-structured sparsity," in Proc. 32nd Int. Conf. Mach. Learn., 2015, pp. 928-937
    • (2015) Proc. 32nd Int. Conf. Mach. Learn , pp. 928-937
    • Hegde, C.1    Indyk, P.2    Schmidt, L.3
  • 31
    • 84860682231 scopus 로고    scopus 로고
    • A multi-stage framework for dantzig selector, and lasso
    • J. Liu, P. Wonka, and J. Ye, "A multi-stage framework for Dantzig selector, and Lasso," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1189-1219, 2012
    • (2012) J. Mach. Learn. Res , vol.13 , Issue.1 , pp. 1189-1219
    • Liu, J.1    Wonka, P.2    Ye, J.3
  • 32
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision, and pattern recognition
    • Jun
    • J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, "Sparse representation for computer vision, and pattern recognition," Proc. IEEE, vol. 98, no. 6, pp. 1031-1044, Jun. 2010
    • (2010) Proc. IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 36
    • 84959851975 scopus 로고    scopus 로고
    • A survey of sparse representation: Algorithms, and applications
    • May
    • Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, "A survey of sparse representation: Algorithms, and applications," IEEE Access, vol. 3, pp. 490-530, May 2015
    • (2015) IEEE Access , vol.3 , pp. 490-530
    • Zhang, Z.1    Xu, Y.2    Yang, J.3    Li, X.4    Zhang, D.5
  • 37
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage, and selection via the Lasso
    • R. Tibshirani, "Regression shrinkage, and selection via the Lasso," J. Roy. Statist. Soc. B (Methodol.), vol. 58, no. 1, pp. 267-288, 1996
    • (1996) J. Roy. Statist. Soc. B (Methodol , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 39
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution
    • D. L. Donoho, "For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution," Commun. Pure Appl. Math., vol. 59, no. 6, pp. 797-829, 2006
    • (2006) Commun. Pure Appl. Math , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 41
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso, and its oracle properties
    • Dec
    • H. Zou, "The adaptive Lasso, and its oracle properties," J. Amer. Statist. Assoc., vol. 101, no. 476, pp. 1418-1429, Dec. 2006
    • (2006) J. Amer. Statist. Assoc , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1
  • 45
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • J. Huang, J. L. Horowitz, and S. Ma, "Asymptotic properties of bridge estimators in sparse high-dimensional regression models," Ann. Statist., vol. 36, no. 2, pp. 587-613, 2008
    • (2008) Ann. Statist , vol.36 , Issue.2 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.3
  • 46
    • 16244401458 scopus 로고    scopus 로고
    • Regularization, and variable selection via the elastic net
    • H. Zou, and T. Hastie, "Regularization, and variable selection via the elastic net," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 67, no. 2, pp. 301-320, 2005
    • (2005) J. Roy. Statist. Soc. B (Statist. Methodol , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 47
    • 33847007697 scopus 로고    scopus 로고
    • Sparse logistic regression with Lp penalty for biomarker identification
    • Z. Liu, et al., "Sparse logistic regression with Lp penalty for biomarker identification," Statist. Appl. Genet. Molecular Biol., vol. 6, no. 1, pp. 1-20, 2007
    • (2007) Statist. Appl. Genet. Molecular Biol , vol.6 , Issue.1 , pp. 1-20
    • Liu, Z.1
  • 48
    • 84874561081 scopus 로고    scopus 로고
    • Robust regularized feature selection for iris recognition via linear programming
    • Nov
    • L. Wang, Z. Sun, and T. Tan, "Robust regularized feature selection for iris recognition via linear programming," in Proc. 21st Int. Conf. Pattern Recognit., Nov. 2012, pp. 3358-3361
    • (2012) Proc. 21st Int. Conf. Pattern Recognit , pp. 3358-3361
    • Wang, L.1    Sun, Z.2    Tan, T.3
  • 49
    • 84905259141 scopus 로고    scopus 로고
    • Ordinal feature selection for iris, and palmprint recognition
    • Sep
    • Z. Sun, L. Wang, and T. Tan, "Ordinal feature selection for iris, and palmprint recognition," IEEE Trans. Image Process., vol. 23, no. 9, pp. 3922-3934, Sep. 2014
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.9 , pp. 3922-3934
    • Sun, Z.1    Wang, L.2    Tan, T.3
  • 50
    • 85162319557 scopus 로고    scopus 로고
    • Trace Lasso: A trace norm regularization for correlated designs
    • E. Grave, G. Obozinski, and F. Bach, "Trace Lasso: A trace norm regularization for correlated designs," in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2187-2195
    • (2011) Proc. Adv. Neural Inf. Process. Syst , pp. 2187-2195
    • Grave, E.1    Obozinski, G.2    Bach, F.3
  • 51
    • 84880544524 scopus 로고    scopus 로고
    • Sparse methods for biomedical data
    • J. Ye, and J. Liu, "Sparse methods for biomedical data," ACM SIGKDD Explorations Newslett., vol. 14, no. 1, pp. 4-15, 2012
    • (2012) ACM SIGKDD Explorations Newslett , vol.14 , Issue.1 , pp. 4-15
    • Ye, J.1    Liu, J.2
  • 52
    • 33645035051 scopus 로고    scopus 로고
    • Model selection, and estimation in regression with grouped variables
    • M. Yuan, and Y. Lin, "Model selection, and estimation in regression with grouped variables," J. Roy. Statist. Soc. B (Statist. Methodol.), vol. 68, no. 1, pp. 49-67, 2006
    • (2006) J. Roy. Statist. Soc. B (Statist. Methodol , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 53
    • 84862808427 scopus 로고    scopus 로고
    • Automatic image annotation, and retrieval using group sparsity
    • Jun
    • S. Zhang, J. Huang, H. Li, and D. N. Metaxas, "Automatic image annotation, and retrieval using group sparsity," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 3, pp. 838-849, Jun. 2012
    • (2012) IEEE Trans. Syst., Man, Cybern. B, Cybern , vol.42 , Issue.3 , pp. 838-849
    • Zhang, S.1    Huang, J.2    Li, H.3    Metaxas, D.N.4
  • 54
    • 80555129673 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • Feb
    • R. Jenatton, J.-Y. Audibert, and F. Bach, "Structured variable selection with sparsity-inducing norms," J. Mach. Learn. Res., vol. 12, pp. 2777-2824, Feb. 2011
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.-Y.2    Bach, F.3
  • 55
    • 84855392809 scopus 로고    scopus 로고
    • Learning with structured sparsity
    • Jan
    • J. Huang, T. Zhang, and D. Metaxas, "Learning with structured sparsity," J. Mach. Learn. Res., vol. 12, pp. 3371-3412, Jan. 2011
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 3371-3412
    • Huang, J.1    Zhang, T.2    Metaxas, D.3
  • 56
    • 77956548668 scopus 로고    scopus 로고
    • Tree-guided group Lasso for multi-task regression with structured sparsity
    • S. Kim, and E. P. Xing, "Tree-guided group Lasso for multi-task regression with structured sparsity," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 543-550
    • (2010) Proc. 27th Int. Conf. Mach. Learn , pp. 543-550
    • Kim, S.1    Xing, E.P.2
  • 59
    • 85161968806 scopus 로고    scopus 로고
    • Moreau-Yosida regularization for grouped tree structure learning
    • J. Liu, and J. Ye, "Moreau-Yosida regularization for grouped tree structure learning," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1459-1467
    • (2010) Proc. Adv. Neural Inf. Process. Syst , pp. 1459-1467
    • Liu, J.1    Ye, J.2
  • 60
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction, and data representation
    • M. Belkin, and P. Niyogi, "Laplacian eigenmaps for dimensionality reduction, and data representation," Neural Comput., vol. 15, no. 6, pp. 1373-1396, 2003
    • (2003) Neural Comput , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 61
    • 77955405900 scopus 로고    scopus 로고
    • Feature selection guided by structural information
    • M. Slawski, W. Zu Castell, and G. Tutz, "Feature selection guided by structural information," Ann. Appl. Statist., vol. 4, no. 2, pp. 1056-1080, 2010
    • (2010) Ann. Appl. Statist , vol.4 , Issue.2 , pp. 1056-1080
    • Slawski, M.1    Zu Castell, W.2    Tutz, G.3
  • 62
    • 70149098541 scopus 로고    scopus 로고
    • Statistical estimation of correlated genome associations to a quantitative trait network
    • S. Kim, and E. P. Xing, "Statistical estimation of correlated genome associations to a quantitative trait network," PLoS Genet., vol. 5, no. 8, p. e1000587, 2009
    • (2009) Plos Genet , vol.5 , Issue.8 , pp. e1000587
    • Kim, S.1    Xing, E.P.2
  • 63
    • 84890017055 scopus 로고    scopus 로고
    • Simultaneous grouping pursuit, and feature selection over an undirected graph
    • Y. Zhu, X. Shen, and W. Pan, "Simultaneous grouping pursuit, and feature selection over an undirected graph," J. Amer. Statist. Assoc., vol. 108, no. 502, pp. 713-725, 2013
    • (2013) J. Amer. Statist. Assoc , vol.108 , Issue.502 , pp. 713-725
    • Zhu, Y.1    Shen, X.2    Pan, W.3
  • 67
    • 34250776571 scopus 로고    scopus 로고
    • R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization
    • C. Ding, D. Zhou, X. He, and H. Zha, "R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization," in Proc. 23rd Int. Conf. Mach. Learn., 2006, pp. 281-288
    • (2006) Proc. 23rd Int. Conf. Mach. Learn , pp. 281-288
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 70
    • 84921514115 scopus 로고    scopus 로고
    • Semisupervised feature selection via spline regression for video semantic recognition
    • Feb
    • Y. Han, Y. Yang, Y. Yan, Z. Ma, N. Sebe, and X. Zhou, "Semisupervised feature selection via spline regression for video semantic recognition," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 2, pp. 252-264, Feb. 2015
    • (2015) IEEE Trans. Neural Netw. Learn. Syst , vol.26 , Issue.2 , pp. 252-264
    • Han, Y.1    Yang, Y.2    Yan, Y.3    Ma, Z.4    Sebe, N.5    Zhou, X.6
  • 72
    • 84901189483 scopus 로고    scopus 로고
    • A unified algorithm for mixed l2, p -minimizations, and its application in feature selection
    • L. Wang, S. Chen, and Y. Wang, "A unified algorithm for mixed l2, p -minimizations, and its application in feature selection," Comput. Optim. Appl., vol. 58, no. 2, pp. 409-421, 2014
    • (2014) Comput. Optim. Appl , vol.58 , Issue.2 , pp. 409-421
    • Wang, L.1    Chen, S.2    Wang, Y.3
  • 74
    • 23844431650 scopus 로고    scopus 로고
    • Simultaneous variable selection
    • B. A. Turlach, W. N. Venables, and S. J. Wright, "Simultaneous variable selection," Technometrics, vol. 47, no. 3, pp. 349-363, 2005
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 349-363
    • Turlach, B.A.1    Venables, W.N.2    Wright, S.J.3
  • 75
    • 30844461481 scopus 로고    scopus 로고
    • Algorithms for simultaneous sparse approximation. Part II: Convex relaxation
    • Mar
    • J. A. Tropp, "Algorithms for simultaneous sparse approximation. Part II: Convex relaxation," Signal Process., vol. 86, no. 3, pp. 589-602, Mar. 2006
    • (2006) Signal Process , vol.86 , Issue.3 , pp. 589-602
    • Tropp, J.A.1
  • 80
    • 80053162594 scopus 로고    scopus 로고
    • A convex formulation for learning task relationships in multi-task learning
    • Y. Zhang, and D.-Y. Yeung, "A convex formulation for learning task relationships in multi-task learning," in Proc. Conf. Uncertainty Artif. Intell., 2010, pp. 733-742
    • (2010) Proc. Conf. Uncertainty Artif. Intell , pp. 733-742
    • Zhang, Y.1    Yeung, D.-Y.2
  • 82
    • 84873278481 scopus 로고    scopus 로고
    • On similarity preserving feature selection
    • Mar
    • Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013
    • (2013) IEEE Trans. Knowl. Data Eng , vol.25 , Issue.3 , pp. 619-632
    • Zhao, Z.1    Wang, L.2    Liu, H.3    Ye, J.4
  • 83
    • 84901431072 scopus 로고    scopus 로고
    • Global, and local structure preservation for feature selection
    • Jun
    • X. Liu, L. Wang, J. Zhang, J. Yin, and H. Liu, "Global, and local structure preservation for feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1083-1095, Jun. 2013
    • (2013) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.6 , pp. 1083-1095
    • Liu, X.1    Wang, L.2    Zhang, J.3    Yin, J.4    Liu, H.5
  • 84
    • 85027955224 scopus 로고    scopus 로고
    • Unsupervised feature selection by regularized self-representation
    • P. Zhu, W. Zuo, L. Zhang, Q. Hu, and S. C. K. Shiu, "Unsupervised feature selection by regularized self-representation," Pattern Recognit., vol. 48, no. 2, pp. 438-446, 2015
    • (2015) Pattern Recognit , vol.48 , Issue.2 , pp. 438-446
    • Zhu, P.1    Zuo, W.2    Zhang, L.3    Hu, Q.4    Shiu, S.C.K.5
  • 85
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: Properties, and applications in non-Gaussian signal processing
    • Nov
    • W. Liu, P. P. Pokharel, and J. C. Príncipe, "Correntropy: Properties, and applications in non-Gaussian signal processing," IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5286-5298, Nov. 2007
    • (2007) IEEE Trans. Signal Process , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.P.2    Príncipe, J.C.3
  • 87
    • 33646596282 scopus 로고    scopus 로고
    • Analysis of half-quadratic minimization methods for signal, and image recovery
    • M. Nikolova, and M. K. Ng, "Analysis of half-quadratic minimization methods for signal, and image recovery," SIAM J. Sci. Comput., vol. 27, no. 3, pp. 937-966, 2005
    • (2005) SIAM J. Sci. Comput , vol.27 , Issue.3 , pp. 937-966
    • Nikolova, M.1    Ng, M.K.2
  • 88
    • 84875878163 scopus 로고    scopus 로고
    • Discriminative least squares regression for multiclass classification, and feature selection
    • Nov
    • S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang, "Discriminative least squares regression for multiclass classification, and feature selection," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 11, pp. 1738-1754, Nov. 2012
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.11 , pp. 1738-1754
    • Xiang, S.1    Nie, F.2    Meng, G.3    Pan, C.4    Zhang, C.5
  • 89
    • 84866678530 scopus 로고    scopus 로고
    • Feature selection via joint embedding learning, and sparse regression
    • C. Hou, F. Nie, D. Yi, and Y. Wu, "Feature selection via joint embedding learning, and sparse regression," in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011, pp. 1324-1329
    • (2011) Proc. 22nd Int. Joint Conf. Artif. Intell , pp. 1324-1329
    • Hou, C.1    Nie, F.2    Yi, D.3    Wu, Y.4
  • 90
    • 84901250680 scopus 로고    scopus 로고
    • Joint embedding learning, and sparse regression: A framework for unsupervised feature selection
    • Jun
    • C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu, "Joint embedding learning, and sparse regression: A framework for unsupervised feature selection," IEEE Trans. Cybern., vol. 44, no. 6, pp. 793-804, Jun. 2014
    • (2014) IEEE Trans. Cybern , vol.44 , Issue.6 , pp. 793-804
    • Hou, C.1    Nie, F.2    Li, X.3    Yi, D.4    Wu, Y.5
  • 91
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Dec
    • S. T. Roweis, and L. K. Saul, "Nonlinear dimensionality reduction by locally linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 93
    • 77958565426 scopus 로고    scopus 로고
    • Efficient spectral feature selection with minimum redundancy
    • Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. 24th AAAI Conf. Artif. Intell., 2010, pp. 673-678
    • (2010) Proc. 24th AAAI Conf. Artif. Intell , pp. 673-678
    • Zhao, Z.1    Wang, L.2    Liu, H.3
  • 95
    • 33144458972 scopus 로고    scopus 로고
    • Efficient, and robust feature extraction by maximum margin criterion
    • Feb
    • H. Li, T. Jiang, and K. Zhang, "Efficient, and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 17, no. 1, pp. 157-165, Feb. 2006
    • (2006) IEEE Trans. Neural Netw , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 96
    • 36348944726 scopus 로고    scopus 로고
    • Comments on efficient, and robust feature extraction by maximum margin criterion
    • Nov
    • J. Liu, S. Chen, X. Tan, and D. Zhang, "Comments on efficient, and robust feature extraction by maximum margin criterion," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1862-1864, Nov. 2007
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.6 , pp. 1862-1864
    • Liu, J.1    Chen, S.2    Tan, X.3    Zhang, D.4
  • 97
    • 84866440970 scopus 로고    scopus 로고
    • Unsupervised maximum margin feature selection via L2,1-norm minimization
    • S. Yang, C. Hou, F. Nie, and Y. Wu, "Unsupervised maximum margin feature selection via L2,1-norm minimization," Neural Comput. Appl., vol. 21, no. 7, pp. 1791-1799, 2012
    • (2012) Neural Comput. Appl , vol.21 , Issue.7 , pp. 1791-1799
    • Yang, S.1    Hou, C.2    Nie, F.3    Wu, Y.4
  • 99
  • 100
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding, and extensions: A general framework for dimensionality reduction
    • Jan
    • S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and S. Lin, "Graph embedding, and extensions: A general framework for dimensionality reduction," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, Jan. 2007
    • (2007) IEEE Trans. Pattern Anal. Mach. Intell , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.-J.4    Yang, Q.5    Lin, S.6
  • 102
    • 0003882879 scopus 로고    scopus 로고
    • Providence, RI, USA: AMS
    • F. Chung, Spectral Graph Theory, vol. 92. Providence, RI, USA: AMS, 1997
    • (1997) Spectral Graph Theory , vol.92
    • Chung, F.1
  • 103
    • 77956531771 scopus 로고    scopus 로고
    • From transformation-based dimensionality reduction to feature selection
    • M. Masaeli, G. Fung, and J. G. Dy, "From transformation-based dimensionality reduction to feature selection," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 751-758
    • (2010) Proc. 27th Int. Conf. Mach. Learn , pp. 751-758
    • Masaeli, M.1    Fung, G.2    Dy, J.G.3
  • 104
    • 84896061418 scopus 로고    scopus 로고
    • Exact top-k feature selection via 2,0-norm constraint
    • X. Cai, F. Nie, and H. Huang, "Exact top-k feature selection via 2,0-norm constraint," in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1240-1246
    • (2013) Proc. Int. Joint Conf. Artif. Intell , pp. 1240-1246
    • Cai, X.1    Nie, F.2    Huang, H.3
  • 106
    • 84959239518 scopus 로고    scopus 로고
    • Unsupervised simultaneous orthogonal basis clustering feature selection
    • Jun
    • D. Han, and J. Kim, "Unsupervised simultaneous orthogonal basis clustering feature selection," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 5016-5023
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 5016-5023
    • Han, D.1    Kim, J.2
  • 107
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l2,1-norm minimization
    • J. Liu, S. Ji, and J. Ye, "Multi-task feature learning via efficient l2,1-norm minimization," in Proc. 25th Conf. Uncertainty Artif. Intell., 2009, pp. 339-348
    • (2009) Proc. 25th Conf. Uncertainty Artif. Intell , pp. 339-348
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 108
    • 84863059819 scopus 로고    scopus 로고
    • Sparse multi-task regression, and feature selection to identify brain imaging predictors for memory performance
    • Nov
    • H. Wang, et al., "Sparse multi-task regression, and feature selection to identify brain imaging predictors for memory performance," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 557-562
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 557-562
    • Wang, H.1
  • 109
    • 85162048536 scopus 로고    scopus 로고
    • Adaptive multi-task lasso: With application to eQTL detection
    • S. Lee, J. Zhu, and E. P. Xing, "Adaptive multi-task Lasso: With application to eQTL detection," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1306-1314
    • (2010) Proc. Adv. Neural Inf. Process. Syst , pp. 1306-1314
    • Lee, S.1    Zhu, J.2    Xing, E.P.3
  • 110
    • 84880191846 scopus 로고    scopus 로고
    • Feature selection with linked data in social media
    • J. Tang, and H. Liu, "Feature selection with linked data in social media," in Proc. SIAM Int. Conf. Data Mining, 2012, pp. 118-128
    • (2012) Proc. SIAM Int. Conf. Data Mining , pp. 118-128
    • Tang, J.1    Liu, H.2
  • 111
    • 80052405668 scopus 로고    scopus 로고
    • Linear discriminant dimensionality reduction
    • Q. Gu, Z. Li, and J. Han, "Linear discriminant dimensionality reduction," in Proc. Eur. Conf. Mach. Learn., 2011, pp. 549-564
    • (2011) Proc. Eur. Conf. Mach. Learn , pp. 549-564
    • Gu, Q.1    Li, Z.2    Han, J.3
  • 112
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection, and joint subspace selection for multiple classification problems
    • Apr
    • G. Obozinski, B. Taskar, and M. I. Jordan, "Joint covariate selection, and joint subspace selection for multiple classification problems," Statist. Comput., vol. 20, no. 2, pp. 231-252, Apr. 2010
    • (2010) Statist. Comput , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 113
    • 84863057525 scopus 로고    scopus 로고
    • Exploring regularized feature selection for person specific face verification
    • Nov
    • Y. Liang, S. Liao, L. Wang, and B. Zou, "Exploring regularized feature selection for person specific face verification," in Proc. IEEE Int. Conf. Comput. Vis., Nov. 2011, pp. 1676-1683
    • (2011) Proc. IEEE Int. Conf. Comput. Vis , pp. 1676-1683
    • Liang, Y.1    Liao, S.2    Wang, L.3    Zou, B.4
  • 114
    • 79551660140 scopus 로고    scopus 로고
    • Multitask sparsity via maximum entropy discrimination
    • T. Jebara, "Multitask sparsity via maximum entropy discrimination," J. Mach. Learn. Res., vol. 12, no. 1, pp. 75-110, 2011
    • (2011) J. Mach. Learn. Res , vol.12 , Issue.1 , pp. 75-110
    • Jebara, T.1
  • 115
    • 84908211928 scopus 로고    scopus 로고
    • A convex formulation for semi-supervised multi-label feature selection
    • X. Chang, F. Nie, Y. Yang, and H. Huang, "A convex formulation for semi-supervised multi-label feature selection," in Proc. 28th AAAI Conf. Artif. Intell., 2014, pp. 1171-1177
    • (2014) Proc. 28th AAAI Conf. Artif. Intell , pp. 1171-1177
    • Chang, X.1    Nie, F.2    Yang, Y.3    Huang, H.4
  • 116
    • 84896063365 scopus 로고    scopus 로고
    • Probabilistic multi-label classification with sparse feature learning
    • Y. Guo, and W. Xue, "Probabilistic multi-label classification with sparse feature learning," in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1373-1379
    • (2013) Proc. Int. Joint Conf. Artif. Intell , pp. 1373-1379
    • Guo, Y.1    Xue, W.2
  • 118
    • 77953216761 scopus 로고    scopus 로고
    • A shared-subspace learning framework for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye, "A shared-subspace learning framework for multi-label classification," ACM Trans. Knowl. Discovery Data, vol. 4, no. 2, pp. 1-29, 2010
    • (2010) ACM Trans. Knowl. Discovery Data , vol.4 , Issue.2 , pp. 1-29
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 119
    • 84864065280 scopus 로고    scopus 로고
    • Web image annotation via subspace-sparsity collaborated feature selection
    • Aug
    • Z. Ma, F. Nie, Y. Yang, J. R. R. Uijlings, and N. Sebe, "Web image annotation via subspace-sparsity collaborated feature selection," IEEE Trans. Multimedia, vol. 14, no. 4, pp. 1021-1030, Aug. 2012
    • (2012) IEEE Trans. Multimedia , vol.14 , Issue.4 , pp. 1021-1030
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.R.R.4    Sebe, N.5
  • 120
    • 84960497436 scopus 로고    scopus 로고
    • Multi-view intact space learning
    • Dec
    • C. Xu, D. Tao, and C. Xu, "Multi-view intact space learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 12, pp. 2531-2544, Dec. 2015
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell , vol.37 , Issue.12 , pp. 2531-2544
    • Xu, C.1    Tao, D.2    Xu, C.3
  • 122
    • 84899113134 scopus 로고    scopus 로고
    • Margin based feature selection for cross-sensor iris recognition via linear programming
    • L. Xiao, Z. Sun, R. He, and T. Tan, "Margin based feature selection for cross-sensor iris recognition via linear programming," in Proc. 2nd IAPR Asia Conf. Pattern Recognit., 2013, pp. 246-250
    • (2013) Proc. 2nd IAPR Asia Conf. Pattern Recognit , pp. 246-250
    • Xiao, L.1    Sun, Z.2    He, R.3    Tan, T.4
  • 124
    • 84897568262 scopus 로고    scopus 로고
    • Multi-view clustering, and feature learning via structured sparsity
    • H. Wang, F. Nie, and H. Huang, "Multi-view clustering, and feature learning via structured sparsity," in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 352-360
    • (2013) Proc. 30th Int. Conf. Mach. Learn , pp. 352-360
    • Wang, H.1    Nie, F.2    Huang, H.3
  • 125
    • 84862970066 scopus 로고    scopus 로고
    • Identifying quantitative trait loci via group-sparse multitask regression, and feature selection: An imaging genetics study of the ADNI cohort
    • H. Wang, et al., "Identifying quantitative trait loci via group-sparse multitask regression, and feature selection: An imaging genetics study of the ADNI cohort," Bioinformatics, vol. 28, no. 2, pp. 229-237, 2012
    • (2012) Bioinformatics , vol.28 , Issue.2 , pp. 229-237
    • Wang, H.1
  • 126
    • 84863509119 scopus 로고    scopus 로고
    • Identifying disease sensitive, and quantitative traitrelevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
    • H. Wang, et al., "Identifying disease sensitive, and quantitative traitrelevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning," Bioinformatics, vol. 28, no. 12, pp. i127-i136, 2012
    • (2012) Bioinformatics , vol.28 , Issue.12 , pp. i127-i136
    • Wang, H.1
  • 127
    • 84903120310 scopus 로고    scopus 로고
    • Group sparse multiview patch alignment framework with view consistency for image classification
    • Jul
    • J. Gui, D. Tao, Z. Sun, Y. Luo, X. You, and Y. Y. Tang, "Group sparse multiview patch alignment framework with view consistency for image classification," IEEE Trans. Image Process., vol. 23, no. 7, pp. 3126-3137, Jul. 2014
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.7 , pp. 3126-3137
    • Gui, J.1    Tao, D.2    Sun, Z.3    Luo, Y.4    You, X.5    Tang, Y.Y.6
  • 128
    • 84962090090 scopus 로고    scopus 로고
    • Classification with noisy labels by importance reweighting
    • Mar
    • T. Liu, and D. Tao, "Classification with noisy labels by importance reweighting," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 3, pp. 447-461, Mar. 2016
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell , vol.38 , Issue.3 , pp. 447-461
    • Liu, T.1    Tao, D.2
  • 129
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization, and support vector machines
    • P. S. Bradley, and O. L. Mangasarian, "Feature selection via concave minimization, and support vector machines," in Proc. 15th Int. Conf. Mach. Learn., 1998, pp. 82-90
    • (1998) Proc. 15th Int. Conf. Mach. Learn , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 130
    • 84901467383 scopus 로고    scopus 로고
    • Nonconvex regularizations for feature selection in ranking with sparse SVM
    • Jun
    • L. Laporte, R. Flamary, S. Canu, S. Déjean, and J. Mothe, "Nonconvex regularizations for feature selection in ranking with sparse SVM," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 6, pp. 1118-1130, Jun. 2014
    • (2014) IEEE Trans. Neural Netw. Learn. Syst , vol.25 , Issue.6 , pp. 1118-1130
    • Laporte, L.1    Flamary, R.2    Canu, S.3    Déjean, S.4    Mothe, J.5
  • 131
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification, and gene selection
    • L. Wang, J. Zhu, and H. Zou, "Hybrid huberized support vector machines for microarray classification, and gene selection," Bioinformatics, vol. 24, no. 3, pp. 412-419, 2008
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 132
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse SVM for feature selection on very high dimensional datasets
    • M. Tan, L. Wang, and I. W. Tsang, "Learning sparse SVM for feature selection on very high dimensional datasets," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 1047-1054
    • (2010) Proc. 27th Int. Conf. Mach. Learn , pp. 1047-1054
    • Tan, M.1    Wang, L.2    Tsang, I.W.3
  • 134
    • 80052871516 scopus 로고    scopus 로고
    • Combined feature selection, and cancer prognosis using support vector machine regression
    • Nov./Dec
    • B.-Y. Sun, Z.-H. Zhu, J. Li, and B. Linghu, "Combined feature selection, and cancer prognosis using support vector machine regression," IEEE-ACM Trans. Comput. Biol. Bioinformatics, vol. 8, no. 6, pp. 1671-1677, Nov./Dec. 2011
    • (2011) IEEE -ACM Trans. Comput. Biol. Bioinformatics , vol.8 , Issue.6 , pp. 1671-1677
    • Sun, B.-Y.1    Zhu, Z.-H.2    Li, J.3    Linghu, B.4
  • 135
    • 76849090053 scopus 로고    scopus 로고
    • Sparse support vector machines with L p penalty for biomarker identification
    • Jan./Mar
    • Z. Liu, S. Lin, and M. T. Tan, "Sparse support vector machines with L p penalty for biomarker identification," IEEE-ACM Trans. Comput. Biol. Bioinformatics, vol. 7, no. 1, pp. 100-107, Jan./Mar. 2010
    • (2010) IEEE -ACM Trans. Comput. Biol. Bioinformatics , vol.7 , Issue.1 , pp. 100-107
    • Liu, Z.1    Lin, S.2    Tan, M.T.3
  • 137
    • 0345327592 scopus 로고    scopus 로고
    • A simple, and efficient algorithm for gene selection using sparse logistic regression
    • S. K. Shevade, and S. S. Keerthi, "A simple, and efficient algorithm for gene selection using sparse logistic regression," Bioinformatics, vol. 19, no. 17, pp. 2246-2253, 2003
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 138
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularization
    • G. C. Cawley, and N. L. C. Talbot, "Gene selection in cancer classification using sparse logistic regression with Bayesian regularization," Bioinformatics, vol. 22, no. 19, pp. 2348-2355, 2006
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 139
    • 80955131878 scopus 로고    scopus 로고
    • Structured sparse model based feature selection, and classification for hyperspectral imagery
    • Jul
    • Y. Qian, J. Zhou, M. Ye, and Q. Wang, "Structured sparse model based feature selection, and classification for hyperspectral imagery," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2011, pp. 1771-1774
    • (2011) Proc. IEEE Int. Geosci. Remote Sens. Symp , pp. 1771-1774
    • Qian, Y.1    Zhou, J.2    Ye, M.3    Wang, Q.4
  • 141
    • 84868284545 scopus 로고    scopus 로고
    • Unsupervised feature selection using nonnegative spectral analysis
    • Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu, "Unsupervised feature selection using nonnegative spectral analysis," in Proc. AAAI Conf. Artif. Intell., 2012, pp. 1026-1032
    • (2012) Proc. AAAI Conf. Artif. Intell , pp. 1026-1032
    • Li, Z.1    Yang, Y.2    Liu, J.3    Zhou, X.4    Lu, H.5
  • 142
    • 80055026446 scopus 로고    scopus 로고
    • Nonnegative spectral clustering with discriminative regularization
    • Y. Yang, H. T. Shen, F. Nie, R. Ji, and X. Zhou, "Nonnegative spectral clustering with discriminative regularization," in Proc. AAAI Conf. Artif. Intell., 2011, pp. 555-560
    • (2011) Proc. AAAI Conf. Artif. Intell , pp. 555-560
    • Yang, Y.1    Shen, H.T.2    Nie, F.3    Ji, R.4    Zhou, X.5
  • 143
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts, and image segmentation
    • Aug
    • J. Shi, and J. Malik, "Normalized cuts, and image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 145
    • 77954603019 scopus 로고    scopus 로고
    • A framework for feature selection in clustering
    • D. M. Witten, and R. Tibshirani, "A framework for feature selection in clustering," J. Amer. Statistical Assoc., vol. 105, no. 490, pp. 713-726, 2010
    • (2010) J. Amer. Statistical Assoc , vol.105 , Issue.490 , pp. 713-726
    • Witten, D.M.1    Tibshirani, R.2
  • 146
    • 79959501613 scopus 로고    scopus 로고
    • Feature selection, and kernel learning for local learning-based clustering
    • Aug
    • H. Zeng, and Y.-M. Cheung, "Feature selection, and kernel learning for local learning-based clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1532-1547, Aug. 2011
    • (2011) IEEE Trans. Pattern Anal. Mach. Intell , vol.33 , Issue.8 , pp. 1532-1547
    • Zeng, H.1    Cheung, Y.-M.2
  • 148
  • 149
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, L1 vs. L2 regularization, and rotational invariance
    • A. Y. Ng, "Feature selection, L1 vs. L2 regularization, and rotational invariance," in Proc. 21st Int. Conf. Mach. Learn., 2004, pp. 78-85
    • (2004) Proc. 21st Int. Conf. Mach. Learn , pp. 78-85
    • Ng, A.Y.1
  • 150
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • Sep
    • Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 151
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised, and supervised inference: The emergence of sparsity in a weight-based approach
    • Jan
    • L. Wolf, and A. Shashua, "Feature selection for unsupervised, and supervised inference: The emergence of sparsity in a weight-based approach," J. Mach. Learn. Res., vol. 6, pp. 1855-1887, Jan. 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 152
    • 84880901313 scopus 로고    scopus 로고
    • A feature selection method for multivariate performance measures
    • Sep
    • Q. Mao, and I. W.-H. Tsang, "A feature selection method for multivariate performance measures," IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2051-2063, Sep. 2013
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , Issue.9 , pp. 2051-2063
    • Mao, Q.1    Tsang, I.W.-H.2
  • 153
    • 0003840341 scopus 로고    scopus 로고
    • Columbia object image library (COIL-20
    • Columbia Univ., New York, NY, USA, Tech. Rep. CUCS 005-96
    • S. A. Nene, S. K. Nayar, and H. Murase, "Columbia object image library (COIL-20)," Dept. Comput. Sci., Columbia Univ., New York, NY, USA, Tech. Rep. CUCS-005-96, 1996
    • (1996) Dept. Comput. Sci
    • Nene, S.A.1    Nayar, S.K.2    Murase, H.3
  • 154
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • C. L. Nutt, et al., "Gene expression-based classification of malignant gliomas correlates better with survival than histological classification," Cancer Res., vol. 63, no. 7, pp. 1602-1607, 2003
    • (2003) Cancer Res , vol.63 , Issue.7 , pp. 1602-1607
    • Nutt, C.L.1
  • 155
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • A. Bhattacharjee, et al., "Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses," Proc. Nat. Acad. Sci. USA, vol. 98, no. 24, pp. 13790-13795, 2001
    • (2001) Proc. Nat. Acad. Sci. USA , vol.98 , Issue.24 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 156
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S. A. Armstrong, et al., "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia," Nature Genet., vol. 30, no. 1, pp. 41-47, 2002
    • (2002) Nature Genet , vol.30 , Issue.1 , pp. 41-47
    • Armstrong, S.A.1
  • 157
    • 33645772227 scopus 로고    scopus 로고
    • Neuronal, and glioma-derived stem cell factor induces angiogenesis within the brain
    • L. Sun, et al., "Neuronal, and glioma-derived stem cell factor induces angiogenesis within the brain," Cancer Cell, vol. 9, no. 4, pp. 287-300, 2006
    • (2006) Cancer Cell , vol.9 , Issue.4 , pp. 287-300
    • Sun, L.1
  • 158
    • 0004171986 scopus 로고    scopus 로고
    • The AR face database
    • Ohio State Univ., Columbus, OH USA, Tech. Rep. 24, Jun
    • A. Martínez, and R. Benavente, "The AR face database," Dept. Elect. Comput. Eng., Ohio State Univ., Columbus, OH USA, Tech. Rep. 24, Jun. 1998
    • (1998) Dept. Elect. Comput. Eng
    • Martínez, A.1    Benavente, R.2
  • 159
    • 77953517919 scopus 로고    scopus 로고
    • Empirical evaluation of feature selection methods in classification
    • L. Čehovin, and Z. Bosnić, "Empirical evaluation of feature selection methods in classification," Intell. Data Anal., vol. 14, no. 3, pp. 265-281, 2010
    • (2010) Intell. Data Anal , vol.14 , Issue.3 , pp. 265-281
    • Čehovin, L.1    Bosnić, Z.2
  • 161
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy
    • Aug
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of max-dependency, max-relevance, and minredundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 162
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis, and extensions of relief
    • I. Kononenko, "Estimating attributes: Analysis, and extensions of RELIEF," in Proc. Eur. Conf. Mach. Learn., 1994, pp. 171-182
    • (1994) Proc. Eur. Conf. Mach. Learn , pp. 171-182
    • Kononenko, I.1
  • 165
    • 84926214098 scopus 로고    scopus 로고
    • Principal component 2-D long shortterm memory for font recognition on single Chinese characters
    • Mar
    • D. Tao, X. Lin, L. Jin, and X. Li, "Principal component 2-D long shortterm memory for font recognition on single Chinese characters," IEEE Trans. Cybern., vol. 46, no. 3, pp. 756-765, Mar. 2016
    • (2016) IEEE Trans. Cybern , vol.46 , Issue.3 , pp. 756-765
    • Tao, D.1    Lin, X.2    Jin, L.3    Li, X.4
  • 166
  • 168
    • 4644260621 scopus 로고    scopus 로고
    • Sampling: Knowing whole from its part
    • Boston, MA, USA Kluwer Academic Publishers
    • B. Gu, F. Hu, and H. Liu, "Sampling: Knowing whole from its part," in Instance Selection, and Construction for Data Mining. Boston, MA, USA: Kluwer Academic Publishers, 2001, pp. 21-38
    • (2001) Instance Selection, and Construction for Data Mining , pp. 21-38
    • Gu, B.1    Hu, F.2    Liu, H.3
  • 169


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.