-
1
-
-
85162040141
-
Treestructured stick breaking for hierarchical data
-
(J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds.)
-
ADAMS, R., GHAHRAMANI, Z. and JORDAN, M. (2010). Treestructured stick breaking for hierarchical data. In Advances in Neural Information Processing Systems 23 (J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds.) 19-27.
-
(2010)
Advances in Neural Information Processing Systems
, vol.23
, pp. 19-27
-
-
Adams, R.1
Ghahramani, Z.2
Jordan, M.3
-
2
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
AHARON, M., ELAD, M. and BRUCKSTEIN, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing 54 4311-4322.
-
(2006)
IEEE Trans. Signal Processing
, vol.54
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
3
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
BACH, F. R. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9 1179-1225.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
4
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
BACH, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. In Neural Information Processing Systems 21.
-
(2009)
In Neural Information Processing Systems
, pp. 21
-
-
Bach, F.1
-
5
-
-
85162027958
-
Structured sparsity-inducing norms through submodular functions
-
BACH, F. (2010). Structured sparsity-inducing norms through submodular functions. In Advances in Neural Information Processing Systems 23.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 23
-
-
Bach, F.1
-
9
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
BACH, F., JENATTON, R., MAIRAL, J. and OBOZINSKI, G. (2012). Optimization with sparsity-inducing penalties. Foundations and Trends in Machine Learning 4 1-106.
-
(2012)
Foundations and Trends in Machine Learning
, vol.4
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
10
-
-
77950244328
-
Model-based compressive sensing
-
BARANIUK, R. G., CEVHER, V., DUARTE, M. F. and HEGDE, C. (2010). Model-based compressive sensing. IEEE Trans. Inform. Theory 56 1982-2001.
-
(2010)
IEEE Trans. Inform. Theory
, vol.56
, pp. 1982-2001
-
-
Baraniuk, R.G.1
Cevher, V.2
Duarte, M.F.3
Hegde, C.4
-
11
-
-
85014561619
-
A fast iterative shrinkagethresholding algorithm for linear inverse problems
-
BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 183-202.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
12
-
-
79551550744
-
NESTA: A fast and accurate first-order method for sparse recovery
-
BECKER, S.,BOBIN, J. and CANDÈS, E. J. (2011). NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4 1-39.
-
(2011)
SIAM J. Imaging Sci.
, vol.4
, pp. 1-39
-
-
Becker, S.1
Bobin, J.2
Candès, E.J.3
-
13
-
-
68649086910
-
Simultaneous analysis of lasso and Dantzig selector
-
BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732.
-
(2009)
Ann. Statist.
, vol.37
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.B.3
-
14
-
-
76849117578
-
The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
-
BLEI, D. M., GRIFFITHS, T. L. and JORDAN, M. I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57 1-30.
-
(2010)
J. ACM
, vol.57
, pp. 1-30
-
-
Blei, D.M.1
Griffiths, T.L.2
Jordan, M.I.3
-
16
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
-
BONDELL, H. D. and REICH, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64 115-123.
-
(2008)
Biometrics
, vol.64
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
20
-
-
84898626615
-
Sparse signal recovery using Markov random fields
-
CEVHER, V., DUARTE, M. F., HEGDE, C. and BARANIUK, R. G. (2008). Sparse signal recovery using Markov random fields. In Advances in Neural Information Processing Systems 20.
-
(2008)
Advances in Neural Information Processing Systems
, pp. 20
-
-
Cevher, V.1
Duarte, M.F.2
Hegde, C.3
Baraniuk, R.G.4
-
22
-
-
80053139009
-
Smoothing proximal gradient method for general structured sparse learning
-
CHEN, X., LIN, Q., KIM, S., CARBONELL, J. G. andXING, E. P. (2011). Smoothing proximal gradient method for general structured sparse learning. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI).
-
(2011)
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. (UAI)
-
-
Chen, X.1
Lin, Q.2
Kim, S.3
Carbonell, J.G.4
Xing, E.P.5
-
24
-
-
48849086355
-
Optimal solutions for sparse principal component analysis
-
D'ASPREMONT, A., BACH, F. and EL GHAOUI, L. (2008). Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9 1269-1294.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1269-1294
-
-
D'aspremont, A.1
Bach, F.2
El Ghaoui, L.3
-
25
-
-
84950459514
-
Adapting to unknown smoothness via wavelet shrinkage
-
DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 1200-1224
-
-
Donoho, D.L.1
Johnstone, I.M.2
-
26
-
-
3242708140
-
Least angle regression
-
EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression. Ann. Statist. 32 407-499.
-
(2004)
Ann. Statist.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
28
-
-
45849107328
-
Pathwise coordinate optimization
-
FRIEDMAN, J., HASTIE, T., HÖFLING, H. and TIBSHIRANI, R. (2007). Pathwise coordinate optimization. Ann. Appl. Stat. 1 302-332.
-
(2007)
Ann. Appl. Stat.
, vol.1
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
31
-
-
0003684449
-
-
Springer, New York
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning. Data Mining, Inference, and Prediction. Springer, New York.
-
(2001)
The Elements of Statistical Learning. Data Mining, Inference, and Prediction.
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
32
-
-
77955136689
-
The benefit of group sparsity
-
HUANG, J. and ZHANG, T. (2010). The benefit of group sparsity. Ann. Statist. 38 1978-2004.
-
(2010)
Ann. Statist.
, vol.38
, pp. 1978-2004
-
-
Huang, J.1
Zhang, T.2
-
35
-
-
80555129673
-
Structured variable selection with sparsity-inducing norms
-
JENATTON, R., AUDIBERT, J.-Y. and BACH, F. (2011). Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12 2777-2824.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2777-2824
-
-
Jenatton, R.1
Audibert, J.-Y.2
Bach, F.3
-
37
-
-
84867156463
-
Multi-scale mining of fMRI data with hierarchical structured sparsity
-
To appear. Technical report. Preprint. Available at arXiv:1105.0363
-
JENATTON, R., GRAMFORT, A., MICHEL, V., OBOZINSKI, G., EGER, E., BACH, F. and THIRION, B. (2011a). Multi-scale mining of fMRI data with hierarchical structured sparsity. SIAM J. Imaging Sci. To appear. Technical report. Preprint. Available at arXiv:1105.0363.
-
(2011)
SIAM J. Imaging Sci
-
-
Jenatton, R.1
Gramfort, A.2
Michel, V.3
Obozinski, G.4
Eger, E.5
Bach, F.6
Thirion, B.7
-
38
-
-
80052234083
-
Proximal methods for hierarchical sparse coding
-
JENATTON, R., MAIRAL, J., OBOZINSKI, G. and BACH, F. (2011b). Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res. 12 2297-2334.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2297-2334
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
40
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
KAVUKCUOGLU, K., RANZATO, M. A., FERGUS, R. and LECUN, Y. (2009). Learning invariant features through topographic filter maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
-
(2009)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Kavukcuoglu, K.1
Ranzato, M.A.2
Fergus, R.3
Lecun, Y.4
-
41
-
-
66349089385
-
A multivariate regression approach to association analysis of a quantitative trait network
-
KIM, S., SOHN, K. A. and XING, E. P. (2009). A multivariate regression approach to association analysis of a quantitative trait network. Bioinformatics 25 204-212.
-
(2009)
Bioinformatics
, vol.25
, pp. 204-212
-
-
Kim, S.1
Sohn, K.A.2
Xing, E.P.3
-
43
-
-
0015000439
-
Some results on Tchebycheffian spline functions
-
KIMELDORF, G. andWAHBA, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82-95.
-
(1971)
J. Math. Anal. Appl.
, vol.33
, pp. 82-95
-
-
Kimeldorf, G.1
Wahba, G.2
-
44
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401 788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
45
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
LIN, Y. and ZHANG, H. H. (2006). Component selection and smoothing in multivariate nonparametric regression. Ann. Statist. 34 2272-2297.
-
(2006)
Ann. Statist.
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
47
-
-
84898059927
-
Taking advantage of sparsity in multi-task learning
-
LOUNICI, K., PONTIL, M., TSYBAKOV, A. B. and VAN DE GEER, S. (2009). Taking advantage of sparsity in multi-task learning. In Proceedings of the Conference on Learning Theory.
-
(2009)
Proceedings of the Conference on Learning Theory
-
-
Lounici, K.1
Pontil, M.2
Tsybakov, A.B.3
Van De Geer, S.4
-
48
-
-
84855412474
-
Oracle inequalities and optimal inference under group sparsity
-
LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSYBAKOV, A. B. (2011). Oracle inequalities and optimal inference under group sparsity. Ann. Statist. 39 2164-2204.
-
(2011)
Ann. Statist.
, vol.39
, pp. 2164-2204
-
-
Lounici, K.1
Pontil, M.2
Van De Geer, S.3
Tsybakov, A.B.4
-
51
-
-
76749107542
-
Online learning for matrix factorization and sparse coding
-
MAIRAL, J., BACH, F., PONCE, J. and SAPIRO, G. (2010). Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11 19-60.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 19-60
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
-
52
-
-
80555129671
-
Convex and network flow optimization for structured sparsity
-
MAIRAL, J., JENATTON, R., OBOZINSKI, G. and BACH, F. (2011). Convex and network flow optimization for structured sparsity. J. Mach. Learn. Res. 12 2681-2720.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2681-2720
-
-
Mairal, J.1
Jenatton, R.2
Obozinski, G.3
Bach, F.4
-
55
-
-
33747163541
-
Highdimensional graphs and variable selection with the lasso
-
MEINSHAUSEN, N. and BÜHLMANN, P. (2006). Highdimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462.
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
57
-
-
0041356704
-
Fonctions convexes duales et points proximaux dans un espace hilbertien
-
MOREAU, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris 255 2897-2899.
-
(1962)
C. R. Acad. Sci. Paris
, vol.255
, pp. 2897-2899
-
-
Moreau, J.-J.1
-
58
-
-
62749175137
-
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
-
NEEDELL, D. and TROPP, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26 301-321.
-
(2009)
Appl. Comput. Harmon. Anal.
, vol.26
, pp. 301-321
-
-
Needell, D.1
Tropp, J.A.2
-
60
-
-
84858717588
-
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
-
NEGAHBAN, S., RAVIKUMAR, P., WAINWRIGHT, M. J. and YU, B. (2009). A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. In Advances in Neural Information Processing Systems 22.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 22
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
62
-
-
67651063011
-
-
Technical report, Center for Operations Research and Econometrics (CORE), Catholic Univ. Louvain
-
NESTEROV, Y. (2007). Gradient methods for minimizing composite objective function. Technical report, Center for Operations Research and Econometrics (CORE), Catholic Univ. Louvain.
-
(2007)
Gradient methods for minimizing composite objective function
-
-
Nesterov, Y.1
-
65
-
-
77953322499
-
Joint covariate selection and joint subspace selection for multiple classification problems
-
OBOZINSKI, G., TASKAR, B. and JORDAN, M. I. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput. 20 231-252.
-
(2010)
Stat. Comput.
, vol.20
, pp. 231-252
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.I.3
-
66
-
-
79551607002
-
Support union recovery in high-dimensional multivariate regression
-
OBOZINSKI, G.,WAINWRIGHT, M. J. and JORDAN, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Ann. Statist. 39 1-47.
-
(2011)
Ann. Statist.
, vol.39
, pp. 1-47
-
-
Obozinski, G.1
Wainwright, M.J.2
Jordan, M.I.3
-
67
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
OLSHAUSEN, B. A. and FIELD, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 607-609.
-
(1996)
Nature
, vol.381
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
68
-
-
84871564602
-
Theoretical properties of the overlapping group Lasso
-
PERCIVAL, D. (2012). Theoretical properties of the overlapping group Lasso. Electron. J. Statist. 6 269-288.
-
(2012)
Electron. J. Statist.
, vol.6
, pp. 269-288
-
-
Percival, D.1
-
70
-
-
84856264699
-
Convex approaches to model wavelet sparsity patterns
-
RAO, N. S., NOWAK, R. D., WRIGHT, S. J. and KINGSBURY, N. G. (2011). Convex approaches to model wavelet sparsity patterns. In International Conference on Image Processing (ICIP).
-
(2011)
International Conference on Image Processing. (ICIP)
-
-
Rao, N.S.1
Nowak, R.D.2
Wright, S.J.3
Kingsbury, N.G.4
-
71
-
-
46249091578
-
Classification of arrayCGH data using fused SVM
-
RAPAPORT, F., BARILLOT, E. and VERT, J.-P. (2008). Classification of arrayCGH data using fused SVM. Bioinformatics 24 i375-i382.
-
(2008)
Bioinformatics
, vol.24
-
-
Rapaport, F.1
Barillot, E.2
Vert, J.-P.3
-
72
-
-
70350092487
-
Sparse additive models
-
RAVIKUMAR, P., LAFFERTY, J., LIU, H. and WASSERMAN, L. (2009). Sparse additive models. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 1009-1030.
-
(2009)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.71
, pp. 1009-1030
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
74
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
RUDIN, L. I., OSHER, S. and FATEMI, E. (1992). Nonlinear total variation based noise removal algorithms. Phys. D 60 259-268.
-
(1992)
Phys. D
, vol.60
, pp. 259-268
-
-
Rudin, L.I.1
Osher, S.2
Fatemi, E.3
-
77
-
-
79251503629
-
Trading accuracy for sparsity in optimization problems with sparsity constraints
-
SHALEV-SHWARTZ, S., SREBRO, N. and ZHANG, T. (2010). Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM J. Optim. 20 2807-2832.
-
(2010)
SIAM J. Optim.
, vol.20
, pp. 2807-2832
-
-
Shalev-Shwartz, S.1
Srebro, N.2
Zhang, T.3
-
79
-
-
78649427721
-
Grouping pursuit through a regularization solution surface
-
SHEN, X. and HUANG, H.-C. (2010). Grouping pursuit through a regularization solution surface. J. Amer. Statist. Assoc. 105 727- 739.
-
(2010)
J. Amer. Statist. Assoc.
, vol.105
, pp. 727-739
-
-
Shen, X.1
Huang, H.-C.2
-
81
-
-
77953703525
-
Collaborative hierarchical sparse modeling
-
IEEE
-
SPRECHMANN, P., RAMIREZ, I., SAPIRO, G. and ELDAR, Y. (2010). Collaborative hierarchical sparse modeling. In 44th Annual Conference on Information Sciences and Systems (CISS) 1-6. IEEE.
-
(2010)
44th Annual Conference on Information Sciences and Systems (CISS)
, pp. 1-6
-
-
Sprechmann, P.1
Ramirez, I.2
Sapiro, G.3
Eldar, Y.4
-
82
-
-
68249141421
-
On the reconstruction of block-sparse signals with an optimal number of measurements
-
STOJNIC, M., PARVARESH, F. and HASSIBI, B. (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57 3075-3085.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, pp. 3075-3085
-
-
Stojnic, M.1
Parvaresh, F.2
Hassibi, B.3
-
83
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
84
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
TIBSHIRANI, R., SAUNDERS, M., ROSSET, S., ZHU, J. and KNIGHT, K. (2005). Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 91-108.
-
(2005)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.67
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
85
-
-
5444237123
-
Greed is good: Algorithmic results for sparse approximation
-
TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 2231-2242.
-
(2004)
IEEE Trans. Inform. Theory
, vol.50
, pp. 2231-2242
-
-
Tropp, J.A.1
-
86
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 1030-1051.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, pp. 1030-1051
-
-
Tropp, J.A.1
-
88
-
-
84871531335
-
1-regularization in high-dimensional statistical models
-
Hindustan Book Agency, New Delhi
-
1-regularization in high-dimensional statistical models. In Proceedings of the International Congress of Mathematicians. Volume IV 2351-2369. Hindustan Book Agency, New Delhi.
-
(2010)
Proceedings of the International Congress of Mathematicians
, vol.4
, pp. 2351-2369
-
-
Van De Geer, S.1
-
89
-
-
80555141638
-
Sparse structured dictionary learning for brain resting-state activity modeling
-
VAROQUAUX, G., JENATTON, R., GRAMFORT, A., OBOZINSKI, G., THIRION, B. and BACH, F. (2010). Sparse structured dictionary learning for brain resting-state activity modeling. In NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions.
-
(2010)
NIPS Workshop on Practical Applications of Sparse Modeling: Open Issues and New Directions
-
-
Varoquaux, G.1
Jenatton, R.2
Gramfort, A.3
Obozinski, G.4
Thirion, B.5
Bach, F.6
-
90
-
-
65749083666
-
1-constrained quadratic programming (Lasso)
-
1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202.
-
(2009)
IEEE Trans. Inform. Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.J.1
-
91
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
-
(2009)
Biostatistics
, vol.10
, pp. 515-534
-
-
Witten, D.M.1
Tibshirani, R.2
Hastie, T.3
-
93
-
-
84863879353
-
Coordinate descent algorithms for lasso penalized regression
-
WU, T. T. and LANGE, K. (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2 224-244.
-
(2008)
Ann. Appl. Stat.
, vol.2
, pp. 224-244
-
-
Wu, T.T.1
Lange, K.2
-
94
-
-
78149473368
-
Boosting with spatial regularization
-
XIANG, Z. J., XI, Y. T., HASSON, U. and RAMADGE, P. J. (2009). Boosting with spatial regularization. In Advances in Neural Information Processing Systems 22.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 22
-
-
Xiang, Z.J.1
Xi, Y.T.2
Hasson, U.3
Ramadge, P.J.4
-
95
-
-
77956916683
-
High dimensional inverse covariance matrix estimation via linear programming
-
YUAN, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11 2261- 2286.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2261-2286
-
-
Yuan, M.1
-
96
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67.
-
(2006)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
97
-
-
79551500651
-
A comparison of optimization methods and software for large-scale L1-regularized linear classification
-
YUAN, G.-X., CHANG, K.-W., HSIEH, C.-J. and LIN, C.-J. (2010). A comparison of optimization methods and software for large-scale L1-regularized linear classification. J. Mach. Learn. Res. 11 3183-3234.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3183-3234
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
-
99
-
-
69049086702
-
Some sharp performance bounds for least squares regression with L1 regularization
-
ZHANG, T. (2009). Some sharp performance bounds for least squares regression with L1 regularization. Ann. Statist. 37 2109-2144.
-
(2009)
Ann. Statist.
, vol.37
, pp. 2109-2144
-
-
Zhang, T.1
-
100
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
ZHAO, P., ROCHA, G. andYU, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Statist. 37 3468-3497.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
101
-
-
33845263263
-
On model selection consistency of Lasso
-
ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
104
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|