메뉴 건너뛰기




Volumn 27, Issue 4, 2012, Pages 450-468

Structured sparsity through convex optimization

Author keywords

Convex optimization; Sparsity

Indexed keywords


EID: 84871604261     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-STS394     Document Type: Article
Times cited : (267)

References (105)
  • 1
    • 85162040141 scopus 로고    scopus 로고
    • Treestructured stick breaking for hierarchical data
    • (J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds.)
    • ADAMS, R., GHAHRAMANI, Z. and JORDAN, M. (2010). Treestructured stick breaking for hierarchical data. In Advances in Neural Information Processing Systems 23 (J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, eds.) 19-27.
    • (2010) Advances in Neural Information Processing Systems , vol.23 , pp. 19-27
    • Adams, R.1    Ghahramani, Z.2    Jordan, M.3
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • AHARON, M., ELAD, M. and BRUCKSTEIN, A. (2006). K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Processing 54 4311-4322.
    • (2006) IEEE Trans. Signal Processing , vol.54 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • BACH, F. R. (2008). Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res. 9 1179-1225.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 4
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • BACH, F. (2009). Exploring large feature spaces with hierarchical multiple kernel learning. In Neural Information Processing Systems 21.
    • (2009) In Neural Information Processing Systems , pp. 21
    • Bach, F.1
  • 5
  • 11
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkagethresholding algorithm for linear inverse problems
    • BECK, A. and TEBOULLE, M. (2009). A fast iterative shrinkagethresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 12
    • 79551550744 scopus 로고    scopus 로고
    • NESTA: A fast and accurate first-order method for sparse recovery
    • BECKER, S.,BOBIN, J. and CANDÈS, E. J. (2011). NESTA: A fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4 1-39.
    • (2011) SIAM J. Imaging Sci. , vol.4 , pp. 1-39
    • Becker, S.1    Bobin, J.2    Candès, E.J.3
  • 13
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and Dantzig selector
    • BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of lasso and Dantzig selector. Ann. Statist. 37 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 14
    • 76849117578 scopus 로고    scopus 로고
    • The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies
    • BLEI, D. M., GRIFFITHS, T. L. and JORDAN, M. I. (2010). The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. J. ACM 57 1-30.
    • (2010) J. ACM , vol.57 , pp. 1-30
    • Blei, D.M.1    Griffiths, T.L.2    Jordan, M.I.3
  • 16
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • BONDELL, H. D. and REICH, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64 115-123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 19
  • 24
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • D'ASPREMONT, A., BACH, F. and EL GHAOUI, L. (2008). Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res. 9 1269-1294.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1269-1294
    • D'aspremont, A.1    Bach, F.2    El Ghaoui, L.3
  • 25
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • DONOHO, D. L. and JOHNSTONE, I. M. (1995). Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 1200-1224.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.L.1    Johnstone, I.M.2
  • 32
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • HUANG, J. and ZHANG, T. (2010). The benefit of group sparsity. Ann. Statist. 38 1978-2004.
    • (2010) Ann. Statist. , vol.38 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 35
    • 80555129673 scopus 로고    scopus 로고
    • Structured variable selection with sparsity-inducing norms
    • JENATTON, R., AUDIBERT, J.-Y. and BACH, F. (2011). Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12 2777-2824.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2777-2824
    • Jenatton, R.1    Audibert, J.-Y.2    Bach, F.3
  • 37
    • 84867156463 scopus 로고    scopus 로고
    • Multi-scale mining of fMRI data with hierarchical structured sparsity
    • To appear. Technical report. Preprint. Available at arXiv:1105.0363
    • JENATTON, R., GRAMFORT, A., MICHEL, V., OBOZINSKI, G., EGER, E., BACH, F. and THIRION, B. (2011a). Multi-scale mining of fMRI data with hierarchical structured sparsity. SIAM J. Imaging Sci. To appear. Technical report. Preprint. Available at arXiv:1105.0363.
    • (2011) SIAM J. Imaging Sci
    • Jenatton, R.1    Gramfort, A.2    Michel, V.3    Obozinski, G.4    Eger, E.5    Bach, F.6    Thirion, B.7
  • 41
    • 66349089385 scopus 로고    scopus 로고
    • A multivariate regression approach to association analysis of a quantitative trait network
    • KIM, S., SOHN, K. A. and XING, E. P. (2009). A multivariate regression approach to association analysis of a quantitative trait network. Bioinformatics 25 204-212.
    • (2009) Bioinformatics , vol.25 , pp. 204-212
    • Kim, S.1    Sohn, K.A.2    Xing, E.P.3
  • 43
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline functions
    • KIMELDORF, G. andWAHBA, G. (1971). Some results on Tchebycheffian spline functions. J. Math. Anal. Appl. 33 82-95.
    • (1971) J. Math. Anal. Appl. , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 44
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • LEE, D. D. and SEUNG, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 45
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • LIN, Y. and ZHANG, H. H. (2006). Component selection and smoothing in multivariate nonparametric regression. Ann. Statist. 34 2272-2297.
    • (2006) Ann. Statist. , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 48
    • 84855412474 scopus 로고    scopus 로고
    • Oracle inequalities and optimal inference under group sparsity
    • LOUNICI, K., PONTIL, M., VAN DE GEER, S. and TSYBAKOV, A. B. (2011). Oracle inequalities and optimal inference under group sparsity. Ann. Statist. 39 2164-2204.
    • (2011) Ann. Statist. , vol.39 , pp. 2164-2204
    • Lounici, K.1    Pontil, M.2    Van De Geer, S.3    Tsybakov, A.B.4
  • 51
    • 76749107542 scopus 로고    scopus 로고
    • Online learning for matrix factorization and sparse coding
    • MAIRAL, J., BACH, F., PONCE, J. and SAPIRO, G. (2010). Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11 19-60.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 19-60
    • Mairal, J.1    Bach, F.2    Ponce, J.3    Sapiro, G.4
  • 52
    • 80555129671 scopus 로고    scopus 로고
    • Convex and network flow optimization for structured sparsity
    • MAIRAL, J., JENATTON, R., OBOZINSKI, G. and BACH, F. (2011). Convex and network flow optimization for structured sparsity. J. Mach. Learn. Res. 12 2681-2720.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2681-2720
    • Mairal, J.1    Jenatton, R.2    Obozinski, G.3    Bach, F.4
  • 55
    • 33747163541 scopus 로고    scopus 로고
    • Highdimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). Highdimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 57
    • 0041356704 scopus 로고
    • Fonctions convexes duales et points proximaux dans un espace hilbertien
    • MOREAU, J.-J. (1962). Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris 255 2897-2899.
    • (1962) C. R. Acad. Sci. Paris , vol.255 , pp. 2897-2899
    • Moreau, J.-J.1
  • 58
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • NEEDELL, D. and TROPP, J. A. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26 301-321.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 62
    • 67651063011 scopus 로고    scopus 로고
    • Technical report, Center for Operations Research and Econometrics (CORE), Catholic Univ. Louvain
    • NESTEROV, Y. (2007). Gradient methods for minimizing composite objective function. Technical report, Center for Operations Research and Econometrics (CORE), Catholic Univ. Louvain.
    • (2007) Gradient methods for minimizing composite objective function
    • Nesterov, Y.1
  • 65
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • OBOZINSKI, G., TASKAR, B. and JORDAN, M. I. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput. 20 231-252.
    • (2010) Stat. Comput. , vol.20 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 66
    • 79551607002 scopus 로고    scopus 로고
    • Support union recovery in high-dimensional multivariate regression
    • OBOZINSKI, G.,WAINWRIGHT, M. J. and JORDAN, M. I. (2011). Support union recovery in high-dimensional multivariate regression. Ann. Statist. 39 1-47.
    • (2011) Ann. Statist. , vol.39 , pp. 1-47
    • Obozinski, G.1    Wainwright, M.J.2    Jordan, M.I.3
  • 67
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • OLSHAUSEN, B. A. and FIELD, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 68
    • 84871564602 scopus 로고    scopus 로고
    • Theoretical properties of the overlapping group Lasso
    • PERCIVAL, D. (2012). Theoretical properties of the overlapping group Lasso. Electron. J. Statist. 6 269-288.
    • (2012) Electron. J. Statist. , vol.6 , pp. 269-288
    • Percival, D.1
  • 71
    • 46249091578 scopus 로고    scopus 로고
    • Classification of arrayCGH data using fused SVM
    • RAPAPORT, F., BARILLOT, E. and VERT, J.-P. (2008). Classification of arrayCGH data using fused SVM. Bioinformatics 24 i375-i382.
    • (2008) Bioinformatics , vol.24
    • Rapaport, F.1    Barillot, E.2    Vert, J.-P.3
  • 74
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • RUDIN, L. I., OSHER, S. and FATEMI, E. (1992). Nonlinear total variation based noise removal algorithms. Phys. D 60 259-268.
    • (1992) Phys. D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 77
    • 79251503629 scopus 로고    scopus 로고
    • Trading accuracy for sparsity in optimization problems with sparsity constraints
    • SHALEV-SHWARTZ, S., SREBRO, N. and ZHANG, T. (2010). Trading accuracy for sparsity in optimization problems with sparsity constraints. SIAM J. Optim. 20 2807-2832.
    • (2010) SIAM J. Optim. , vol.20 , pp. 2807-2832
    • Shalev-Shwartz, S.1    Srebro, N.2    Zhang, T.3
  • 79
    • 78649427721 scopus 로고    scopus 로고
    • Grouping pursuit through a regularization solution surface
    • SHEN, X. and HUANG, H.-C. (2010). Grouping pursuit through a regularization solution surface. J. Amer. Statist. Assoc. 105 727- 739.
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 727-739
    • Shen, X.1    Huang, H.-C.2
  • 82
    • 68249141421 scopus 로고    scopus 로고
    • On the reconstruction of block-sparse signals with an optimal number of measurements
    • STOJNIC, M., PARVARESH, F. and HASSIBI, B. (2009). On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57 3075-3085.
    • (2009) IEEE Trans. Signal Process. , vol.57 , pp. 3075-3085
    • Stojnic, M.1    Parvaresh, F.2    Hassibi, B.3
  • 83
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288.
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 85
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • TROPP, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory 50 2231-2242.
    • (2004) IEEE Trans. Inform. Theory , vol.50 , pp. 2231-2242
    • Tropp, J.A.1
  • 86
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 1030-1051.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1030-1051
    • Tropp, J.A.1
  • 88
    • 84871531335 scopus 로고    scopus 로고
    • 1-regularization in high-dimensional statistical models
    • Hindustan Book Agency, New Delhi
    • 1-regularization in high-dimensional statistical models. In Proceedings of the International Congress of Mathematicians. Volume IV 2351-2369. Hindustan Book Agency, New Delhi.
    • (2010) Proceedings of the International Congress of Mathematicians , vol.4 , pp. 2351-2369
    • Van De Geer, S.1
  • 90
    • 65749083666 scopus 로고    scopus 로고
    • 1-constrained quadratic programming (Lasso)
    • 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 91
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D. M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 93
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • WU, T. T. and LANGE, K. (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2 224-244.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 224-244
    • Wu, T.T.1    Lange, K.2
  • 95
    • 77956916683 scopus 로고    scopus 로고
    • High dimensional inverse covariance matrix estimation via linear programming
    • YUAN, M. (2010). High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11 2261- 2286.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 96
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 49-67.
    • (2006) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 97
    • 79551500651 scopus 로고    scopus 로고
    • A comparison of optimization methods and software for large-scale L1-regularized linear classification
    • YUAN, G.-X., CHANG, K.-W., HSIEH, C.-J. and LIN, C.-J. (2010). A comparison of optimization methods and software for large-scale L1-regularized linear classification. J. Mach. Learn. Res. 11 3183-3234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3183-3234
    • Yuan, G.-X.1    Chang, K.-W.2    Hsieh, C.-J.3    Lin, C.-J.4
  • 99
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with L1 regularization
    • ZHANG, T. (2009). Some sharp performance bounds for least squares regression with L1 regularization. Ann. Statist. 37 2109-2144.
    • (2009) Ann. Statist. , vol.37 , pp. 2109-2144
    • Zhang, T.1
  • 100
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • ZHAO, P., ROCHA, G. andYU, B. (2009). The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Statist. 37 3468-3497.
    • (2009) Ann. Statist. , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 101
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 104
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.