-
1
-
-
85061066913
-
Selection of relevant features in machine learning
-
AAAI Press, New Orleans
-
Langley, P.: Selection of relevant features in machine learning. In: AAAI Fall Symposium on Relevance, pp. 140-144. AAAI Press, New Orleans (1994)
-
(1994)
AAAI Fall Symposium on Relevance
, pp. 140-144
-
-
Langley, P.1
-
2
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 1226-1238 (2005)
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
4
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273-324 (1997)
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
5
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Machine Learning Research 3, 1157-1182 (2003)
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
6
-
-
85194972808
-
Regression shrinkage and selection via the LASSO
-
Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. B. 58, 267-288 (1996)
-
(1996)
J. Royal Statist. Soc. B.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
7
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Statist. Soc. B 68, 49-67 (2006)
-
(2006)
J. Royal Statist. Soc. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
8
-
-
34948865158
-
-
Technical report, Department of Statistics, University of California, Berkeley
-
Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Technical report, Department of Statistics, University of California, Berkeley (2006)
-
(2006)
Multi-task Feature Selection
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
9
-
-
84864063089
-
Multi-task feature learning
-
MIT Press, Cambridge
-
Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: 19th Ann. Conf. Neural Information Processing Systems, pp. 41-48. MIT Press, Cambridge (2007)
-
(2007)
19th Ann. Conf. Neural Information Processing Systems
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
10
-
-
33947681316
-
ML-KNN: A lazy learning approach to multi-label learning
-
Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038-2048 (2007)
-
(2007)
Pattern Recognition
, vol.40
, pp. 2038-2048
-
-
Zhang, M.L.1
Zhou, Z.H.2
-
12
-
-
34547172608
-
The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia
-
ACM Press, New York
-
Snoek, C., Worring, M., Gemert, J.V., Geusebroek, J.M., Smeulders, A.W.M.: The Challenge Problem for Automated Detection of 101 Semantic Concepts in Multimedia. In: 14th Annual ACM International Conference on Multimedia, pp. 421-430. ACM Press, New York (2006)
-
(2006)
14th Annual ACM International Conference on Multimedia
, pp. 421-430
-
-
Snoek, C.1
Worring, M.2
Gemert, J.V.3
Geusebroek, J.M.4
Smeulders, A.W.M.5
-
13
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M.R., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recognition 37, 1757-1771 (2004)
-
(2004)
Pattern Recognition
, vol.37
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
|