메뉴 건너뛰기




Volumn 7751 LNCS, Issue , 2013, Pages 639-646

An efficient algorithm for feature selection with feature correlation

Author keywords

Feature correlation; Feature selection; Machine learning; Multi label classification; Sparse learning

Indexed keywords

FEATURE CORRELATION; FEATURE SELECTION METHODS; MACHINE LEARNING APPLICATIONS; MULTI-LABEL CLASSIFICATIONS; MULTI-LABEL LEARNING; RAPID CONVERGENCE; ROBUST FEATURE SELECTION; SPARSE LEARNING;

EID: 84892941650     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-36669-7_78     Document Type: Conference Paper
Times cited : (11)

References (15)
  • 1
    • 85061066913 scopus 로고
    • Selection of relevant features in machine learning
    • AAAI Press, New Orleans
    • Langley, P.: Selection of relevant features in machine learning. In: AAAI Fall Symposium on Relevance, pp. 140-144. AAAI Press, New Orleans (1994)
    • (1994) AAAI Fall Symposium on Relevance , pp. 140-144
    • Langley, P.1
  • 2
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 1226-1238 (2005)
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 4
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273-324 (1997)
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Machine Learning Research 3, 1157-1182 (2003)
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal Statist. Soc. B. 58, 267-288 (1996)
    • (1996) J. Royal Statist. Soc. B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 7
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Royal Statist. Soc. B 68, 49-67 (2006)
    • (2006) J. Royal Statist. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 8
    • 34948865158 scopus 로고    scopus 로고
    • Technical report, Department of Statistics, University of California, Berkeley
    • Obozinski, G., Taskar, B., Jordan, M.: Multi-task feature selection. Technical report, Department of Statistics, University of California, Berkeley (2006)
    • (2006) Multi-task Feature Selection
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 10
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • Zhang, M.L., Zhou, Z.H.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038-2048 (2007)
    • (2007) Pattern Recognition , vol.40 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.