-
1
-
-
84866052988
-
-
www.public.asu.edu/~jye02/FSGL.
-
-
-
-
2
-
-
27844439373
-
A framework for learning predictive structures from multiple tasks and unlabeled data
-
R. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. The Journal of Machine Learning Research, 6:1817-1853, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 1817-1853
-
-
Ando, R.1
Zhang, T.2
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
6
-
-
77954035720
-
The dynamics of alzheimer's disease biomarkers in the alzheimer's disease neuroimaging initiative cohort
-
A. Caroli, G. Frisoni, et al. The dynamics of alzheimer's disease biomarkers in the alzheimer's disease neuroimaging initiative cohort. Neurobiology of aging, 31(8):1263-1274, 2010.
-
(2010)
Neurobiology of Aging
, vol.31
, Issue.8
, pp. 1263-1274
-
-
Caroli, A.1
Frisoni, G.2
-
7
-
-
71149094644
-
A convex formulation for learning shared structures from multiple tasks
-
ACM
-
J. Chen, L. Tang, J. Liu, and J. Ye. A convex formulation for learning shared structures from multiple tasks. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 137-144. ACM, 2009.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning
, pp. 137-144
-
-
Chen, J.1
Tang, L.2
Liu, J.3
Ye, J.4
-
8
-
-
33747105621
-
Trading convexity for scalability
-
ACM
-
R. Collobert, F. Sinz, J. Weston, and L. Bottou. Trading convexity for scalability. In Proceedings of the 23rd international conference on Machine learning, pages 201-208. ACM, 2006.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 201-208
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
9
-
-
77954031857
-
Automated mri measures predict progression to alzheimer's disease
-
R. Desikan, H. Cabral, F. Settecase, C. Hess, W. Dillon, C. Glastonbury, M. Weiner, N. Schmansky, D. Salat, B. Fischl, et al. Automated mri measures predict progression to alzheimer's disease. Neurobiology of aging, 31(8):1364-1374, 2010.
-
(2010)
Neurobiology of Aging
, vol.31
, Issue.8
, pp. 1364-1374
-
-
Desikan, R.1
Cabral, H.2
Settecase, F.3
Hess, C.4
Dillon, W.5
Glastonbury, C.6
Weiner, M.7
Schmansky, N.8
Salat, D.9
Fischl, B.10
-
10
-
-
67651020812
-
Relating one-year cognitive change in mild cognitive impairment to baseline MRI features
-
S. Duchesne, A. Caroli, C. Geroldi, D. Collins, and G. Frisoni. Relating one-year cognitive change in mild cognitive impairment to baseline MRI features. NeuroImage, 47(4):1363-1370, 2009.
-
(2009)
NeuroImage
, vol.47
, Issue.4
, pp. 1363-1370
-
-
Duchesne, S.1
Caroli, A.2
Geroldi, C.3
Collins, D.4
Frisoni, G.5
-
11
-
-
21844456299
-
Learning multiple tasks with kernel methods
-
T. Evgeniou, C. Micchelli, and M. Pontil. Learning multiple tasks with kernel methods. Journal of Machine Learning Research, 6(1):615, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.6
, Issue.1
, pp. 615
-
-
Evgeniou, T.1
Micchelli, C.2
Pontil, M.3
-
12
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
13
-
-
45849107328
-
Pathwise coordinate optimization
-
J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization. Annals of Applied Statistics, 1(2):302-332, 2007.
-
(2007)
Annals of Applied Statistics
, vol.1
, Issue.2
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
15
-
-
70450245260
-
Recovering sparse signals with a certain family of nonconvex penalties and dc programming
-
G. Gasso, A. Rakotomamonjy, and S. Canu. Recovering sparse signals with a certain family of nonconvex penalties and dc programming. Signal Processing, IEEE Transactions on, 57(12):4686-4698, 2009.
-
(2009)
Signal Processing, IEEE Transactions on
, vol.57
, Issue.12
, pp. 4686-4698
-
-
Gasso, G.1
Rakotomamonjy, A.2
Canu, S.3
-
16
-
-
73949159970
-
Subregional neuroanatomical change as a biomarker for alzheimer's disease
-
D. Holland, J. Brewer, D. Hagler, C. Fennema-Notestine, A. Dale, M. Weiner, L. Thal, R. Petersen, C. Jack, W. Jagust, et al. Subregional neuroanatomical change as a biomarker for alzheimer's disease. Proceedings of the National Academy of Sciences, 106(49):20954, 2009.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.49
, pp. 20954
-
-
Holland, D.1
Brewer, J.2
Hagler, D.3
Fennema-Notestine, C.4
Dale, A.5
Weiner, M.6
Thal, L.7
Petersen, R.8
Jack, C.9
Jagust, W.10
-
18
-
-
73249121028
-
Disease progression model for cognitive deterioration from Alzheimer's Disease Neuroimaging Initiative database
-
K. Ito et al. Disease progression model for cognitive deterioration from Alzheimer's Disease Neuroimaging Initiative database. Alzheimer's and Dementia, 6(1):39-53, 2010.
-
(2010)
Alzheimer's and Dementia
, vol.6
, Issue.1
, pp. 39-53
-
-
Ito, K.1
-
19
-
-
72049130805
-
Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade
-
C. Jack Jr, D. Knopman, W. Jagust, L. Shaw, P. Aisen, M. Weiner, R. Petersen, and J. Trojanowski. Hypothetical model of dynamic biomarkers of the alzheimer's pathological cascade. The Lancet Neurology, 9(1):119-128, 2010.
-
(2010)
The Lancet Neurology
, vol.9
, Issue.1
, pp. 119-128
-
-
Jack Jr., C.1
Knopman, D.2
Jagust, W.3
Shaw, L.4
Aisen, P.5
Weiner, M.6
Petersen, R.7
Trojanowski, J.8
-
21
-
-
0022414054
-
Diagnosis of Alzheimer's disease
-
Z. Khachaturian. Diagnosis of Alzheimer's disease. Archives of Neurology, 42(11):1097, 1985.
-
(1985)
Archives of Neurology
, vol.42
, Issue.11
, pp. 1097
-
-
Khachaturian, Z.1
-
24
-
-
77956206508
-
An efficient algorithm for a class of fused lasso problems
-
ACM
-
J. Liu, L. Yuan, and J. Ye. An efficient algorithm for a class of fused lasso problems. In Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '10, pages 323-332. ACM, 2010.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '10
, pp. 323-332
-
-
Liu, J.1
Yuan, L.2
Ye, J.3
-
26
-
-
58149386194
-
Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: Results from adni
-
C. Misra, Y. Fan, and C. Davatzikos. Baseline and longitudinal patterns of brain atrophy in mci patients, and their use in prediction of short-term conversion to ad: results from adni. Neuroimage, 44(4):1415-1422, 2009.
-
(2009)
Neuroimage
, vol.44
, Issue.4
, pp. 1415-1422
-
-
Misra, C.1
Fan, Y.2
Davatzikos, C.3
-
29
-
-
34948865158
-
-
Statistics Department, UC Berkeley, Tech. Rep
-
G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. Statistics Department, UC Berkeley, Tech. Rep, 2006.
-
(2006)
Multi-task Feature Selection
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.3
-
31
-
-
77952888499
-
Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
-
C. Stonnington, C. Chu, S. Klöppel, C. Jack Jr, J. Ashburner, and R. Frackowiak. Predicting clinical scores from magnetic resonance scans in Alzheimer's disease. NeuroImage, 51(4):1405-1413, 2010.
-
(2010)
NeuroImage
, vol.51
, Issue.4
, pp. 1405-1413
-
-
Stonnington, C.1
Chu, C.2
Klöppel, S.3
Jack Jr., C.4
Ashburner, J.5
Frackowiak, R.6
-
32
-
-
0010687621
-
Clustering learning tasks and the selective cross-task transfer of knowledge
-
S. Thrun and J. O'Sullivan. Clustering learning tasks and the selective cross-task transfer of knowledge. Learning to learn, pages 181-209, 1998.
-
(1998)
Learning to Learn
, pp. 181-209
-
-
Thrun, S.1
O'Sullivan, J.2
-
33
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1):91-108, 2005.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
34
-
-
68249111164
-
MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future clinical change
-
P. Vemuri et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology, 73(4):294, 2009.
-
(2009)
Neurology
, vol.73
, Issue.4
, pp. 294
-
-
Vemuri, P.1
-
35
-
-
76749120506
-
Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease
-
K. Walhovd et al. Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. American Journal of Neuroradiology, 31(2):347, 2010.
-
(2010)
American Journal of Neuroradiology
, vol.31
, Issue.2
, pp. 347
-
-
Walhovd, K.1
-
36
-
-
0038308843
-
The magnitude of dementia occurrence in the world
-
A. Wimo, B. Winblad, H. Aguero-Torres, and E. von Strauss. The magnitude of dementia occurrence in the world. Alzheimer Disease & Associated Disorders, 17(2):63, 2003.
-
(2003)
Alzheimer Disease & Associated Disorders
, vol.17
, Issue.2
, pp. 63
-
-
Wimo, A.1
Winblad, B.2
Aguero-Torres, H.3
Von Strauss, E.4
-
39
-
-
84866636058
-
Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer's disease
-
D. Zhang and D. Shen. Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in alzheimer's disease. NeuroImage, 2011.
-
(2011)
NeuroImage
-
-
Zhang, D.1
Shen, D.2
-
43
-
-
80052666240
-
A multi-task learning formulation for predicting disease progression
-
ACM
-
J. Zhou, L. Yuan, J. Liu, and J. Ye. A multi-task learning formulation for predicting disease progression. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 814-822. ACM, 2011.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 814-822
-
-
Zhou, J.1
Yuan, L.2
Liu, J.3
Ye, J.4
|