-
1
-
-
84868299712
-
-
Ph.D. dissertation Dept. School Comput., Informat., Decision Syst. Eng., Arizona State Univ., Phoenix, AZ, USA
-
Z. Zhao, "Spectral feature selection for mining ultrahigh dimensional data, " Ph.D. dissertation, Dept. School Comput., Informat., Decision Syst. Eng., Arizona State Univ., Phoenix, AZ, USA, 2010.
-
(2011)
Spectral Feature Selection for Mining Ultrahigh Dimensional Data
-
-
Zhao, Z.1
-
2
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Apr
-
H. Liu and L. Yu, "Toward integrating feature selection algorithms for classification and clustering, " IEEE Trans. Knowl. Data Eng., vol. 17, no. 4, pp. 494-502, Apr. 2005.
-
(2005)
IEEE Trans. Knowl. Data Eng
, vol.17
, Issue.4
, pp. 494-502
-
-
Liu, H.1
Yu, L.2
-
3
-
-
33745561205
-
An introduction to variable and feature selection
-
Jan
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection, " J. Mach. Learn. Res., vol. 31, pp. 1157-1182, Jan. 2003.
-
(2003)
J. Mach. Learn. Res
, vol.31
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
5
-
-
70350686854
-
Consensus group stable feature selection
-
S. Loscalzo, L. Yu, and C. Ding, "Consensus group stable feature selection, " in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2009, pp. 567-575.
-
(2009)
Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 567-575
-
-
Loscalzo, S.1
Yu, L.2
Ding, C.3
-
6
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
T. Abeel, T. Helleputte, Y. van de Peer, P. Dupont, and Y. Saeys, "Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, " Bioinformatics, vol. 26, no. 3, pp. 392-398, 2010.
-
(2010)
Bioinformatics
, vol.26
, Issue.3
, pp. 392-398
-
-
Abeel, T.1
Helleputte, T.2
Peer De Y.Van3
Dupont, P.4
Saeys, Y.5
-
7
-
-
84868285653
-
Ensemble feature weighting based on local learning and diversity
-
Y. Li, S. Gao, and S. Chen, "Ensemble feature weighting based on local learning and diversity, " in Proc. 26th AAAI Conf. Artif. Intell., 2012, pp. 1019-1025.
-
(2012)
Proc. 26th AAAI Conf. Artif. Intell
, pp. 1019-1025
-
-
Li, Y.1
Gao, S.2
Chen, S.3
-
8
-
-
84866016423
-
Model mining for robust feature selection
-
A. Woznica, P. Nguyen, and A. Kalousis, "Model mining for robust feature selection, " in Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2012, pp. 913-921.
-
(2012)
Proc. 18th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 913-921
-
-
Woznica, A.1
Nguyen, P.2
Kalousis, A.3
-
9
-
-
79951748752
-
A variance reduction framework for stable feature selection
-
Dec
-
Y. Han and L. Yu, "A variance reduction framework for stable feature selection, " in Proc. 10th Int. Conf. Data Mining, Dec. 2010, pp. 206-215.
-
(2011)
Proc. 10th Int. Conf. Data Mining
, pp. 206-215
-
-
Han, Y.1
Yu, L.2
-
10
-
-
81455132651
-
Stable gene selection from microarray data via sample weighting
-
Jan./Feb
-
L. Yu, Y. Han, and M. E. Berens, "Stable gene selection from microarray data via sample weighting, " IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 9, no. 1, pp. 262-272, Jan./Feb. 2012.
-
(2012)
IEEE/ACM Trans. Comput. Biol. Bioinform
, vol.9
, Issue.1
, pp. 262-272
-
-
Yu, L.1
Han, Y.2
Berens, M.E.3
-
11
-
-
65449150247
-
Stable feature selection via dense feature groups
-
L. Yu, C. Ding, and S. Loscalzo, "Stable feature selection via dense feature groups, " in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2008, pp. 803-811.
-
(2008)
Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
, pp. 803-811
-
-
Yu, L.1
Ding, C.2
Loscalzo, S.3
-
12
-
-
77958449045
-
Stable feature selection for biomarker discovery
-
Z. He and W. Yu, "Stable feature selection for biomarker discovery, " Comput. Biol. Chem., vol. 34, no. 4, pp. 215-225, 2010.
-
(2010)
Comput. Biol. Chem
, vol.34
, Issue.4
, pp. 215-225
-
-
He, Z.1
Yu, W.2
-
13
-
-
47349110247
-
-
Cambridge, MA, USA: MIT Press
-
Y. LeCun, S. Chopra, R. Hadsell, M. A. Ranzato, and F. J. Huang, A Tutorial on Energy-Based Model. Cambridge, MA, USA: MIT Press, 2006.
-
(2006)
A Tutorial on Energy-Based Model
-
-
Lecun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.A.4
Huang, F.J.5
-
14
-
-
35348914807
-
Google news personalization: Scalable online collaborative filtering
-
A. S. Das, M. Datar, A. Garg, and S. Rajaram, "Google news personalization: Scalable online collaborative filtering, " in Proc. 16th Int. Conf. World Wide Web, 2007, pp. 271-280.
-
(2007)
Proc. 16th Int. Conf. World Wide Web
, pp. 271-280
-
-
Das, A.S.1
Datar, M.2
Garg, A.3
Rajaram, S.4
-
15
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
S. Dudoit, J. Fridlyand, and T. P. Spee, "Comparison of discrimination methods for the classification of tumors using gene expression data, " J. Amer. Statist. Assoc., vol. 97, no. 457, pp. 77-87, 2002.
-
(2002)
J. Amer. Statist. Assoc
, vol.97
, Issue.457
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Spee, T.P.3
-
16
-
-
77955397866
-
Local-learning-based feature selection for high-dimensional data analysis
-
Sep
-
Y. Sun, S. Todorovic, and S. Goodison, "Local-learning-based feature selection for high-dimensional data analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1610-1626, Sep. 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.9
, pp. 1610-1626
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
17
-
-
84867539048
-
A few useful things to know about machine learning
-
P. Domingos, "A few useful things to know about machine learning, " Commun. ACM, vol. 55, no. 10, pp. 78-87, 2012.
-
(2012)
Commun ACM
, vol.55
, Issue.10
, pp. 78-87
-
-
Domingos, P.1
-
18
-
-
78651309784
-
Elite: Ensemble of optimal input-pruned neural networks using TRUST-TECH
-
Jan
-
B. Wang and H.-D. Chiang, "Elite: Ensemble of optimal input-pruned neural networks using TRUST-TECH, " IEEE Trans. Neural Netw., vol. 22, no. 1, pp. 96-109, Jan. 2011.
-
(2011)
IEEE Trans. Neural Netw
, vol.22
, Issue.1
, pp. 96-109
-
-
Wang, B.1
Chiang, H.-D.2
-
19
-
-
84862934337
-
Sparse ensemble learning for concept detection
-
Feb
-
S. Tang, Y.-T. Zheng, Y. Wang, and T.-S. Chua, "Sparse ensemble learning for concept detection, " IEEE Trans. Multimedia, vol. 14, no. 1, pp. 43-54, Feb. 2012.
-
(2012)
IEEE Trans. Multimedia
, vol.14
, Issue.1
, pp. 43-54
-
-
Tang, S.1
Zheng, Y.-T.2
Wang, Y.3
Chua, T.-S.4
-
20
-
-
0034229698
-
Mixture of experts for classification of gender, ethnic origin, and pose of human faces
-
Jul
-
S. Gutta, J. R. J. Huang, P. Jonathon, and H. Wechsler, "Mixture of experts for classification of gender, ethnic origin, and pose of human faces, " IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 948-960, Jul. 2000.
-
(2000)
IEEE Trans. Neural Netw
, vol.11
, Issue.4
, pp. 948-960
-
-
Gutta, S.1
Huang, J.R.J.2
Jonathon, P.3
Wechsler, H.4
-
21
-
-
76249085189
-
Random subspace ensembles for fMRI classification
-
Feb
-
L. I. Kuncheva, J. J. Rodriguez, C. O. Plumpton, D. E. J. Linden, and S. J. Johnston, "Random subspace ensembles for fMRI classification, " IEEE Trans. Med. Imag., vol. 29, no. 2, pp. 531-542, Feb. 2010.
-
(2010)
IEEE Trans. Med. Imag
, vol.29
, Issue.2
, pp. 531-542
-
-
Kuncheva, L.I.1
Rodriguez, J.J.2
Plumpton, C.O.3
Linden, D.E.J.4
Johnston, S.J.5
-
22
-
-
0030211964
-
Bagging predictors
-
Aug
-
L. Breiman, "Bagging predictors, " Mach. Learn., vol. 26, no. 2, pp. 123-140, Aug. 1996.
-
(1996)
Mach. Learn
, vol.26
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
23
-
-
0038368335
-
Stability and generalization
-
Jan
-
O. Bousquet and A. Elisseeff, "Stability and generalization, " J. Mach. Learn. Res., vol. 2, pp. 499-526, Jan. 2002.
-
(2002)
J. Mach. Learn. Res
, vol.2
, pp. 499-526
-
-
Bousquet, O.1
Elisseeff, A.2
-
24
-
-
21844448886
-
Stability of randomized learning algorithm
-
Jan
-
A. Elisseeff, T. Evgeniou, and M. Pontil, "Stability of randomized learning algorithm, " J. Mach. Learn. Res., vol. 6, pp. 55-79, Jan. 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 55-79
-
-
Elisseeff, A.1
Evgeniou, T.2
Pontil, M.3
-
25
-
-
61749092782
-
Generalization bounds for ranking algorithm via algorithmic stability
-
Feb
-
S. Agarwal and P. Niyogi, "Generalization bounds for ranking algorithm via algorithmic stability, " J. Mach. Learn. Res., vol. 10, pp. 441-474, Feb. 2009.
-
(2009)
J. Mach. Learn. Res
, vol.10
, pp. 441-474
-
-
Agarwal, S.1
Niyogi, P.2
-
26
-
-
81855191843
-
Sparse algorithms are not stable: A no-free-lunch theorem
-
Jan
-
H. Xu, C. Caramanis, and S. Mannor, "Sparse algorithms are not stable: A no-free-lunch theorem, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 1, pp. 187-193, Jan. 2012.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, Issue.1
, pp. 187-193
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
-
28
-
-
84885171377
-
Minimax sparse logistic regression for very high-dimensional feature selection
-
Oct
-
M. Tan, I. W. Tsang, and L. Wang, "Minimax sparse logistic regression for very high-dimensional feature selection, " IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 10, pp. 1609-1622, Oct. 2013.
-
(2013)
IEEE Trans. Neural Netw. Learn. Syst
, vol.24
, Issue.10
, pp. 1609-1622
-
-
Tan, M.1
Tsang, I.W.2
Wang, L.3
-
29
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
T. R. Golub et al., "Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring, " Science, vol. 286, no. 5439, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
-
30
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
D. Singh et al., "Gene expression correlates of clinical prostate cancer behavior, " Cancer Cell, vol. 1, no. 2, pp. 203-209, 2002.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
-
32
-
-
84992726552
-
Estimating attributes: Analysis and extensions of RELIEF
-
I. Kononenko, "Estimating attributes: Analysis and extensions of RELIEF, " in Proc. Eur. Conf. Mach. Learn., 1994, pp. 171-182.
-
(1994)
Proc. Eur. Conf. Mach. Learn
, pp. 171-182
-
-
Kononenko, I.1
-
33
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of ReliefF and RReliefF, " Mach. Learn., vol. 53, nos. 1-2, pp. 23-69, 2003.
-
(2003)
Mach. Learn
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
34
-
-
0003922190
-
-
2nd ed. New York, NY, USA: Wiley
-
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed. New York, NY, USA: Wiley, 2001.
-
(2001)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
35
-
-
0031361611
-
Machine learning research: Four current directions
-
T. G. Dietterich, "Machine learning research: Four current directions, " AI Mag., vol. 18, no. 4, pp. 97-136, 1997.
-
(1997)
AI Mag
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
36
-
-
85156210264
-
Margin analysis of the LVQ algorithm
-
Cambridge, MA, USA: MIT Press
-
K. Crammer, R. Gilad-Bachrach, A. Navot, and N. Tishby, "Margin analysis of the LVQ algorithm, " in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2002, pp. 462-469.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 462-469
-
-
Crammer, K.1
Gilad-Bachrach, R.2
Navot, A.3
Tishby, N.4
-
37
-
-
67349250195
-
Feature selection based on loss margin of nearest neighbor classification
-
Y. Li and B.-L. Lu, "Feature selection based on loss margin of nearest neighbor classification, " Pattern Recognit., vol. 42, no. 9, pp. 1914-1921, 2009.
-
(2009)
Pattern Recognit
, vol.42
, Issue.9
, pp. 1914-1921
-
-
Li, Y.1
Lu, B.-L.2
-
38
-
-
34248647608
-
Stability of feature selection algorithms: A study on high-dimensional spaces
-
A. Kalousis, J. Prados, and M. Hilario, "Stability of feature selection algorithms: A study on high-dimensional spaces, " Knowl. Inf. Syst., vol. 12, no. 1, pp. 95-116, 2007.
-
(2007)
Knowl. Inf. Syst
, vol.12
, Issue.1
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
40
-
-
51049121146
-
High-dimensional generalized linear models and the lasso
-
S. A. van de Geer, "High-dimensional generalized linear models and the lasso, " Ann. Statist., vol. 36, no. 2, pp. 614-645, 2008.
-
(2008)
Ann. Statist
, vol.36
, Issue.2
, pp. 614-645
-
-
Geer De Van, S.A.1
-
41
-
-
84871600478
-
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
-
S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, "A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, " Statist. Sci., vol. 27, no. 4, pp. 538-557, 2012.
-
(2012)
Statist. Sci
, vol.27
, Issue.4
, pp. 538-557
-
-
Negahban, S.N.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
42
-
-
80055054202
-
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
-
S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, "A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, " Dept. EECS., Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. 797, 2010.
-
(2010)
Dept. EECS., Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep
, vol.797
-
-
Negahban, S.N.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
43
-
-
84858717588
-
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
-
Red Hook, NY, USA: Curran & Associates, Inc
-
S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, "A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, " in Advances in Neural Information Processing Systems. Red Hook, NY, USA: Curran & Associates, Inc., 2009, pp. 1348-1356.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1348-1356
-
-
Negahban, S.N.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
|