메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 1189-1219

A multi-stage framework for dantzig selector and LASSO

Author keywords

Dantzig selector; LASSO; Multi stage; Sparse signal recovery

Indexed keywords

DANTZIG SELECTOR; DESIGN MATRIX; ESTIMATION BOUNDS; HIGH PROBABILITY; LASSO; MULTI-STAGE; NOISE VECTORS; NOISY OBSERVATIONS; NONZERO ENTRIES; OBSERVATION VECTORS; PARAMETER VECTORS; SPARSE SIGNALS; TARGET SIGNALS;

EID: 84860682231     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (31)
  • 1
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 3
    • 79959566409 scopus 로고    scopus 로고
    • Orthogonal matching pursuit for sparse signal recovery
    • T. Cai and L.Wang. Orthogonal matching pursuit for sparse signal recovery. IEEE Transactions on Information Theory, 57(7):4680-4688, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.7 , pp. 4680-4688
    • Cai, T.1    Wang, L.2
  • 4
    • 67650122784 scopus 로고    scopus 로고
    • On recovery of sparse signals via 1 minimization
    • T. Cai, G. Xu, and J. Zhang. On recovery of sparse signals via 1 minimization. IEEE Transactions on Information Theory, 55(7):3388-3397, 2009.
    • (2009) IEEE Transactions on Information Theory , vol.55 , Issue.7 , pp. 3388-3397
    • Cai, T.1    Xu, G.2    Zhang, J.3
  • 5
    • 69049120308 scopus 로고    scopus 로고
    • Near-ideal model selection by 1 minimization
    • E. J. Candès and Y. Plan. Near-ideal model selection by 1 minimization. Annals of Statistics, 37 (5A):2145-2177, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.5 A , pp. 2145-2177
    • Candès, E.J.1    Plan, Y.2
  • 6
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203-4215, 2005. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 7
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. J. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35(6):2313-2351, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.J.1    Tao, T.2
  • 8
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • DOI 10.1109/TIT.2005.860430
    • D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1):6-18, 2006. (Pubitemid 43263116)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 9
    • 77949352853 scopus 로고    scopus 로고
    • A selective overview of variable selection in high dimensional feature space (invited review article)
    • J. Fan and J. Lv. A selective overview of variable selection in high dimensional feature space. (invited review article) Statistica Sinica, 20:101-148, 2010.
    • (2010) Statistica Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 10
    • 79960979995 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with np-dimensionality
    • J. Fan and J. Lv. Nonconcave penalized likelihood with np-dimensionality. IEEE Transactions on Information Theory, 57(8):5467-5484, 2011.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.8 , pp. 5467-5484
    • Fan, J.1    Lv, J.2
  • 13
    • 56449113372 scopus 로고    scopus 로고
    • Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators
    • K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and Dantzig estimators. Electronic Journal of Statistics, 2:90-102, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 90-102
    • Lounici, K.1
  • 14
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • J. Lv and Y. Fan. A unified approach to model selection and sparse recovery using regularized least squares. Annals of Statistics, 37(6A):3498-3528, 2009.
    • (2009) Annals of Statistics , vol.37 A , Issue.6 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 15
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • N. Meinshausen, P. Bhlmann, and E. Zrich. High dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34(3):1436-1462, 2006. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 19
    • 5444237123 scopus 로고    scopus 로고
    • Greed is good: Algorithmic results for sparse approximation
    • J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10):2231-2242, 2004.
    • (2004) IEEE Transactions on Information Theory , vol.50 , Issue.10 , pp. 2231-2242
    • Tropp, J.A.1
  • 20
    • 65749083666 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy sparsity recovery using 1- constrained quadratic programming (Lasso)
    • M. J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using 1- constrained quadratic programming (Lasso). IEEE Transactions on Information Theory, 55(5): 2183-2202, 2009.
    • (2009) IEEE Transactions on Information Theory , vol.55 , Issue.5 , pp. 2183-2202
    • Wainwright, M.J.1
  • 21
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38(2):894-942, 2010a.
    • (2010) Annals of Statistics , vol.38 , Issue.2 , pp. 894-942
    • Zhang, C.-H.1
  • 23
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with 1 regularization
    • T. Zhang. Some sharp performance bounds for least squares regression with 1 regularization. Annals of Statistics, 37(5A):2109-2114, 2009a.
    • (2009) Annals of Statistics , vol.37 , Issue.5 A , pp. 2109-2114
    • Zhang, T.1
  • 24
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang. On the consistency of feature selection using greedy least squares regression. Journal of Machine Learning Research, 10:555-568, 2009b.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 555-568
    • Zhang, T.1
  • 25
    • 77951191949 scopus 로고    scopus 로고
    • Analysis of multi-stage convex relaxation for sparse regularization
    • T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. Journal of Machine Learning Research, 11:1081-1107, 2010b.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1081-1107
    • Zhang, T.1
  • 26
    • 80052353493 scopus 로고    scopus 로고
    • Sparse recovery with orthogonal matching pursuit under RIP
    • T. Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on Information Theory, 57(9):5215-6221, 2011a.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.9 , pp. 5215-6221
    • Zhang, T.1
  • 27
    • 79959549699 scopus 로고    scopus 로고
    • Adaptive forward-backward greedy algorithm for learning sparse representations
    • T. Zhang. Adaptive forward-backward greedy algorithm for learning sparse representations. IEEE Transactions on Information Theory, 57(7):4689-4708, 2011b.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.7 , pp. 4689-4708
    • Zhang, T.1
  • 28
    • 84860678282 scopus 로고    scopus 로고
    • Technical report, Department of Statistics, Rutgers University, Piscataway, New Jersey, USA
    • T. Zhang. Multi-stage convex relaxation for feature selection. Technical report, Department of Statistics, Rutgers University, Piscataway, New Jersey, USA, 2011c.
    • (2011) Multi-Stage Convex Relaxation for Feature Selection
    • Zhang, T.1
  • 29
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2563, 2006. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 30
    • 84858715448 scopus 로고    scopus 로고
    • Thresholding procedures for high dimensional variable selection and statistical estimation
    • Vancouver, British Columbia, Canada
    • S. Zhou. Thresholding procedures for high dimensional variable selection and statistical estimation. In Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS), pages 2304-2312, Vancouver, British Columbia, Canada, 2009.
    • (2009) Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS , pp. 2304-2312
    • Zhou, S.1
  • 31
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.