메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2777-2824

Structured variable selection with sparsity-inducing norms

Author keywords

Active set algorithm; Consistency; Convex optimization; Sparsity; Variable selection

Indexed keywords

ACTIVE SETS; CONSISTENCY; EMPIRICAL RISK MINIMIZATION; EUCLIDEAN NORM; HIGH-DIMENSIONAL; LEAST SQUARE; PRIOR KNOWLEDGE; SPARSITY; VARIABLE SELECTION;

EID: 80555129673     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (383)

References (69)
  • 2
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In Advances in Neural Information Processing Systems, 2008a.
    • (2008) Advances in Neural Information Processing Systems
    • Bach, F.1
  • 4
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. Bach. Consistency of the group lasso and multiple kernel learning. Journal of Machine Learning Research, 9:1179-1225, 2008b.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 6
    • 80555158386 scopus 로고    scopus 로고
    • Self-concordant analysis for logistic regression
    • F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:384-414, 2009.
    • (2009) Electronic Journal of Statistics , vol.4 , pp. 384-414
    • Bach, F.1
  • 9
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 11
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 20
    • 59649127291 scopus 로고    scopus 로고
    • A necessary and sufficient condition for exact recovery by L1 minimization
    • HAL-00164738
    • C. Dossal. A necessary and sufficient condition for exact recovery by l1 minimization. Technical report, HAL-00164738:1, 2007.
    • (2007) Technical Report , pp. 1
    • Dossal, C.1
  • 22
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • DOI 10.1214/aos/1015957397
    • W. Fu and K. Knight. Asymptotics for Lasso-type estimators. Annals of Statistics, 28(5):1356-1378, 2000. (Pubitemid 33244917)
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 23
    • 26844461512 scopus 로고    scopus 로고
    • Recovery of exact sparse representations in the presence of bounded noise
    • DOI 10.1109/TIT.2005.855614
    • J. J. Fuchs. Recovery of exact sparse representations in the presence of bounded noise. IEEE Transactions on Information Theory, 51(10):3601-3608, 2005. (Pubitemid 41448600)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.10 , pp. 3601-3608
    • Fuchs, J.J.1
  • 26
    • 69349089478 scopus 로고    scopus 로고
    • Exploiting structure in wavelet-based Bayesian compressive sensing
    • L. He and L. Carin. Exploiting structure in wavelet-based Bayesian compressive sensing. IEEE Transactions on Signal Processing, 57:3488-3497, 2009.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , pp. 3488-3497
    • He, L.1    Carin, L.2
  • 27
    • 77955136689 scopus 로고    scopus 로고
    • The benefit of group sparsity
    • J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics, 38(4):1978-2004, 2010.
    • (2010) Annals of Statistics , vol.38 , Issue.4 , pp. 1978-2004
    • Huang, J.1    Zhang, T.2
  • 37
    • 62349114549 scopus 로고    scopus 로고
    • Sparse estimation of large covariance matrices via a nested Lasso penalty
    • E. Levina, A. Rothman, and J. Zhu. Sparse estimation of large covariance matrices via a nested Lasso penalty. Annals of Applied Statistics, 2(1):245-263, 2008.
    • (2008) Annals of Applied Statistics , vol.2 , Issue.1 , pp. 245-263
    • Levina, E.1    Rothman, A.2    Zhu, J.3
  • 40
    • 80555124344 scopus 로고    scopus 로고
    • Convex and network flow optimization for structured sparsity
    • Preprint arXiv: 1104.1872,. To appear in Journal Machine Learning Research
    • J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Convex and network flow optimization for structured sparsity. Technical report, Preprint arXiv: 1104.1872, 2011. To appear in Journal Machine Learning Research.
    • (2011) Technical Report
    • Mairal, J.1    Jenatton, R.2    Obozinski, G.3    Bach, F.4
  • 45
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group Lasso estimator for linear models
    • Y. Nardi and A. Rinaldo. On the asymptotic properties of the group Lasso estimator for linear models. Electronic Journal of Statistics, 2:605-633, 2008.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 47
    • 67651063011 scopus 로고    scopus 로고
    • Technical report, Center for Operations Research and Econometrics CORE, Catholic University of Louvain
    • Y. Nesterov. Gradient methods for minimizing composite objective function. Technical report, Center for Operations Research and Econometrics (CORE), Catholic University of Louvain, 2007.
    • (2007) Gradient Methods for Minimizing Composite Objective Function
    • Nesterov, Y.1
  • 48
    • 70049105714 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, pages 1-22, 2009.
    • (2009) Statistics and Computing , pp. 1-22
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 51
    • 46249091578 scopus 로고    scopus 로고
    • Classification of arrayCGH data using fused SVM
    • DOI 10.1093/bioinformatics/btn188
    • F. Rapaport, E. Barillot, and J.-P. Vert. Classification of arrayCGH data using fused SVM. Bioinformatics, 24(13):i375-i382, Jul. 2008. (Pubitemid 351911693)
    • (2008) Bioinformatics , vol.24 , Issue.13
    • Rapaport, F.1    Barillot, E.2    Vert, J.-P.3
  • 53
    • 12844274244 scopus 로고    scopus 로고
    • Boosting as a regularized path to a maximum margin classifier
    • S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier. Journal of Machine Learning Research, 5:941-973, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 941-973
    • Rosset, S.1    Zhu, J.2    Hastie, T.3
  • 58
    • 0033295027 scopus 로고    scopus 로고
    • SDPT3-a MATLAB software package for semidefinite programming, version 1.3
    • K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3-a MATLAB software package for semidefinite programming, version 1.3. Optimization Methods and Software, 11(1):545-581, 1999.
    • (1999) Optimization Methods and Software , vol.11 , Issue.1 , pp. 545-581
    • Toh, K.C.1    Todd, M.J.2    Tütüncü, R.H.3
  • 59
    • 3142743708 scopus 로고    scopus 로고
    • Solving semidefinite-quadratic-linear programs using SDPT3
    • DOI 10.1007/s10107-002-0347-5
    • R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear programs using SDPT3. Mathematical Programming, 95(2):189-217, 2003. (Pubitemid 44757853)
    • (2003) Mathematical Programming, Series B , vol.95 , Issue.2 , pp. 189-217
    • Tutuncu, R.H.1    Toh, K.C.2    Todd, M.J.3
  • 63
    • 79551500651 scopus 로고    scopus 로고
    • Comparison of optimization methods and software for large-scale 11-regularized linear classification
    • G. X. Yuan, K. W. Chang, C. J. Hsieh, and C. J. Lin. Comparison of optimization methods and software for large-scale 11-regularized linear classification. Journal of Machine Learning Research, 11:3183-3234, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3183-3234
    • Yuan, G.X.1    Chang, K.W.2    Hsieh, C.J.3    Lin, C.J.4
  • 65
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with 11 regularization
    • T. Zhang. Some sharp performance bounds for least squares regression with 11 regularization. Annals of Statistics, 37(5A):2109-2144, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.5 A , pp. 2109-2144
    • Zhang, T.1
  • 66
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine Learning Research, 7:2541-2563, 2006. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 67
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.6 A , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 68
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • H. Zou. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418-1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.