메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages

A shared-subspace learning framework for multi-label classification

Author keywords

Gene expression pattern image annotation; Kernel methods; Least squares loss; Multi label classification; Shared subspace; Singular value decomposition; Web page categorization

Indexed keywords

GENE EXPRESSION PATTERNS; KERNEL METHODS; LEAST SQUARE; LEAST SQUARES LOSS; MULTI-LABEL; SHARED SUBSPACE; WEB PAGE;

EID: 77953216761     PISSN: 15564681     EISSN: 1556472X     Source Type: Journal    
DOI: 10.1145/1754428.1754431     Document Type: Article
Times cited : (165)

References (63)
  • 2
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • Kluwer Academic Publishers
    • ANDERSEN, E. D. AND ANDERSEN, K. D. 2000. The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization. Kluwer Academic Publishers, 197-232.
    • (2000) High Performance Optimization , pp. 197-232
    • Andersen, E.D.1    Andersen, K.D.2
  • 3
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • ANDO, R. K. AND ZHANG, T. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Resear. 6, 1817-1853.
    • (2005) J. Mach. Learn. Resear , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 6
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • BAKKER, B. AND HESKES, T. 2003. Task clustering and gating for Bayesian multitask learning. J. Mach. Learn. Resear. 4, 83-99.
    • (2003) J. Mach. Learn. Resear , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 8
    • 33645323768 scopus 로고    scopus 로고
    • Hierarchical multi-label prediction of gene function
    • BARUTCUOGLU, Z.,SCHAPIRE, R. E., AND TROYANSKAYA,O.G. 2006. Hierarchical multi-label prediction of gene function. Bioinformatics 22, 7, 830-836.
    • (2006) Bioinformatics , vol.22 , Issue.7 , pp. 830-836
    • Barutcuoglu, Z.1    Schapire, R.E.2    Troyanskaya, O.G.3
  • 14
    • 21244486307 scopus 로고    scopus 로고
    • Multicategory proximal support vector machine classifiers
    • FUNG, G. M. AND MANGASARIAN, O. L. 2005. Multicategory proximal support vector machine classifiers. Mach. Learn. 59, 1-2, 77-97.
    • (2005) Mach. Learn.. , vol.59 , Issue.1-2 , pp. 77-97
    • Fung, G.M.1    Mangasarian, O.L.2
  • 17
  • 18
    • 34247576789 scopus 로고    scopus 로고
    • The pyramid match kernel: Efficient learning with sets of features
    • GRAUMAN, K. AND DARRELL, T. 2007. The pyramid match kernel: Efficient learning with sets of features. J. Mach. Learn. Res. 8, 725-760.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 725-760
    • Grauman, K.1    Darrell, T.2
  • 19
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • HOERL, A. AND KENNARD, R. 1970. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 3, 55-67.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 55-67
    • Hoerl, A.1    Kennard, R.2
  • 20
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • HOTELLING, H. 1936. Relations between two sets of variates. Biometrika 28, 3-4, 321-377.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 21
    • 84858783652 scopus 로고    scopus 로고
    • Clustered multi-task learning: A convex formulation
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds
    • JACOB, L., BACH, F., AND VERT, J.-P. 2009. Clustered multi-task learning: A convex formulation. Adv. Neural Inform. Proces. Syst. 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds. 745-752.
    • (2009) Adv. Neural Inform. Proces. Syst , vol.21 , pp. 745-752
    • Jacob, L.1    Bach, F.2    Vert, J.-P.3
  • 22
    • 65549129744 scopus 로고    scopus 로고
    • A bag-of-words approach for Drosophila gene expression pattern annotation
    • JI, S., LI, Y.-X., ZHOU, Z.-H., KUMAR, S., AND YE, J. 2009a. A bag-of-words approach for Drosophila gene expression pattern annotation. Bioinformatics 10, 1, 119.
    • (2009) Bioinformatics , vol.10 , Issue.1 , pp. 119
    • Ji, S.1    Li, Y.-X.2    Zhou, Z.-H.3    Kumar, S.4    Ye, J.5
  • 23
    • 50549093271 scopus 로고    scopus 로고
    • Automated annotation of Drosophila gene expression patterns using a controlled vocabulary
    • JI, S., SUN, L., JIN, R., KUMAR, S., AND YE, J. 2008. Automated annotation of Drosophila gene expression patterns using a controlled vocabulary. Bioinformatics 24, 17, 1881-1888.
    • (2008) Bioinformatics , vol.24 , Issue.17 , pp. 1881-1888
    • Ji, S.1    Sun, L.2    Jin, R.3    Kumar, S.4    Ye, J.5
  • 27
  • 32
    • 77953180229 scopus 로고    scopus 로고
    • A multivariate regression approach to association analysis of quantitative trait network
    • Carnegie Mellon University
    • KIM, S., SOHN, K.-A., AND XING, E. P. 2008. A multivariate regression approach to association analysis of quantitative trait network. Tech. rep. CMU-ML-08-113, Carnegie Mellon University.
    • (2008) Tech. Rep. CMU-ML-08-113
    • Kim, S.1    Sohn, K.-A.2    Xing, E.P.3
  • 33
    • 12244265472 scopus 로고    scopus 로고
    • BEST: A novel computational approach for comparing gene expression patterns from early stages of Drosophlia melanogaster develeopment
    • KUMAR, S., JAYARAMAN, K., PANCHANATHAN, S.,GURUNATHAN, R.,MARTI-SUBIRANA, A., AND NEWFELD, S. J. 2002. BEST: A novel computational approach for comparing gene expression patterns from early stages of Drosophlia melanogaster develeopment. Genetics 169, 2037-2047.
    • (2002) Genetics , vol.169 , pp. 2037-2047
    • Kumar, S.1    Jayaraman, K.2    Panchanathan, S.3    Gurunathan, R.4    Marti-Subirana, A.5    Newfeld, S.J.6
  • 35
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • LEWIS, D. D., YANG, Y., ROSE, T. G., AND LI, F. 2004. RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 36
    • 43249117136 scopus 로고    scopus 로고
    • Real-time computerized annotation of pictures
    • LI, J. AND WANG, J. Z. 2008. Real-time computerized annotation of pictures. IEEE Trans. Patt. Anal. Mach. Intel. 3, 6, 985-1002.
    • (2008) IEEE Trans. Patt. Anal. Mach. Intel , vol.3 , Issue.6 , pp. 985-1002
    • Li, J.1    Wang, J.Z.2
  • 39
  • 41
    • 4043176922 scopus 로고    scopus 로고
    • Lower dimensional representation of text data based on centroids and least squares
    • PARK, H., JEON, M., AND ROSEN, J. B. 2003. Lower dimensional representation of text data based on centroids and least squares. BIT 43, 2, 1-22.
    • (2003) BIT , vol.43 , Issue.2 , pp. 1-22
    • Park, H.1    Jeon, M.2    Rosen, J.B.3
  • 42
    • 56749117943 scopus 로고    scopus 로고
    • Defense of one-vs-all classification
    • RIFKIN, R. AND KLAUTAU, A. 2004. In defense of one-vs-all classification. J. Mach. Learn. Res. 5, 101-141.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 101-141
    • Rifkin, R.1    Klautau, A.2
  • 43
    • 45149115870 scopus 로고    scopus 로고
    • Improved functional prediction of proteins by learning kernel combinations in multilabel settings
    • ROTH, V. AND FISCHER, B. 2007. Improved functional prediction of proteins by learning kernel combinations in multilabel settings. Bioinformatics 8, S12.
    • (2007) Bioinformatics , vol.8
    • Roth, V.1    Fischer, B.2
  • 52
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • UEDA, N. AND SAITO, K. 2002a. Parametric mixture models for multi-labeled text. Adv. Neural Inform. Proces. Syst. 15. 721-728.
    • (2002) Adv. Neural Inform. Proces. Syst , vol.15 , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 54
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • P. R. Krishnaiah, Ed. Academic Press, New York
    • WOLD, H. 1966. Estimation of principal components and related models by iterative least squares. P. R. Krishnaiah, Ed., Multivariate Analysis. Academic Press, New York, 391-420.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 57
    • 21844447839 scopus 로고    scopus 로고
    • Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
    • YE, J. 2005. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Resear. 6, 483-502.
    • (2005) J. Mach. Learn. Resear , vol.6 , pp. 483-502
    • Ye, J.1
  • 58
    • 34547964600 scopus 로고    scopus 로고
    • Least squares linear discriminant analysis
    • DOI 10.1145/1273496.1273633, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • YE, J. 2007. Least squares linear discriminant analysis. In Proceedings of the 24th International Conference on Machine Learning. 1087-1093. (Pubitemid 47275175)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1087-1093
    • Ye, J.1
  • 60
    • 33846580425 scopus 로고    scopus 로고
    • Local features and kernels for classification of texture and object categories: A comprehensive study
    • ZHANG, J., MARSZALEK, M., LAZEBNIK, S., AND SCHMID, C. 2007. Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. Comput. Vision 73, 2, 213-238.
    • (2007) Int. J. Comput. Vision , vol.73 , Issue.2 , pp. 213-238
    • Zhang, J.1    Marszalek, M.2    Lazebnik, S.3    Schmid, C.4
  • 61
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • ZHANG, M.-L. AND ZHOU, Z.-H. 2006. Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans. Knowl. Data Engin. 18, 10, 1338-1351.
    • (2006) IEEE Trans. Knowl. Data Engin , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 62
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: A lazy learning approach to multi-label learning
    • ZHANG, M.-L. AND ZHOU, Z.-H. 2007. ML-KNN: A lazy learning approach to multi-label learning. Patt. Recog. 40, 7, 2038-2048.
    • (2007) Patt. Recog. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.-L.1    Zhou, Z.-H.2
  • 63
    • 84864028262 scopus 로고    scopus 로고
    • Multi-instance multi-label learning with application to scene classification
    • ZHOU, Z.-H. AND ZHANG,M.-L. 2007. Multi-instance multi-label learning with application to scene classification. Adv. Neural Inform. Process. Syst. 19. 1609-1616.
    • (2007) Adv. Neural Inform. Process. Syst , vol.19 , pp. 1609-1616
    • Zhou, Z.-H.1    Zhang, M.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.