-
1
-
-
84893108239
-
Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages
-
Agrawal, R.; Gupta, A.; Prabhu, Y.; and Varma, M. 2013. Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages. In Proc. WWW, 13-24.
-
(2013)
Proc. WWW
, pp. 13-24
-
-
Agrawal, R.1
Gupta, A.2
Prabhu, Y.3
Varma, M.4
-
2
-
-
3042597440
-
Learning multi-label scene classification
-
Boutell, M. R.; Luo, J.; Shen, X.; and Brown, C. M. 2004. Learning multi-label scene classification. Pattern Recogn. 37(9): 1757-1771.
-
(2004)
Pattern Recogn
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
3
-
-
84863167108
-
Multi- class 12, 1-norm support vector machine
-
Cai, X.; Nie, F.; Huang, H.; and Ding, C. H. Q. 2011. Multi- class 12, 1-norm support vector machine. In ICDM, 91-100.
-
(2011)
ICDM
, pp. 91-100
-
-
Cai, X.1
Nie, F.2
Huang, H.3
Ding, C.H.Q.4
-
6
-
-
72249085330
-
Nus-wide: A real-world web image database from national university of Singapore
-
Chua, T.-S.; Tang, J.; Hong, R.; Li, H.; Luo, Z.; and Zheng, Y. 2009. Nus-wide: A real-world web image database from national university of Singapore. In Proc. CfVR.
-
(2009)
Proc. CfVR
-
-
Chua, T.-S.1
Tang, J.2
Hong, R.3
Li, H.4
Luo, Z.5
Zheng, Y.6
-
7
-
-
76649137444
-
A kernel method for multi-labelled classification
-
ElisseefT, A., and Weston, J. 2002. A kernel method for multi-labelled classification. In Proc. NIPS.
-
(2002)
Proc. NIPS
-
-
ElisseefT, A.1
Weston, J.2
-
8
-
-
70449621223
-
The mirflickr retrieval evaluation
-
Huiskes, M. J., and Lew, M. S. 2008. The mirflickr retrieval evaluation. In Proc. MIR, 39-43.
-
(2008)
Proc. MIR
, pp. 39-43
-
-
Huiskes, M.J.1
Lew, M.S.2
-
9
-
-
0003036517
-
The feature selection problem: Traditional methods and a new algorithm
-
Kenji, K., and Rendell, L. A. 1992. The feature selection problem: Traditional methods and a new algorithm. In Proc. ICML, 129-134.
-
(1992)
Proc. ICML
, pp. 129-134
-
-
Kenji, K.1
Rendell, L.A.2
-
10
-
-
79951738010
-
Multi-label feature selection for graph classification
-
Kong, X., and Yu, P. S. 2010a. Multi-label feature selection for graph classification. In Proc. ICDM, 274-283.
-
(2010)
Proc. ICDM
, pp. 274-283
-
-
Kong, X.1
Yu, P.S.2
-
11
-
-
77956201235
-
Semi-supervised feature selection for graph classification
-
Kong, X., and Yu, P. S. 2010b. Semi-supervised feature selection for graph classification. In Proc. SIGKDD, 793- 802.
-
(2010)
Proc. SIGKDD
, pp. 793-802
-
-
Kong, X.1
Yu, P.S.2
-
12
-
-
84875384168
-
Efficient semi- supervised feature selection with noise insensitive trace ratio criterion
-
Liu, Y.; Nie, F.; Wu, J.; and Chen, L. 2013. Efficient semi- supervised feature selection with noise insensitive trace ratio criterion. Neuro computing 105:12-18.
-
(2013)
Neuro Computing
, vol.105
, pp. 12-18
-
-
Liu, Y.1
Nie, F.2
Wu, J.3
Chen, L.4
-
13
-
-
84893379490
-
Vector- valued multi-view semi-supervised learning for multi-label image classification
-
Luo, Y.; Tao, D.; Xu, C.; Li, D.; and Xu, C. 2013. Vector- valued multi-view semi-supervised learning for multi-label image classification. In Proc. AAAI.
-
(2013)
Proc. AAAI
-
-
Luo, Y.1
Tao, D.2
Xu, C.3
Li, D.4
Xu, C.5
-
14
-
-
84870517183
-
Discriminating joint feature analysis for multimedia data understanding
-
Ma, Z.; Nie, E; Yang, Y.; Uijlings, J. R. R.; Sebe, N.; and Hauptmann, A. G. 2012a. Discriminating joint feature analysis for multimedia data understanding. IEEE Trans. Multimedia 14(6): 1662-1672.
-
(2012)
IEEE Trans. Multimedia
, vol.14
, Issue.6
, pp. 1662-1672
-
-
Ma, Z.1
Nie, E.2
Yang, Y.3
Uijlings, J.R.R.4
Sebe, N.5
Hauptmann, A.G.6
-
15
-
-
84864065280
-
Web image annotation via subspace-sparsity collaborated feature selection
-
Ma, Z.; Nie, F.; Yang, Y.; Uijlings, J. R. R.; and Sebe, N. 2012b. Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans. Multimedia 14(4): 1021-1030.
-
(2012)
IEEE Trans. Multimedia
, vol.14
, Issue.4
, pp. 1021-1030
-
-
Ma, Z.1
Nie, F.2
Yang, Y.3
Uijlings, J.R.R.4
Sebe, N.5
-
16
-
-
85135939782
-
Efficient and robust feature selection via joint 121-norms minimization
-
Nie, F.; Huang, H.; Cai, X.; and Ding, C. 2010a. Efficient and robust feature selection via joint 121-norms minimization. In Proc. NIPS, 759-768.
-
(2010)
Proc. NIPS
, pp. 759-768
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
17
-
-
77953705810
-
Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
-
Nie, F.; Xu, D.; Tsang, I. W.-H.; and Zhang, C. 2010b. Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. IEEE Trans. Image Process. 19(7): 1921-1932.
-
(2010)
IEEE Trans. Image Process
, vol.19
, Issue.7
, pp. 1921-1932
-
-
Nie, F.1
Xu, D.2
Tsang, I.W.-H.3
Zhang, C.4
-
19
-
-
77956551904
-
Learning sparse svm for feature selection on very high dimensional datasets
-
Tan, M.; Wang, L.; and Tsang, I. W. 2010. Learning sparse svm for feature selection on very high dimensional datasets. In Proc. ICML, 1047-1054.
-
(2010)
Proc. ICML
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.W.3
-
20
-
-
84863059819
-
A new sparse multi-task regression and feature selection method to identify brain imaging predictors for memory performance
-
Wang, H.; Nie, F.; Huang, H.; Risacher, S. L.; Ding, C.; Saykin, A. J.; Shen, L.; and ADNI. 2011. A new sparse multi-task regression and feature selection method to identify brain imaging predictors for memory performance. ICCV2011: IEEE Conference on Computer Vision 557-562.
-
(2011)
ICCV2011: IEEE Conference on Computer Vision
, pp. 557-562
-
-
Wang, H.1
Nie, F.2
Huang, H.3
Risacher, S.L.4
Ding, C.5
Saykin, A.J.6
Shen, L.7
-
21
-
-
78650979629
-
Heterogeneous feature selection by group lasso with logistic regression
-
Wu, F.; Yuan, Y.; and Zhuang, Y. 2010. Heterogeneous feature selection by group lasso with logistic regression. In ACM Multimedia, 983-986.
-
(2010)
ACM Multimedia
, pp. 983-986
-
-
Wu, F.1
Yuan, Y.2
Zhuang, Y.3
-
22
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regular- ization
-
Xu, Zenglin, I. K., M.-T. L., and Jin, R. 2010. Discriminative semi-supervised feature selection via manifold regular- ization. IEEE Trans. Neural Networks 21(7): 1033-1047.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
Jin, R.2
-
23
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Zhao, Z., and Liu, H. 2007. Spectral feature selection for supervised and unsupervised learning. In Proc. ICML, 1151- 1157.
-
(2007)
Proc. ICML
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
24
-
-
44649111202
-
Locality sensitive semi- supervised feature selection
-
Zhao, J.; Lu, K.; and He, X. 2008. Locality sensitive semi- supervised feature selection. Neuro computing 71(10): 1842- 1849.
-
(2008)
Neuro Computing
, vol.71
, Issue.10
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
25
-
-
84864028262
-
Multi-instance multi- label learning with application to scene classification
-
Zhou, Z.-H., and Zhang, M.-L. 2006. Multi-instance multi- label learning with application to scene classification. In Proc. NIPS, 1609-1616.
-
(2006)
Proc. NIPS
, pp. 1609-1616
-
-
Zhou, Z.-H.1
Zhang, M.-L.2
|