메뉴 건너뛰기




Volumn 25, Issue 3, 2013, Pages 619-632

On similarity preserving feature selection

Author keywords

Feature selection; multiple output regression; redundancy removal; similarity preserving; sparse regularization

Indexed keywords

EXPERIMENTAL STUDIES; FEATURE REDUNDANCY; ITS EFFICIENCIES; MULTIPLE OUTPUTS; REDUNDANCY REMOVAL; REDUNDANT FEATURES; SELECTION CRITERIA; SELECTION FRAMEWORK; SIMILARITY PRESERVING; SPARSE REGULARIZATION;

EID: 84873278481     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2011.222     Document Type: Article
Times cited : (304)

References (51)
  • 3
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex Multi-Task Feature Learning," Machine Learning, vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 7
    • 84960463485 scopus 로고    scopus 로고
    • Minimum redundancy feature selection from microarray gene expression data
    • C. Ding and H. Peng, "Minimum Redundancy Feature Selection from Microarray Gene Expression Data," Proc. IEEE CS Conf. Bioinformatics (CSB), 2003.
    • (2003) Proc. IEEE CS Conf. Bioinformatics (CSB)
    • Ding, C.1    Peng, H.2
  • 10
    • 0037342804 scopus 로고    scopus 로고
    • Unsupervised feature selection applied to content-based retrieval of lung images
    • Mar
    • J.G. Dy et al., "Unsupervised Feature Selection Applied to Content-Based Retrieval of Lung Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 3, pp. 373-378, Mar. 2003.
    • (2003) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.25 , Issue.3 , pp. 373-378
    • Dy, J.G.1
  • 11
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J.G. Dy and C.E. Brodley, "Feature Selection for Unsupervised Learning," J. Machine Learning Research, vol. 5, pp. 845-889, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 13
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification," J. Machine Learning Research, vol. 3, pp. 1289-1305, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 24
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • DOI 10.1109/TKDE.2005.66
    • H. Liu and L. Yu, "Toward Integrating Feature Selection Algorithms for Classification and Clustering," IEEE Trans. Knowledge and Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005. (Pubitemid 40495592)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 26
    • 70049091215 scopus 로고
    • Efficient methods in convex programming
    • A. Nemirovski, "Efficient Methods in Convex Programming," Lecture Notes, 1994.
    • (1994) Lecture Notes
    • Nemirovski, A.1
  • 30
    • 56449115709 scopus 로고    scopus 로고
    • The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
    • V. Roth and B. Fischer, "The Group-Lasso for Generalized Linear Models: Uniqueness of Solutions and Efficient Algorithms," Proc. 25th Int'l Conf. Machine Learning (ICML), 2008.
    • (2008) Proc. 25th Int'l Conf. Machine Learning (ICML)
    • Roth, V.1    Fischer, B.2
  • 31
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • DOI 10.1126/science.290.5500.2323
    • S.T. Roweis and L.K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, pp. 2323-2326, 2000. (Pubitemid 32041578)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 32
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • DOI 10.1093/bioinformatics/btm344
    • Y. Saeys et al., "A Review of Feature Selection Techniques in Bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. (Pubitemid 350048351)
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 35
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of relief and reliefF
    • M.R. Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of Relief and ReliefF," Machine Learning, vol. 53, pp. 23-69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Sikonja, M.R.1    Kononenko, I.2
  • 37
    • 71149101160 scopus 로고    scopus 로고
    • A least squares formulation for a class of generalized eigenvalue problems in machine learning
    • L. Sun, S. Ji, and J. Ye, "A Least Squares Formulation For a Class of Generalized Eigenvalue Problems in Machine Learning," Proc. 26th Ann. Int'l Conf. Machine Learning (ICML), 2009.
    • (2009) Proc. 26th Ann. Int'l Conf. Machine Learning (ICML)
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 38
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • DOI 10.1126/science.290.5500.2319
    • J. Tenenbaum, V. de Silva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    De Silva, V.2    Langford, J.C.3
  • 39
    • 34548583274 scopus 로고    scopus 로고
    • technical report, Max Planck Inst. of Biological Cybernetics
    • U. von Luxburg, "A Tutorial on Spectral Clustering," technical report, Max Planck Inst. of Biological Cybernetics, 2007.
    • (2007) A Tutorial on Spectral Clustering
    • Von Luxburg, U.1
  • 46
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," Proc. 20th Int'l Conf. Machine Learning (ICML), 2003.
    • (2003) Proc. 20th Int'l Conf. Machine Learning (ICML)
    • Yu, L.1    Liu, H.2
  • 47
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin, "Model Selection and Estimation in Regression with Grouped Variables," J. Royal Statistical Soc. Series B, vol. 68, pp. 49-67, 2005.
    • (2005) J. Royal Statistical Soc. Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 51
    • 77951937407 scopus 로고    scopus 로고
    • Feature selection with redundancy-constrained class separability
    • May
    • L. Zhou, L. Wang, and C. Shen, "Feature Selection with Redundancy-Constrained Class Separability," IEEE Trans. Neural Networks, vol. 21, no. 5, pp. 853-858, May 2010.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.5 , pp. 853-858
    • Zhou, L.1    Wang, L.2    Shen, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.