-
2
-
-
14344265818
-
Redundant feature elimination for multi-class problems
-
A. Appice, M. Ceci, S. Rawles, and P. Flach, "Redundant Feature Elimination for Multi-Class Problems," Proc. 21st Int'l Conf. Machine Learning (ICML), 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning (ICML)
-
-
Appice, A.1
Ceci, M.2
Rawles, S.3
Flach, P.4
-
3
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil, "Convex Multi-Task Feature Learning," Machine Learning, vol. 73, no. 3, pp. 243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
7
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
C. Ding and H. Peng, "Minimum Redundancy Feature Selection from Microarray Gene Expression Data," Proc. IEEE CS Conf. Bioinformatics (CSB), 2003.
-
(2003)
Proc. IEEE CS Conf. Bioinformatics (CSB)
-
-
Ding, C.1
Peng, H.2
-
10
-
-
0037342804
-
Unsupervised feature selection applied to content-based retrieval of lung images
-
Mar
-
J.G. Dy et al., "Unsupervised Feature Selection Applied to Content-Based Retrieval of Lung Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25, no. 3, pp. 373-378, Mar. 2003.
-
(2003)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.25
, Issue.3
, pp. 373-378
-
-
Dy, J.G.1
-
11
-
-
26444454606
-
Feature selection for unsupervised learning
-
J.G. Dy and C.E. Brodley, "Feature Selection for Unsupervised Learning," J. Machine Learning Research, vol. 5, pp. 845-889, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
12
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least Angle Regression," Annals of Statistics, vol. 32, pp. 407-449, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-449
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
13
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman, "An Extensive Empirical Study of Feature Selection Metrics for Text Classification," J. Machine Learning Research, vol. 3, pp. 1289-1305, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
15
-
-
33750587254
-
Measuring statistical dependence with hilbert-schmidt norms
-
A. Gretton, O. Bousquet, A. Smola, and B. Scholkopf, "Measuring Statistical Dependence with Hilbert-Schmidt Norms," Proc. 16th Int'l Conf. Algorithmic Learning Theory (ALT), 2005.
-
(2005)
Proc. 16th Int'l Conf. Algorithmic Learning Theory (ALT)
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.3
Scholkopf, B.4
-
16
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, pp. 1157-1182, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
19
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi, "Laplacian Score for Feature Selection," Proc. Advances in Neural Information Processing Systems, vol. 18, 2005.
-
(2005)
Proc. Advances in Neural Information Processing Systems
, vol.18
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
20
-
-
33745881038
-
Neighborhood preserving embedding
-
X. He, D. Cai, S. Yan, and H.J. Zhang, "Neighborhood Preserving Embedding," Proc. Int'l Conf. Computer Vision (ICCV), 2005.
-
(2005)
Proc. Int'l Conf. Computer Vision (ICCV)
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.J.4
-
24
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
DOI 10.1109/TKDE.2005.66
-
H. Liu and L. Yu, "Toward Integrating Feature Selection Algorithms for Classification and Clustering," IEEE Trans. Knowledge and Data Eng., vol. 17, no. 4, pp. 491-502, Apr. 2005. (Pubitemid 40495592)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
26
-
-
70049091215
-
Efficient methods in convex programming
-
A. Nemirovski, "Efficient Methods in Convex Programming," Lecture Notes, 1994.
-
(1994)
Lecture Notes
-
-
Nemirovski, A.1
-
28
-
-
57749182885
-
Trace ratio criterion for feature selection
-
F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan, "Trace Ratio Criterion for Feature Selection," Proc. Conf. Artificial Intelligence (AAAI), 2008.
-
(2008)
Proc. Conf. Artificial Intelligence (AAAI)
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
30
-
-
56449115709
-
The group-lasso for generalized linear models: Uniqueness of solutions and efficient algorithms
-
V. Roth and B. Fischer, "The Group-Lasso for Generalized Linear Models: Uniqueness of Solutions and Efficient Algorithms," Proc. 25th Int'l Conf. Machine Learning (ICML), 2008.
-
(2008)
Proc. 25th Int'l Conf. Machine Learning (ICML)
-
-
Roth, V.1
Fischer, B.2
-
31
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S.T. Roweis and L.K. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," Science, vol. 290, pp. 2323-2326, 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
32
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
DOI 10.1093/bioinformatics/btm344
-
Y. Saeys et al., "A Review of Feature Selection Techniques in Bioinformatics," Bioinformatics, vol. 23, no. 19, pp. 2507-2517, 2007. (Pubitemid 350048351)
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
33
-
-
84873308360
-
-
The MIT Press
-
L.K. Saul, K.Q. Weinberger, F. Sha, J. Ham, and D.D. Lee, Spectral Methods for Dimensionality Reduction, chapter 16, pp. 279-293. The MIT Press, 2006.
-
(2006)
Spectral Methods for Dimensionality Reduction Chapter 16
, pp. 279-293
-
-
Saul, L.K.1
Weinberger, K.Q.2
Sha, F.3
Ham, J.4
Lee, D.D.5
-
35
-
-
0141990695
-
Theoretical and empirical analysis of relief and reliefF
-
M.R. Sikonja and I. Kononenko, "Theoretical and Empirical Analysis of Relief and ReliefF," Machine Learning, vol. 53, pp. 23-69, 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Sikonja, M.R.1
Kononenko, I.2
-
36
-
-
84873304562
-
Feature selection via dependence maximization
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature Selection via Dependence Maximization," J. Machine Learning Research, 2007.
-
(2007)
J. Machine Learning Research
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
37
-
-
71149101160
-
A least squares formulation for a class of generalized eigenvalue problems in machine learning
-
L. Sun, S. Ji, and J. Ye, "A Least Squares Formulation For a Class of Generalized Eigenvalue Problems in Machine Learning," Proc. 26th Ann. Int'l Conf. Machine Learning (ICML), 2009.
-
(2009)
Proc. 26th Ann. Int'l Conf. Machine Learning (ICML)
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
38
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
J. Tenenbaum, V. de Silva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, 2000. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
39
-
-
34548583274
-
-
technical report, Max Planck Inst. of Biological Cybernetics
-
U. von Luxburg, "A Tutorial on Spectral Clustering," technical report, Max Planck Inst. of Biological Cybernetics, 2007.
-
(2007)
A Tutorial on Spectral Clustering
-
-
Von Luxburg, U.1
-
42
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping, "Use of the Zero Norm with Linear Models and Kernel Methods," J. Machine Learning Research, vol. 3, pp. 1439-1461, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
44
-
-
77954563692
-
Discriminative semi-supervised feature selection via manifold regularization
-
Z. Xu, R. Jin, M.R. Lyu, and I. King, "Discriminative Semi-Supervised Feature Selection via Manifold Regularization," Proc. 21st Int'l Joint Conf. Artificial Intelligence (IJCAI), 2009.
-
(2009)
Proc. 21st Int'l Joint Conf. Artificial Intelligence (IJCAI)
-
-
Xu, Z.1
Jin, R.2
Lyu, M.R.3
King, I.4
-
45
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
DOI 10.1109/TPAMI.2007.250598
-
S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, "Graph Embedding and Extensions: A General Framework for Dimensionality Reduction," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40-51, Jan. 2007. (Pubitemid 46415944)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.1
Xu, D.2
Zhang, B.3
Zhang, H.-J.4
Yang, Q.5
Lin, S.6
-
46
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
L. Yu and H. Liu, "Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution," Proc. 20th Int'l Conf. Machine Learning (ICML), 2003.
-
(2003)
Proc. 20th Int'l Conf. Machine Learning (ICML)
-
-
Yu, L.1
Liu, H.2
-
47
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin, "Model Selection and Estimation in Regression with Grouped Variables," J. Royal Statistical Soc. Series B, vol. 68, pp. 49-67, 2005.
-
(2005)
J. Royal Statistical Soc. Series B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
51
-
-
77951937407
-
Feature selection with redundancy-constrained class separability
-
May
-
L. Zhou, L. Wang, and C. Shen, "Feature Selection with Redundancy-Constrained Class Separability," IEEE Trans. Neural Networks, vol. 21, no. 5, pp. 853-858, May 2010.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.5
, pp. 853-858
-
-
Zhou, L.1
Wang, L.2
Shen, C.3
|