-
3
-
-
55149088329
-
Convex multitask feature learning
-
Argyriou, A. et al. (2008) Convex multitask feature learning. Machine Learning, 73, 243-272.
-
(2008)
Machine Learning
, vol.73
, pp. 243-272
-
-
Argyriou, A.1
-
4
-
-
0033933649
-
Voxel-based morphometry-the methods
-
Ashburner, J. and Friston, K. (2000) Voxel-based morphometry-the methods. Neuroimage, 11, 805-821.
-
(2000)
Neuroimage
, vol.11
, pp. 805-821
-
-
Ashburner, J.1
Friston, K.2
-
6
-
-
70349336340
-
A general and unifying framework for feature construction, in image-based pattern classification
-
Batmanghelich, N. et al. (2009) A general and unifying framework for feature construction, in image-based pattern classification. Inf Process Med Imaging, 21, 423-434.
-
(2009)
Inf Process Med Imaging
, vol.21
, pp. 423-434
-
-
Batmanghelich, N.1
-
7
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
Beck, A. and Teboulle., M. (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183-202.
-
(2009)
SIAM J. Imaging Sci.
, vol.2
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
11
-
-
3242708140
-
Least angle regression
-
Efron, B. et al. (2004) Least angle regression. Ann. Stat., 32, 407-499.
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-499
-
-
Efron, B.1
-
12
-
-
38749113910
-
Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
-
Fan, Y. et al. (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage, 39, 1731-1743.
-
(2008)
Neuroimage
, vol.39
, pp. 1731-1743
-
-
Fan, Y.1
-
13
-
-
18244406829
-
Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
-
Fischl, B. et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341-355.
-
(2002)
Neuron
, vol.33
, pp. 341-355
-
-
Fischl, B.1
-
14
-
-
14344263553
-
Combining labeled and unlabeled data for multi-class text categorization
-
ACM
-
Ghani, R. (2002) Combining labeled and unlabeled data for multi-class text categorization. In International Conference on Machine Learning, ACM, pp. 187-194.
-
(2002)
In International Conference on Machine Learning
, pp. 187-194
-
-
Ghani, R.1
-
16
-
-
67949103436
-
Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
-
Hinrichs, C. et al. (2009b) Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 48, 138-149.
-
(2009)
Neuroimage
, vol.48
, pp. 138-149
-
-
Hinrichs, C.1
-
19
-
-
21244437589
-
Sparse multinomial logistic regression: fast algorithms and generalization bounds
-
Krishnapuram, B. et al. (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. In IEEE Trans. Pattern Anal. Mach. Intell., 27, 957-968.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 957-968
-
-
Krishnapuram, B.1
-
20
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet, G. et al. (2004) Learning the kernel matrix with semidefinite programming. In JMLR, 5, 27-72.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
-
21
-
-
79958766587
-
Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
-
Landau, S. et al. (2009) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging, 32, 1207-1218.
-
(2009)
Neurobiol. Aging
, vol.32
, pp. 1207-1218
-
-
Landau, S.1
-
26
-
-
0033886806
-
Text classification from labeled and unlabeled documents using em
-
Nigam, K. et al. (2000) Text classification from labeled and unlabeled documents using em. Machine Learning, 39, 103-134.
-
(2000)
Machine Learning
, vol.39
, pp. 103-134
-
-
Nigam, K.1
-
27
-
-
34948865158
-
Multi-task feature selection
-
Department of Statistics, University of California, Berkeley
-
Obozinski, G. et al. (2006) Multi-task feature selection. Technical report, Department of Statistics, University of California, Berkeley.
-
(2006)
Technical report
-
-
Obozinski, G.1
-
28
-
-
77953322499
-
Joint covariate selection and joint subspace selection for multiple classification problems
-
Obozinski, G. et al. (2010) Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput., 20, 231-252.
-
(2010)
Stat. Comput.
, vol.20
, pp. 231-252
-
-
Obozinski, G.1
-
31
-
-
77954021537
-
Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans
-
Saykin, A.J. et al. (2010) Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement, 6, 265-273.
-
(2010)
Alzheimers Dement
, vol.6
, pp. 265-273
-
-
Saykin, A.J.1
-
32
-
-
84856412012
-
Sparse bayesian learning for identifying imaging biomarkers in AD prediction
-
Shen, L. et al. (2010a) Sparse bayesian learning for identifying imaging biomarkers in AD prediction. Med. Image Comput. Comput. Assist. Interv., 13(Pt 3), 611-618.
-
(2010)
Med. Image Comput. Comput. Assist. Interv.
, vol.13
, Issue.PART 3
, pp. 611-618
-
-
Shen, L.1
-
33
-
-
77954034488
-
Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
-
Shen, L. et al. (2010b) Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage, 53, 1051-1063.
-
(2010)
Neuroimage
, vol.53
, pp. 1051-1063
-
-
Shen, L.1
-
34
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg, S. et al. (2006) Large scale multiple kernel learning. In JMLR, 7, 1531-1565.
-
(2006)
JMLR
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
-
35
-
-
77952888499
-
Predicting clinical scores frommagnetic resonance scans in alzheimer's disease
-
Stonnington, C.M. et al. (2010) Predicting clinical scores frommagnetic resonance scans in alzheimer's disease. Neuroimage, 51, 1405-1413.
-
(2010)
Neuroimage
, vol.51
, pp. 1405-1413
-
-
Stonnington, C.M.1
-
38
-
-
0001287271
-
Regression shrinkage and selection via the LASSO
-
Tibshirani, R. (1996) Regression shrinkage and selection via the LASSO. J. R. Statist. Soc B., 58, 267-288.
-
(1996)
J. R. Statist. Soc B.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
39
-
-
77952879134
-
Multi-modal imaging predicts memory performance in normal aging and cognitive decline
-
Walhovd, K. et al. (2010) Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging, 31, 1107-1121.
-
(2010)
Neurobiol. Aging
, vol.31
, pp. 1107-1121
-
-
Walhovd, K.1
-
41
-
-
84862970066
-
Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
-
Wang, H. et al. (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics, 28, 229-237.
-
(2012)
Bioinformatics
, vol.28
, pp. 229-237
-
-
Wang, H.1
-
42
-
-
84863338429
-
Heterogeneous multitask learning with joint sparsity constraints
-
The MIT Press
-
Yang, X. et al. (2009) Heterogeneous multitask learning with joint sparsity constraints. In Advances in Neural Information Processing System (NIPS), The MIT Press, pp. 2151-2159.
-
(2009)
Advances in Neural Information Processing System (NIPS)
, pp. 2151-2159
-
-
Yang, X.1
-
43
-
-
44649123652
-
Multi-class discriminant kernel learning via convex programming
-
Ye, J. et al. (2008) Multi-class discriminant kernel learning via convex programming. In JMLR, 9, 719-758.
-
(2008)
JMLR
, vol.9
, pp. 719-758
-
-
Ye, J.1
-
44
-
-
77954853785
-
L 2-norm multiple kernel learning and its application to biomedical data fusion
-
Yu, S. et al. (2010). L 2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics, 11, 309.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 309
-
-
Yu, S.1
-
45
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B, 68, 49C-67.
-
(2006)
J. R. Stat. Soc. Ser. B
, vol.68
-
-
Yuan, M.1
Lin, Y.2
|