메뉴 건너뛰기




Volumn 28, Issue 12, 2012, Pages

Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84863509119     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bts228     Document Type: Article
Times cited : (118)

References (46)
  • 3
    • 55149088329 scopus 로고    scopus 로고
    • Convex multitask feature learning
    • Argyriou, A. et al. (2008) Convex multitask feature learning. Machine Learning, 73, 243-272.
    • (2008) Machine Learning , vol.73 , pp. 243-272
    • Argyriou, A.1
  • 4
    • 0033933649 scopus 로고    scopus 로고
    • Voxel-based morphometry-the methods
    • Ashburner, J. and Friston, K. (2000) Voxel-based morphometry-the methods. Neuroimage, 11, 805-821.
    • (2000) Neuroimage , vol.11 , pp. 805-821
    • Ashburner, J.1    Friston, K.2
  • 6
    • 70349336340 scopus 로고    scopus 로고
    • A general and unifying framework for feature construction, in image-based pattern classification
    • Batmanghelich, N. et al. (2009) A general and unifying framework for feature construction, in image-based pattern classification. Inf Process Med Imaging, 21, 423-434.
    • (2009) Inf Process Med Imaging , vol.21 , pp. 423-434
    • Batmanghelich, N.1
  • 7
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A. and Teboulle., M. (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2, 183-202.
    • (2009) SIAM J. Imaging Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 11
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression
    • Efron, B. et al. (2004) Least angle regression. Ann. Stat., 32, 407-499.
    • (2004) Ann. Stat. , vol.32 , pp. 407-499
    • Efron, B.1
  • 12
    • 38749113910 scopus 로고    scopus 로고
    • Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline
    • Fan, Y. et al. (2008) Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. Neuroimage, 39, 1731-1743.
    • (2008) Neuroimage , vol.39 , pp. 1731-1743
    • Fan, Y.1
  • 13
    • 18244406829 scopus 로고    scopus 로고
    • Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
    • Fischl, B. et al. (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341-355.
    • (2002) Neuron , vol.33 , pp. 341-355
    • Fischl, B.1
  • 14
    • 14344263553 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data for multi-class text categorization
    • ACM
    • Ghani, R. (2002) Combining labeled and unlabeled data for multi-class text categorization. In International Conference on Machine Learning, ACM, pp. 187-194.
    • (2002) In International Conference on Machine Learning , pp. 187-194
    • Ghani, R.1
  • 16
    • 67949103436 scopus 로고    scopus 로고
    • Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset
    • Hinrichs, C. et al. (2009b) Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage, 48, 138-149.
    • (2009) Neuroimage , vol.48 , pp. 138-149
    • Hinrichs, C.1
  • 17
    • 77956548668 scopus 로고    scopus 로고
    • Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity
    • Kim, S. and Xing, E. (2010) Tree-Guided Group Lasso for Multi-Task Regression with Structured Sparsity. In International Conference on Machine Learning (ICML). pp. 352-359.
    • (2010) In International Conference on Machine Learning (ICML) , pp. 352-359
    • Kim, S.1    Xing, E.2
  • 19
    • 21244437589 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression: fast algorithms and generalization bounds
    • Krishnapuram, B. et al. (2005) Sparse multinomial logistic regression: fast algorithms and generalization bounds. In IEEE Trans. Pattern Anal. Mach. Intell., 27, 957-968.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , pp. 957-968
    • Krishnapuram, B.1
  • 20
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • Lanckriet, G. et al. (2004) Learning the kernel matrix with semidefinite programming. In JMLR, 5, 27-72.
    • (2004) JMLR , vol.5 , pp. 27-72
    • Lanckriet, G.1
  • 21
    • 79958766587 scopus 로고    scopus 로고
    • Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI
    • Landau, S. et al. (2009) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging, 32, 1207-1218.
    • (2009) Neurobiol. Aging , vol.32 , pp. 1207-1218
    • Landau, S.1
  • 26
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using em
    • Nigam, K. et al. (2000) Text classification from labeled and unlabeled documents using em. Machine Learning, 39, 103-134.
    • (2000) Machine Learning , vol.39 , pp. 103-134
    • Nigam, K.1
  • 27
    • 34948865158 scopus 로고    scopus 로고
    • Multi-task feature selection
    • Department of Statistics, University of California, Berkeley
    • Obozinski, G. et al. (2006) Multi-task feature selection. Technical report, Department of Statistics, University of California, Berkeley.
    • (2006) Technical report
    • Obozinski, G.1
  • 28
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • Obozinski, G. et al. (2010) Joint covariate selection and joint subspace selection for multiple classification problems. Stat. Comput., 20, 231-252.
    • (2010) Stat. Comput. , vol.20 , pp. 231-252
    • Obozinski, G.1
  • 31
    • 77954021537 scopus 로고    scopus 로고
    • Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans
    • Saykin, A.J. et al. (2010) Alzheimer's disease neuroimaging initiative biomarkers as quantitative phenotypes: genetics core aims, progress, and plans. Alzheimers Dement, 6, 265-273.
    • (2010) Alzheimers Dement , vol.6 , pp. 265-273
    • Saykin, A.J.1
  • 32
    • 84856412012 scopus 로고    scopus 로고
    • Sparse bayesian learning for identifying imaging biomarkers in AD prediction
    • Shen, L. et al. (2010a) Sparse bayesian learning for identifying imaging biomarkers in AD prediction. Med. Image Comput. Comput. Assist. Interv., 13(Pt 3), 611-618.
    • (2010) Med. Image Comput. Comput. Assist. Interv. , vol.13 , Issue.PART 3 , pp. 611-618
    • Shen, L.1
  • 33
    • 77954034488 scopus 로고    scopus 로고
    • Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort
    • Shen, L. et al. (2010b) Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage, 53, 1051-1063.
    • (2010) Neuroimage , vol.53 , pp. 1051-1063
    • Shen, L.1
  • 34
    • 33745776113 scopus 로고    scopus 로고
    • Large scale multiple kernel learning
    • Sonnenburg, S. et al. (2006) Large scale multiple kernel learning. In JMLR, 7, 1531-1565.
    • (2006) JMLR , vol.7 , pp. 1531-1565
    • Sonnenburg, S.1
  • 35
    • 77952888499 scopus 로고    scopus 로고
    • Predicting clinical scores frommagnetic resonance scans in alzheimer's disease
    • Stonnington, C.M. et al. (2010) Predicting clinical scores frommagnetic resonance scans in alzheimer's disease. Neuroimage, 51, 1405-1413.
    • (2010) Neuroimage , vol.51 , pp. 1405-1413
    • Stonnington, C.M.1
  • 38
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • Tibshirani, R. (1996) Regression shrinkage and selection via the LASSO. J. R. Statist. Soc B., 58, 267-288.
    • (1996) J. R. Statist. Soc B. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 39
    • 77952879134 scopus 로고    scopus 로고
    • Multi-modal imaging predicts memory performance in normal aging and cognitive decline
    • Walhovd, K. et al. (2010) Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging, 31, 1107-1121.
    • (2010) Neurobiol. Aging , vol.31 , pp. 1107-1121
    • Walhovd, K.1
  • 41
    • 84862970066 scopus 로고    scopus 로고
    • Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
    • Wang, H. et al. (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics, 28, 229-237.
    • (2012) Bioinformatics , vol.28 , pp. 229-237
    • Wang, H.1
  • 42
    • 84863338429 scopus 로고    scopus 로고
    • Heterogeneous multitask learning with joint sparsity constraints
    • The MIT Press
    • Yang, X. et al. (2009) Heterogeneous multitask learning with joint sparsity constraints. In Advances in Neural Information Processing System (NIPS), The MIT Press, pp. 2151-2159.
    • (2009) Advances in Neural Information Processing System (NIPS) , pp. 2151-2159
    • Yang, X.1
  • 43
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • Ye, J. et al. (2008) Multi-class discriminant kernel learning via convex programming. In JMLR, 9, 719-758.
    • (2008) JMLR , vol.9 , pp. 719-758
    • Ye, J.1
  • 44
    • 77954853785 scopus 로고    scopus 로고
    • L 2-norm multiple kernel learning and its application to biomedical data fusion
    • Yu, S. et al. (2010). L 2-norm multiple kernel learning and its application to biomedical data fusion. BMC Bioinformatics, 11, 309.
    • (2010) BMC Bioinformatics , vol.11 , pp. 309
    • Yu, S.1
  • 45
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B, 68, 49C-67.
    • (2006) J. R. Stat. Soc. Ser. B , vol.68
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.