메뉴 건너뛰기




Volumn 48, Issue 3, 2015, Pages 907-917

Deep sparse feature selection for computer aided endoscopy diagnosis

Author keywords

Computer aided diagnosis; Deep sparse; Endoscopy; Feature selection; Group sparsity; Image representation

Indexed keywords

COMPUTER AIDED DIAGNOSIS; ENDOSCOPY; IMAGE SEGMENTATION; KNOWLEDGE REPRESENTATION; SUPPORT VECTOR MACHINES; TEXTURES;

EID: 84916882621     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.09.010     Document Type: Article
Times cited : (56)

References (53)
  • 1
    • 84977810804 scopus 로고    scopus 로고
    • 〈 http://www.gastro.org/patient-center/digestive-conditions/peptic-ulcer-disease.〉
  • 2
    • 67349247655 scopus 로고    scopus 로고
    • Computer-aided detection of bleeding regions for capsule endoscopy images
    • B. Li, and M. Meng Computer-aided detection of bleeding regions for capsule endoscopy images IEEE Trans. Biomed. Eng. 56 4 2009 1032 1039
    • (2009) IEEE Trans. Biomed. Eng. , vol.56 , Issue.4 , pp. 1032-1039
    • Li, B.1    Meng, M.2
  • 3
    • 58849118486 scopus 로고    scopus 로고
    • Detecting informative frames from wireless capsule endoscopic video using color and texture features
    • M. Bashar, K. Mori, Y. Suenaga, T. Kitasaka, and Y. Mekada Detecting informative frames from wireless capsule endoscopic video using color and texture features MICCAI 2008 603 610
    • (2008) MICCAI , pp. 603-610
    • Bashar, M.1    Mori, K.2    Suenaga, Y.3    Kitasaka, T.4    Mekada, Y.5
  • 4
    • 80053206437 scopus 로고    scopus 로고
    • Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos, Biomedical Engineering
    • A. Karargyris, and N. Bourbakis Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos, Biomedical Engineering IEEE Trans. Biomed. Eng. 58 10 2011 2777 2786
    • (2011) IEEE Trans. Biomed. Eng. , vol.58 , Issue.10 , pp. 2777-2786
    • Karargyris, A.1    Bourbakis, N.2
  • 6
    • 84860688213 scopus 로고    scopus 로고
    • Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection
    • B. Li, and M.-H. Meng Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection IEEE Trans. Inf. Technol. Biomed. 16 3 2012 323 329
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.3 , pp. 323-329
    • Li, B.1    Meng, M.-H.2
  • 7
    • 48349143994 scopus 로고    scopus 로고
    • Helicobacter pylori-related gastric histology classification using support-vector-machine-based feature selection
    • C.-R. Huang, P.-C. Chuang, B.-S. Sheu, H.-J. Kuo, and M. Popper Helicobacter pylori-related gastric histology classification using support-vector-machine-based feature selection IEEE Trans. Inf. Technol. Biomed. 12 4 2008 523 531
    • (2008) IEEE Trans. Inf. Technol. Biomed. , vol.12 , Issue.4 , pp. 523-531
    • Huang, C.-R.1    Chuang, P.-C.2    Sheu, B.-S.3    Kuo, H.-J.4    Popper, M.5
  • 8
    • 3242785763 scopus 로고    scopus 로고
    • Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network
    • C.-R. Huang, B.-S. Sheu, P.-C. Chung, and H.-B. Yang Computerized diagnosis of Helicobacter pylori infection and associated gastric inflammation from endoscopic images by refined feature selection using a neural network Endoscopy 36 7 2004 601 608
    • (2004) Endoscopy , vol.36 , Issue.7 , pp. 601-608
    • Huang, C.-R.1    Sheu, B.-S.2    Chung, P.-C.3    Yang, H.-B.4
  • 9
    • 84866619997 scopus 로고    scopus 로고
    • Augmenting capsule endoscopy diagnosis: A similarity learning approach
    • S. Seshamani, R. Kumar, T. Dassopoulos, G. Mullin, and G. Hager Augmenting capsule endoscopy diagnosis: a similarity learning approach MICCAI 2010 454 462
    • (2010) MICCAI , pp. 454-462
    • Seshamani, S.1    Kumar, R.2    Dassopoulos, T.3    Mullin, G.4    Hager, G.5
  • 10
    • 84855920009 scopus 로고    scopus 로고
    • Computer-aided decision support systems for endoscopy in the gastrointestinal tract: A review
    • M. Liedlgruber, and A. Uhl Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review IEEE Rev. Biomed. Eng. 4 2011 73 88
    • (2011) IEEE Rev. Biomed. Eng. , vol.4 , pp. 73-88
    • Liedlgruber, M.1    Uhl, A.2
  • 11
    • 77950660412 scopus 로고    scopus 로고
    • Wireless capsule endoscopy and endoscopic imaging: A survey on various methodologies presented
    • A. Karargyris, and N. Bourbakis Wireless capsule endoscopy and endoscopic imaging: a survey on various methodologies presented IEEE Eng. Med. Biol. Mag. 29 1 2010 72 83
    • (2010) IEEE Eng. Med. Biol. Mag. , vol.29 , Issue.1 , pp. 72-83
    • Karargyris, A.1    Bourbakis, N.2
  • 12
    • 84866558005 scopus 로고    scopus 로고
    • Invariant gabor texture descriptors for classification of gastroenterology images
    • F. Riaz, F.B. Silva, M.D. Ribeiro, and M.T. Coimbra Invariant gabor texture descriptors for classification of gastroenterology images IEEE Trans. Biomed. Eng. 59 10 2012 2893 2904
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.10 , pp. 2893-2904
    • Riaz, F.1    Silva, F.B.2    Ribeiro, M.D.3    Coimbra, M.T.4
  • 14
    • 59149094561 scopus 로고    scopus 로고
    • Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps
    • M. Häfner, R. Kwitt, A. Uhl, F. Wrba, A. Gangl, and A. Vécsei Computer-assisted pit-pattern classification in different wavelet domains for supporting dignity assessment of colonic polyps Pattern Recognit. 42 6 2009 1180 1191
    • (2009) Pattern Recognit. , vol.42 , Issue.6 , pp. 1180-1191
    • Häfner, M.1    Kwitt, R.2    Uhl, A.3    Wrba, F.4    Gangl, A.5    Vécsei, A.6
  • 16
    • 70349562578 scopus 로고    scopus 로고
    • Computer-assisted diagnosis for precancerous lesions in the esophagus
    • C. Munzenmayer, A. Kage, T. Wittenberg, and S. Muhldorfer Computer-assisted diagnosis for precancerous lesions in the esophagus Methods Inf. Med. 48 4 2009 324
    • (2009) Methods Inf. Med. , vol.48 , Issue.4 , pp. 324
    • Munzenmayer, C.1    Kage, A.2    Wittenberg, T.3    Muhldorfer, S.4
  • 17
    • 77951942745 scopus 로고    scopus 로고
    • Identifying cancer regions in vital-stained magnification endoscopy images using adapted color histograms
    • A. Sousa, M. Dinis-Ribeiro, M. Areia, M. Coimbra, Identifying cancer regions in vital-stained magnification endoscopy images using adapted color histograms, in: ICIP, IEEE, 2009, pp. 681-684.
    • (2009) ICIP, IEEE , pp. 681-684
    • Sousa, A.1    Dinis-Ribeiro, M.2    Areia, M.3    Coimbra, M.4
  • 19
    • 84864278741 scopus 로고    scopus 로고
    • Graph based construction of textured large field of view mosaics for bladder cancer diagnosis
    • T. Weibel, C. Daul, D. Wolf, R. Rösch, and F. Guillemin Graph based construction of textured large field of view mosaics for bladder cancer diagnosis Pattern Recognit. 45 12 2012 4138 4150
    • (2012) Pattern Recognit. , vol.45 , Issue.12 , pp. 4138-4150
    • Weibel, T.1    Daul, C.2    Wolf, D.3    Rösch, R.4    Guillemin, F.5
  • 20
    • 84861592104 scopus 로고    scopus 로고
    • Towards automatic polyp detection with a polyp appearance model
    • J. Bernal, J. Sánchez, and F. Vilarino Towards automatic polyp detection with a polyp appearance model Pattern Recognit. 45 9 2012 3166 3182
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3166-3182
    • Bernal, J.1    Sánchez, J.2    Vilarino, F.3
  • 21
    • 76249086668 scopus 로고    scopus 로고
    • Intestinal motility assessment with video capsule endoscopy: Automatic annotation of phasic intestinal contractions
    • F. Vilarino, P. Spyridonos, F. DeIorio, J. Vitria, F. Azpiroz, and P. Radeva Intestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractions IEEE Trans. Med. Imaging 29 2 2010 246 259
    • (2010) IEEE Trans. Med. Imaging , vol.29 , Issue.2 , pp. 246-259
    • Vilarino, F.1    Spyridonos, P.2    Deiorio, F.3    Vitria, J.4    Azpiroz, F.5    Radeva, P.6
  • 22
    • 33845974092 scopus 로고    scopus 로고
    • A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images
    • V.S. Kodogiannis, M. Boulougoura, J.N. Lygouras, and I. Petrounias A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images Neurocomputing 70 4 2007 704 717
    • (2007) Neurocomputing , vol.70 , Issue.4 , pp. 704-717
    • Kodogiannis, V.S.1    Boulougoura, M.2    Lygouras, J.N.3    Petrounias, I.4
  • 23
    • 56849127595 scopus 로고    scopus 로고
    • Wireless capsule endoscopy color video segmentation
    • M. Mackiewicz, J. Berens, and M. Fisher Wireless capsule endoscopy color video segmentation IEEE Trans. Med. Imaging 27 12 2008 1769 1781
    • (2008) IEEE Trans. Med. Imaging , vol.27 , Issue.12 , pp. 1769-1781
    • MacKiewicz, M.1    Berens, J.2    Fisher, M.3
  • 24
    • 84872204642 scopus 로고    scopus 로고
    • Epitomized summarization of wireless capsule endoscopic videos for efficient visualization
    • X. Chu, C. Poh, L. Li, K. Chan, S. Yan, W. Shen, T. Htwe, J. Liu, J. Lim, and E. Ong Epitomized summarization of wireless capsule endoscopic videos for efficient visualization MICCAI 2010 522 529
    • (2010) MICCAI , pp. 522-529
    • Chu, X.1    Poh, C.2    Li, L.3    Chan, K.4    Yan, S.5    Shen, W.6    Htwe, T.7    Liu, J.8    Lim, J.9    Ong, E.10
  • 26
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • T. Ojala, M. Pietikainen, and T. Maenpaa Multiresolution gray-scale and rotation invariant texture classification with local binary patterns IEEE Trans. Pattern Anal. Mach. Intell. 24 7 2002 971 987
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 28
    • 77649164367 scopus 로고    scopus 로고
    • Detection of quality visualization of appendiceal orifices using local edge cross-section profile features and near pause detection
    • Y. Wang, W. Tavanapong, J.S. Wong, J. Oh, and P.C. de Groen Detection of quality visualization of appendiceal orifices using local edge cross-section profile features and near pause detection IEEE Trans. Biomed. Eng. 57 3 2010 685 695
    • (2010) IEEE Trans. Biomed. Eng. , vol.57 , Issue.3 , pp. 685-695
    • Wang, Y.1    Tavanapong, W.2    Wong, J.S.3    Oh, J.4    De Groen, P.C.5
  • 29
    • 84856885561 scopus 로고    scopus 로고
    • Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features
    • Y. Shen, P. Guturu, and B.P. Buckles Wireless capsule endoscopy video segmentation using an unsupervised learning approach based on probabilistic latent semantic analysis with scale invariant features IEEE Trans. Inf. Technol. Biomed. 16 1 2012 98 105
    • (2012) IEEE Trans. Inf. Technol. Biomed. , vol.16 , Issue.1 , pp. 98-105
    • Shen, Y.1    Guturu, P.2    Buckles, B.P.3
  • 30
    • 85067032737 scopus 로고    scopus 로고
    • On feature combination for multiclass object classification
    • P. Gehler, S. Nowozin, On feature combination for multiclass object classification, in: ICCV, IEEE, 2009, pp. 221-228.
    • (2009) ICCV, IEEE , pp. 221-228
    • Gehler, P.1    Nowozin, S.2
  • 31
    • 80052870284 scopus 로고    scopus 로고
    • Large-scale image classification: Fast feature extraction and SVM training
    • Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, T. Huang, Large-scale image classification: fast feature extraction and SVM training, in: CVPR, IEEE, 2011, pp. 1689-1696.
    • (2011) CVPR, IEEE , pp. 1689-1696
    • Lin, Y.1    Lv, F.2    Zhu, S.3    Yang, M.4    Cour, T.5    Yu, K.6    Cao, L.7    Huang, T.8
  • 32
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon, and A. Elisseeff An introduction to variable and feature selection J. Mach. Learn. Res. 3 2003 1157 1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 35
    • 84866686649 scopus 로고    scopus 로고
    • Discriminative feature fusion for image classification
    • B. Fernando, E. Fromont, D. Muselet, M. Sebban, Discriminative feature fusion for image classification, in: CVPR, IEEE, 2012, pp. 3434-3441.
    • (2012) CVPR, IEEE , pp. 3434-3441
    • Fernando, B.1    Fromont, E.2    Muselet, D.3    Sebban, M.4
  • 36
    • 84862779595 scopus 로고    scopus 로고
    • Discriminative features for image classification and retrieval
    • S. Liu, and X. Bai Discriminative features for image classification and retrieval Pattern Recognit. Lett. 33 6 2012 744 751
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.6 , pp. 744-751
    • Liu, S.1    Bai, X.2
  • 38
    • 33244489131 scopus 로고    scopus 로고
    • The Bhattacharyya space for feature selection and its application to texture segmentation
    • C.C. Reyes-Aldasoro, and A. Bhalerao The Bhattacharyya space for feature selection and its application to texture segmentation Pattern Recognit. 39 5 2006 812 826
    • (2006) Pattern Recognit. , vol.39 , Issue.5 , pp. 812-826
    • Reyes-Aldasoro, C.C.1    Bhalerao, A.2
  • 42
    • 0345414167 scopus 로고    scopus 로고
    • Learning a classification model for segmentation
    • X. Ren, J. Malik, Learning a classification model for segmentation, in: ICCV, 2003, pp. 10-17.
    • (2003) ICCV , pp. 10-17
    • Ren, X.1    Malik, J.2
  • 44
    • 79953736234 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation
    • 1-1
    • A. Karargyris, and N. Bourbakis Three-dimensional reconstruction of the digestive wall in capsule endoscopy videos using elastic video interpolation IEEE Trans. Med. Imaging 99 2011 1-1
    • (2011) IEEE Trans. Med. Imaging , Issue.99
    • Karargyris, A.1    Bourbakis, N.2
  • 46
    • 0032663328 scopus 로고    scopus 로고
    • Filtering for texture classification: A comparative study
    • T. Randen, and J.H. Husoy Filtering for texture classification: a comparative study IEEE Trans. Pattern Anal. Mach. Intell. 21 4 1999 291 310
    • (1999) IEEE Trans. Pattern Anal. Mach. Intell. , vol.21 , Issue.4 , pp. 291-310
    • Randen, T.1    Husoy, J.H.2
  • 47
    • 85042800267 scopus 로고
    • Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
    • IEEE
    • T. Ojala, M. Pietikainen, D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, in: ICPR, vol. 1, IEEE, 1994, pp. 582-585.
    • (1994) ICPR , vol.1 , pp. 582-585
    • Ojala, T.1    Pietikainen, M.2    Harwood, D.3
  • 48
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Mach. Learn. 20 3 1995 273 297
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 49
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse SVM for feature selection on very high dimensional datasets
    • M. Tan, L. Wang, I.W. Tsang, Learning sparse SVM for feature selection on very high dimensional datasets, in: ICML, 2010, pp. 1047-1054.
    • (2010) ICML , pp. 1047-1054
    • Tan, M.1    Wang, L.2    Tsang, I.W.3
  • 50
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends Mach. Learn. 3 1 2011 1 122
    • (2011) Found. Trends Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 51
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M.-J. Zhao, and M. Luján Conditional likelihood maximisation: a unifying framework for information theoretic feature selection J. Mach. Learn. Res. 13 2012 27 66
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.-J.3    Luján, M.4
  • 52
    • 79954439038 scopus 로고    scopus 로고
    • Conditional mutual information-based feature selection analyzing for synergy and redundancy
    • H. Cheng, Z. Qin, C. Feng, Y. Wang, F. Li, Conditional mutual information-based feature selection analyzing for synergy and redundancy, ETRI J. 33 (2).
    • ETRI J. , vol.33 , Issue.2
    • Cheng, H.1    Qin, Z.2    Feng, C.3    Wang, Y.4    Li, F.5
  • 53
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: KDD, ACM, 2010, pp. 333-342.
    • (2010) KDD, ACM , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.