-
2
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
DOI 10.1111/j.1467-9868.2005.00532.x
-
M. Yuan and Y. Lin, "Model Selection and Estimation in Regression with Grouped Variables," J. Royal Statistical Soc. Series B, vol. 68, no. 1, pp. 49-67, 2006. (Pubitemid 43415335)
-
(2006)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
3
-
-
84864040410
-
A local learning approach for clustering
-
MIT Press
-
M. Wu and B. Schö;lkopf, "A Local Learning Approach for Clustering," Advances in Neural Information Processing Systems, vol. 19, pp. 1529-1536, MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 1529-1536
-
-
Wu, M.1
Schölkopf, B.2
-
4
-
-
36448996956
-
Regularized clustering for documents
-
DOI 10.1145/1277741.1277760, Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
-
F. Wang, C.S. Zhang, and T. Li, "Regularized Clustering for Documents," Proc. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval, pp. 95-102, 2007. (Pubitemid 350164949)
-
(2007)
Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR'07
, pp. 95-102
-
-
Wang, F.1
Zhang, C.2
Li, T.3
-
5
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, nos. 7/8, pp. 1157-1182, 2003.
-
(2003)
J. Machine Learning Research
, vol.3
, Issue.7-8
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
6
-
-
70350629881
-
Local kernel regression score for selecting features of high-dimensional data
-
Dec.
-
Y.M. Cheung and H. Zeng, "Local Kernel Regression Score for Selecting Features of High-Dimensional Data," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12, pp. 1798-1802, Dec. 2009.
-
(2009)
IEEE Trans. Knowledge and Data Eng.
, vol.21
, Issue.12
, pp. 1798-1802
-
-
Cheung, Y.M.1
Zeng, H.2
-
7
-
-
84864039505
-
Laplacian score for feature selection
-
MIT Press
-
X. He, D. Cai, and P. Niyogi, "Laplacian Score for Feature Selection," Advances in Neural Information Processing Systems, vol. 18, pp. 507-514, MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
9
-
-
78149289039
-
Feature selection for clustering - A filter solution
-
M. Dash, K. Choi, P. Scheuermann, and H. Liu, "Feature Selection for Clustering - A Filter Solution," Proc. IEEE Int'l Conf. Data Mining, pp. 115-122, 2002.
-
(2002)
Proc. IEEE Int'l Conf. Data Mining
, pp. 115-122
-
-
Dash, M.1
Choi, K.2
Scheuermann, P.3
Liu, H.4
-
10
-
-
26444454606
-
Feature selection for unsupervised learning
-
J.G. Dy and C.E. Brodley, "Feature Selection for Unsupervised Learning," J. Machine Learning Research, vol. 5, pp. 845-889, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
11
-
-
84899026077
-
Feature selection in mixture-based clustering
-
MIT Press
-
M.H.C. Law, A.K. Jain, and M.A.T. Figueiredo, "Feature Selection in Mixture-Based Clustering," Advances in Neural Information Processing Systems, vol. 15, pp. 609-616, MIT Press, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 609-616
-
-
Law, M.H.C.1
Jain, A.K.2
Figueiredo, M.A.T.3
-
12
-
-
84899029465
-
Feature selection in clustering problems
-
MIT Press
-
V. Roth and T. Lange, "Feature Selection in Clustering Problems," Advances in Neural Information Processing Systems, vol. 16, pp. 473-480, MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 473-480
-
-
Roth, V.1
Lange, T.2
-
13
-
-
27844550205
-
Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight - Based approach
-
L. Wolf and A. Shashua, "Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight- Based Approach," J. Machine Learning Research, vol. 6, pp. 1855-1887, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 1855-1887
-
-
Wolf, L.1
Shashua, A.2
-
14
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
MIT Press
-
A. Ng, M. Jordan, and Y. Weiss, "On Spectral Clustering: Analysis and an Algorithm," Advances in Neural Information Processing Systems, vol. 14, pp. 849-856, MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 849-856
-
-
Ng, A.1
Jordan, M.2
Weiss, Y.3
-
16
-
-
84864063089
-
Multi-task feature learning
-
MIT Press
-
A. Argyriou, T. Evgeniou, and M. Pontil, "Multi-Task Feature Learning," Advances in Neural Information Processing Systems, pp. 41-48, MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
17
-
-
0013246766
-
Spectral relaxation for K-means clustering
-
MIT Press
-
H. Zha, C. Ding, M. Gu, X. He, and H. Simon, "Spectral Relaxation for K-Means Clustering," Advances in Neural Information Processing Systems, vol. 14, pp. 1057-1064, MIT Press, 2001.
-
(2001)
Advances in Neural Information Processing Systems
, vol.14
, pp. 1057-1064
-
-
Zha, H.1
Ding, C.2
Gu, M.3
He, X.4
Simon, H.5
-
19
-
-
33745834241
-
-
D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz, UCI Repository of Machine Learning Databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.J.4
-
20
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
DOI 10.1073/pnas.201162998
-
M. West, C. Blanchette, H. Dressman, E. Huang, S. Ishida, R. Spang, H. Zuzan, J.A. Olson, Jr., J.R. Marks, and J.R. Nevins, "Predicting the Clinical Status of Human Breast Cancer by Using Gene Expression Profiles," Proc. Nat'l Academy of Sciences USA, vol. 98, no. 20, pp. 11462-11467, 2001. (Pubitemid 32928751)
-
(2001)
Proceedings of the National Academy of Sciences of the United States of America
, vol.98
, Issue.20
, pp. 11462-11467
-
-
West, M.1
Blanchette, C.2
Dressman, H.3
Huang, E.4
Ishida, S.5
Spang, R.6
Zuzan, H.7
Olson Jr., J.A.8
Marks, J.R.9
Nevins, J.R.10
-
21
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
DOI 10.1038/89044
-
J. Khan et al., "Classification and Diagnostic Prediction of Cancers Using Gene Expression Profiling and Artificial Neural Networks," Nature Medicine, vol. 7, pp. 673-679, 2001. (Pubitemid 32588022)
-
(2001)
Nature Medicine
, vol.7
, Issue.6
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
22
-
-
0033536012
-
Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
-
DOI 10.1073/pnas.96.12.6745
-
U. Alon, N. Barkai, D.A. Notterman, K. Gish, S. Ybarra, D. Mack, and A.J. Levine, "Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays," Proc. Nat'l Academy of Sciences USA, vol. 96, no. 12, pp. 6745-6750, 1999. (Pubitemid 29274954)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.12
, pp. 6745-6750
-
-
Alon, U.1
Barka, N.2
Notterman, D.A.3
Gish, K.4
Ybarra, S.5
Mack, D.6
Levine, A.J.7
-
23
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
5439
-
T.R. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, no. 5439, pp. 531-537, 1999.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
-
24
-
-
84898995558
-
Self-tuning spectral clustering
-
MIT Press
-
L. Zelnik-Manor and P. Perona, "Self-Tuning Spectral Clustering," Advances in Neural Information Processing Systems, vol. 17, pp. 1601-1608, MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1601-1608
-
-
Zelnik-Manor, L.1
Perona, P.2
-
25
-
-
72449156016
-
Fusion of similarity data in clustering
-
MIT Press
-
T. Lange and J. Buhmann, "Fusion of Similarity Data in Clustering," Advances in Neural Information Processing Systems, vol. 18, pp. 723-730, MIT Press, 2006.
-
(2006)
Advances in Neural Information Processing Systems
, vol.18
, pp. 723-730
-
-
Lange, T.1
Buhmann, J.2
-
26
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G.R.G. Lanckriet, N. Cristianini, P. Bartlett, M.I.E. Ghaoui, and M.I. Jordan, "Learning the Kernel Matrix with Semidefinite Programming," J. Machine Learning Research, vol. 5, pp. 27-72, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, M.I.E.4
Jordan, M.I.5
-
27
-
-
44649123652
-
Multi-class discriminant kernel learning via convex programming
-
J. Ye, S. Ji, and J. Chen, "Multi-Class Discriminant Kernel Learning via Convex Programming," J. Machine Learning Research, vol. 9, pp. 719-758, 2008.
-
(2008)
J. Machine Learning Research
, vol.9
, pp. 719-758
-
-
Ye, J.1
Ji, S.2
Chen, J.3
-
28
-
-
33749317042
-
Learning spectral clustering, with application to speech separation
-
F.R. Bach and M.I. Jordan, "Learning Spectral Clustering, with Application to Speech Separation," J. Machine Learning Research, vol. 7, pp. 1963-2001, 2006. (Pubitemid 44497457)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1963-2001
-
-
Bach, F.R.1
Jordan, M.I.2
-
29
-
-
84899010634
-
Model selection for support vector machines
-
MIT Press
-
O. Chapelle and V. Vapnik, "Model Selection for Support Vector Machines," Advances in Neural Information Processing Systems, vol. 12, pp. 230-236, MIT Press, 2000.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 230-236
-
-
Chapelle, O.1
Vapnik, V.2
-
30
-
-
0003408420
-
-
MIT Press
-
B. Scholkö;pf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Scholkö1
pf, B.2
Smola, A.J.3
-
32
-
-
34547971778
-
More efficiency in multiple kernel learning
-
A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet, "More Efficiency in Multiple Kernel Learning," Proc. Int'l Conf. Machine Learning, pp. 775-782, 2007.
-
(2007)
Proc. Int'l Conf. Machine Learning
, pp. 775-782
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
33
-
-
57249084590
-
Simple MKL
-
A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu, "Simple MKL," J. Machine Learning Research, vol. 9, pp. 2491-2521, 2008.
-
(2008)
J. Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Grandvalet, Y.3
Canu, S.4
-
34
-
-
84864041449
-
Generalized maximum margin clustering and unsupervised kernel learning
-
MIT Press
-
H. Valizadegan and R. Jin, "Generalized Maximum Margin Clustering and Unsupervised Kernel Learning," Advances in Neural Information Processing Systems, pp. 1417-1424, MIT Press, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 1417-1424
-
-
Valizadegan, H.1
Jin, R.2
-
35
-
-
0036307392
-
Visual features of intermediate complexity and their use in classification
-
S. Ullman, M. Vidal-Naquet, and E. Sali, "Visual Features of Intermediate Complexity and Their Use in Classification," Nature Neuroscience, vol. 5, no. 7, pp. 683-687, 2002.
-
(2002)
Nature Neuroscience
, vol.5
, Issue.7
, pp. 683-687
-
-
Ullman, S.1
Vidal-Naquet, M.2
Sali, E.3
-
37
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vanpnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple Parameters for Support Vector Machines," Machine Learning, vol. 26, no. 1, pp. 131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
38
-
-
0023416451
-
Projected gradients methods for linearly constrained problems
-
P.H. Calamai and J.J. Moré, "Projected Gradients Methods for Linearly Constrained Problems," Math. Programming, vol. 39, no. 1, pp. 93-116, 1987.
-
(1987)
Math. Programming
, vol.39
, Issue.1
, pp. 93-116
-
-
Calamai, P.H.1
Moré, J.J.2
-
39
-
-
34547970997
-
Spectral clustering and transductive learning with multiple views
-
D.Y. Zhou and C.J.C. Burges, "Spectral Clustering and Transductive Learning with Multiple Views," Proc. Int'l Conf. Machine Learning, pp. 1159-1166, 2007.
-
(2007)
Proc. Int'l Conf. Machine Learning
, pp. 1159-1166
-
-
Zhou, D.Y.1
Burges, C.J.C.2
-
40
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
DOI 10.1109/34.990133
-
P. Mitra, C.A. Murthy, and S.K. Pal, "Unsupervised Feature Selection Using Feature Similarity," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 3, pp. 301-312, Mar. 2002. (Pubitemid 35289348)
-
(2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.3
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
41
-
-
36849021609
-
Nonlinear adaptive distance metric learning for clustering
-
DOI 10.1145/1281192.1281209, KDD-2007: Proceedings of the Thirteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
J. Chen, Z. Zhao, J. Ye, and H. Liu, "Nonlinear Adaptive Distance Metric Learning for Clustering," Proc. ACM SIGKDD, pp. 123-132, 2007. (Pubitemid 350229199)
-
(2007)
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 123-132
-
-
Chen, J.1
Zhao, Z.2
Ye, J.3
Liu, H.4
-
42
-
-
33947693882
-
Learning the kernel matrix by maximizing a KFD-based class separability criterion
-
DOI 10.1016/j.patcog.2006.12.031, PII S0031320307000143
-
D.Y. Yeung, H. Chang, and G. Dai, "Learning the Kernel Matrix by Maximizing a KFD-Based Class Separability Criterion," Pattern Recognition, vol. 40, no. 7, pp. 2021-2028, 2007. (Pubitemid 46497251)
-
(2007)
Pattern Recognition
, vol.40
, Issue.7
, pp. 2021-2028
-
-
Yeung, D.-Y.1
Chang, H.2
Dai, G.3
-
43
-
-
4344602134
-
Simultaneous feature selection and clustering using mixture models
-
Sept.
-
M.H.C. Law, M.A.T. Figueiredo, and A.K. Jain, "Simultaneous Feature Selection and Clustering Using Mixture Models," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1154-1166, Sept. 2004.
-
(2004)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.26
, Issue.9
, pp. 1154-1166
-
-
Law, M.H.C.1
Figueiredo, M.A.T.2
Jain, A.K.3
-
44
-
-
70350127188
-
Maximum-margin feature combination for detection and categorization
-
for Biological Cybernetics
-
G. BakIr, M. Wu, and J. Eichhorn, "Maximum-Margin Feature Combination for Detection and Categorization," technical report, Max Planck Inst. for Biological Cybernetics, 2005.
-
(2005)
Technical Report, Max Planck Inst.
-
-
BakIr, G.1
Wu, M.2
Eichhorn, J.3
-
46
-
-
52649115862
-
General model for multiple view unsupervised learning
-
B. Long, P.S. Yu, and M.Z.F. Zhang, "General Model for Multiple View Unsupervised Learning," Proc. SIAM Int'l Conf. Data Mining, pp. 822-833, 2008.
-
(2008)
Proc. SIAM Int'l Conf. Data Mining
, pp. 822-833
-
-
Long, B.1
Yu, P.S.2
Zhang, M.Z.F.3
-
47
-
-
55149088329
-
Convex multi-task feature learning
-
A. Argyriou, T. Evgeniou, and M. Pontil, "Convex Multi-Task Feature Learning," Machine Learning, vol. 73, no. 3, pp. 243-272, 2008.
-
(2008)
Machine Learning
, vol.73
, Issue.3
, pp. 243-272
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
48
-
-
23244434257
-
Learning the kernel function via regularization
-
C.A. Micchelli and M. Pontil, "Learning the Kernel Function via Regularization," J. Machine Learning Research, vol. 6, pp. 1099-1125, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 1099-1125
-
-
Micchelli, C.A.1
Pontil, M.2
-
49
-
-
33847662483
-
Feature space perspectives for learning the kernel
-
DOI 10.1007/s10994-006-0679-0, Special Issue on Learning Theory
-
C.A. Micchelli and M. Pontil, "Feature Space Perspectives for Learning the Kernel," Machine Learning, vol. 66, no. 2, pp. 297-319, 2007. (Pubitemid 46360616)
-
(2007)
Machine Learning
, vol.66
, Issue.2-3
, pp. 297-319
-
-
Micchelli, C.A.1
Pontil, M.2
|