메뉴 건너뛰기




Volumn 33, Issue 8, 2011, Pages 1532-1547

Feature selection and kernel learning for local learning-based clustering

Author keywords

feature selection; High dimensional data; kernel learning; local learning based clustering; sparse weighting

Indexed keywords

BENCHMARK DATA; CLUSTERING PROCESS; DATA REPRESENTATIONS; HIGH DIMENSIONAL DATA; INPUT SPACE; KERNEL LEARNING; KERNEL METHODS; LOCAL LEARNING-BASED CLUSTERING; SPARSE WEIGHTING;

EID: 79959501613     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2010.215     Document Type: Article
Times cited : (231)

References (49)
  • 5
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, "An Introduction to Variable and Feature Selection," J. Machine Learning Research, vol. 3, nos. 7/8, pp. 1157-1182, 2003.
    • (2003) J. Machine Learning Research , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 6
    • 70350629881 scopus 로고    scopus 로고
    • Local kernel regression score for selecting features of high-dimensional data
    • Dec.
    • Y.M. Cheung and H. Zeng, "Local Kernel Regression Score for Selecting Features of High-Dimensional Data," IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12, pp. 1798-1802, Dec. 2009.
    • (2009) IEEE Trans. Knowledge and Data Eng. , vol.21 , Issue.12 , pp. 1798-1802
    • Cheung, Y.M.1    Zeng, H.2
  • 10
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • J.G. Dy and C.E. Brodley, "Feature Selection for Unsupervised Learning," J. Machine Learning Research, vol. 5, pp. 845-889, 2004.
    • (2004) J. Machine Learning Research , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 13
    • 27844550205 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight - Based approach
    • L. Wolf and A. Shashua, "Feature Selection for Unsupervised and Supervised Inference: The Emergence of Sparsity in a Weight- Based Approach," J. Machine Learning Research, vol. 6, pp. 1855-1887, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 1855-1887
    • Wolf, L.1    Shashua, A.2
  • 23
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • 5439
    • T.R. Golub et al., "Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring," Science, vol. 286, no. 5439, pp. 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 27
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • J. Ye, S. Ji, and J. Chen, "Multi-Class Discriminant Kernel Learning via Convex Programming," J. Machine Learning Research, vol. 9, pp. 719-758, 2008.
    • (2008) J. Machine Learning Research , vol.9 , pp. 719-758
    • Ye, J.1    Ji, S.2    Chen, J.3
  • 28
    • 33749317042 scopus 로고    scopus 로고
    • Learning spectral clustering, with application to speech separation
    • F.R. Bach and M.I. Jordan, "Learning Spectral Clustering, with Application to Speech Separation," J. Machine Learning Research, vol. 7, pp. 1963-2001, 2006. (Pubitemid 44497457)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1963-2001
    • Bach, F.R.1    Jordan, M.I.2
  • 34
    • 84864041449 scopus 로고    scopus 로고
    • Generalized maximum margin clustering and unsupervised kernel learning
    • MIT Press
    • H. Valizadegan and R. Jin, "Generalized Maximum Margin Clustering and Unsupervised Kernel Learning," Advances in Neural Information Processing Systems, pp. 1417-1424, MIT Press, 2007.
    • (2007) Advances in Neural Information Processing Systems , pp. 1417-1424
    • Valizadegan, H.1    Jin, R.2
  • 35
    • 0036307392 scopus 로고    scopus 로고
    • Visual features of intermediate complexity and their use in classification
    • S. Ullman, M. Vidal-Naquet, and E. Sali, "Visual Features of Intermediate Complexity and Their Use in Classification," Nature Neuroscience, vol. 5, no. 7, pp. 683-687, 2002.
    • (2002) Nature Neuroscience , vol.5 , Issue.7 , pp. 683-687
    • Ullman, S.1    Vidal-Naquet, M.2    Sali, E.3
  • 37
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vanpnik, O. Bousquet, and S. Mukherjee, "Choosing Multiple Parameters for Support Vector Machines," Machine Learning, vol. 26, no. 1, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 38
    • 0023416451 scopus 로고
    • Projected gradients methods for linearly constrained problems
    • P.H. Calamai and J.J. Moré, "Projected Gradients Methods for Linearly Constrained Problems," Math. Programming, vol. 39, no. 1, pp. 93-116, 1987.
    • (1987) Math. Programming , vol.39 , Issue.1 , pp. 93-116
    • Calamai, P.H.1    Moré, J.J.2
  • 39
    • 34547970997 scopus 로고    scopus 로고
    • Spectral clustering and transductive learning with multiple views
    • D.Y. Zhou and C.J.C. Burges, "Spectral Clustering and Transductive Learning with Multiple Views," Proc. Int'l Conf. Machine Learning, pp. 1159-1166, 2007.
    • (2007) Proc. Int'l Conf. Machine Learning , pp. 1159-1166
    • Zhou, D.Y.1    Burges, C.J.C.2
  • 42
    • 33947693882 scopus 로고    scopus 로고
    • Learning the kernel matrix by maximizing a KFD-based class separability criterion
    • DOI 10.1016/j.patcog.2006.12.031, PII S0031320307000143
    • D.Y. Yeung, H. Chang, and G. Dai, "Learning the Kernel Matrix by Maximizing a KFD-Based Class Separability Criterion," Pattern Recognition, vol. 40, no. 7, pp. 2021-2028, 2007. (Pubitemid 46497251)
    • (2007) Pattern Recognition , vol.40 , Issue.7 , pp. 2021-2028
    • Yeung, D.-Y.1    Chang, H.2    Dai, G.3
  • 44
    • 70350127188 scopus 로고    scopus 로고
    • Maximum-margin feature combination for detection and categorization
    • for Biological Cybernetics
    • G. BakIr, M. Wu, and J. Eichhorn, "Maximum-Margin Feature Combination for Detection and Categorization," technical report, Max Planck Inst. for Biological Cybernetics, 2005.
    • (2005) Technical Report, Max Planck Inst.
    • BakIr, G.1    Wu, M.2    Eichhorn, J.3
  • 47
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • A. Argyriou, T. Evgeniou, and M. Pontil, "Convex Multi-Task Feature Learning," Machine Learning, vol. 73, no. 3, pp. 243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 48
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • C.A. Micchelli and M. Pontil, "Learning the Kernel Function via Regularization," J. Machine Learning Research, vol. 6, pp. 1099-1125, 2005.
    • (2005) J. Machine Learning Research , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 49
    • 33847662483 scopus 로고    scopus 로고
    • Feature space perspectives for learning the kernel
    • DOI 10.1007/s10994-006-0679-0, Special Issue on Learning Theory
    • C.A. Micchelli and M. Pontil, "Feature Space Perspectives for Learning the Kernel," Machine Learning, vol. 66, no. 2, pp. 297-319, 2007. (Pubitemid 46360616)
    • (2007) Machine Learning , vol.66 , Issue.2-3 , pp. 297-319
    • Micchelli, C.A.1    Pontil, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.