-
1
-
-
84864063089
-
Multi-task feature learning
-
Argyriou, A., Evgeniou, T., and Pontil, M. Multi-task feature learning. In Neural Information Processing Systems, pp. 41-48. 2007.
-
(2007)
Neural Information Processing Systems
, pp. 41-48
-
-
Argyriou, A.1
Evgeniou, T.2
Pontil, M.3
-
2
-
-
85162499205
-
Generalized beta mixtures of Gaussians
-
Armagan, A., Dunson, D., and Clyde, M. Generalized beta mixtures of Gaussians. In Neural Information Processing Systems, pp. 523-531. 2011.
-
(2011)
Neural Information Processing Systems
, pp. 523-531
-
-
Armagan, A.1
Dunson, D.2
Clyde, M.3
-
3
-
-
84859169877
-
The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483:603-307, 2012.
-
(2012)
Nature
, vol.483
, pp. 307-603
-
-
Barretina1
-
4
-
-
0011564321
-
A robust generalized Bayes estimator and confidence region for a multivariate normal mean
-
Berger, J. A robust generalized Bayes estimator and confidence region for a multivariate normal mean. The Annals of Statistics, 8:716-761, 1980.
-
(1980)
The Annals of Statistics
, vol.8
, pp. 716-761
-
-
Berger, J.1
-
6
-
-
79958714651
-
Handling sparsity via the horseshoe
-
Carvalho, C.M., Poison, N.G., and Scott, J.G. Handling sparsity via the horseshoe. J. Mach. Learn. Res. W&CP, 5:73-80, 2009.
-
(2009)
J. Mach. Learn. Res. W&CP
, vol.5
, pp. 73-80
-
-
Carvalho, C.M.1
Poison, N.G.2
Scott, J.G.3
-
7
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T. An introduction to ROC analysis. Pattern recognition letters, 27:861-874, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
8
-
-
84866007553
-
Robust multi-task feature learning
-
Gong, P., Ye, J., and Zhang, C. Robust multi-task feature learning. In International Conference on Knowledge Discovery and Data Mining, pp. 895-903, 2012.
-
(2012)
International Conference on Knowledge Discovery and Data Mining
, pp. 895-903
-
-
Gong, P.1
Ye, J.2
Zhang, C.3
-
10
-
-
78049339967
-
Expectation propagation for Bayesian multi-task feature selection
-
Hernández-Lobato, D., Hernández-Lobato, J. M., Helleputte, T., and Dupont, P. Expectation propagation for Bayesian multi-task feature selection. In European Conference on Machine Learning, pp. 522-537, 2010.
-
(2010)
European Conference on Machine Learning
, pp. 522-537
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Helleputte, T.3
Dupont, P.4
-
11
-
-
84884218772
-
Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation
-
Hernández-Lobato, D., Hernández-Lobato, J. M., and Dupont, P. Generalized spike-and-slab priors for Bayesian group feature selection using expectation propagation. J. Mach. Learn. Res., 14:1891-1945, 2013.
-
(2013)
J. Mach. Learn. Res.
, vol.14
, pp. 1891-1945
-
-
Hernández-Lobato, D.1
Hernández-Lobato, J.M.2
Dupont, P.3
-
12
-
-
84939976814
-
Expectation propagation in linear regression models with spike-and-slab priors
-
Hernández-Lobato, J. M., Hernández-Lobato, D., and Suárez, A. Expectation propagation in linear regression models with spike-and-slab priors. Machine Learning, 99:437-487, 2015.
-
(2015)
Machine Learning
, vol.99
, pp. 437-487
-
-
Hernández-Lobato, J.M.1
Hernández-Lobato, D.2
Suárez, A.3
-
13
-
-
77958570788
-
Inferring regulatory networks from expression data using tree-based methods
-
Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE, 5:el2776, 2010.
-
(2010)
PLoS ONE
, vol.5
, pp. el2776
-
-
Huynh-Thu, V.A.1
Irrthum, A.2
Wehenkel, L.3
Geurts, P.4
-
14
-
-
85162062975
-
A dirty model for multi-task learning
-
Jalali, A., Ravikumar, P., Sanghavi, S., and Ruan, C. A dirty model for multi-task learning. In Neural Information Processing Systems, pp. 964-972. 2010.
-
(2010)
Neural Information Processing Systems
, pp. 964-972
-
-
Jalali, A.1
Ravikumar, P.2
Sanghavi, S.3
Ruan, C.4
-
16
-
-
18444410406
-
Empirical bayes selection of wavelet thresholds
-
Johnstone, I. M. and Silverman, B. W. Empirical Bayes selection of wavelet thresholds. Annals of Statistics, 33: 1700-1752, 2005.
-
(2005)
Annals of Statistics
, vol.33
, pp. 1700-1752
-
-
Johnstone, I.M.1
Silverman, B.W.2
-
19
-
-
70049105714
-
Joint covariate selection and joint subspace selection for multiple classification problems
-
Obozinski, G., Taskar, B., and Jordan, M.I. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, pp. 1-22, 2009.
-
(2009)
Statistics and Computing
, pp. 1-22
-
-
Obozinski, G.1
Taskar, B.2
Jordan, M.I.3
-
20
-
-
84867135619
-
Flexible modeling of latent task structures in multitask learning
-
Passos, A., Rai, P., Wainer, J., and Daumé III, H. Flexible modeling of latent task structures in multitask learning. In International Conference on Machine Learning, 2012.
-
(2012)
International Conference on Machine Learning
-
-
Passos, A.1
Rai, P.2
Wainer, J.3
Daumé, H.4
-
21
-
-
79961200389
-
Genenetweaver: In silico benchmark generation and performance profiling of network inference methods
-
Schaffter, T., Marbach, D., and Floreano, D. Genenetweaver: In silico benchmark generation and performance profiling of network inference methods. Bioinformatics, 27:2263-2270, 2011.
-
(2011)
Bioinformatics
, vol.27
, pp. 2263-2270
-
-
Schaffter, T.1
Marbach, D.2
Floreano, D.3
-
23
-
-
0000300851
-
Proper bayes minimax estimators of the multivariate normal mean
-
Strawderman, W. E. Proper Bayes minimax estimators of the multivariate normal mean. The Annals of Mathematical Statistics, 42:385-388, 1971.
-
(1971)
The Annals of Mathematical Statistics
, vol.42
, pp. 385-388
-
-
Strawderman, W.E.1
-
24
-
-
85162414745
-
Spike and slab variational inference for multi-task and multiple kernel learning
-
Titsias, M. and Lázaro-Gredilla, M. Spike and slab variational inference for multi-task and multiple kernel learning. In Neural Information Processing Systems, pp. 2339-2347, 2011.
-
(2011)
Neural Information Processing Systems
, pp. 2339-2347
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
26
-
-
70449089773
-
Probabilistic joint feature selection for multi-task learning
-
Xiong, T., Bi, J., Rao, B., and Cherkassky, V. Probabilistic joint feature selection for multi-task learning. In Seventh SIAM International Conference on Data Mining, pp. 332-342, 2007.
-
(2007)
Seventh SIAM International Conference on Data Mining
, pp. 332-342
-
-
Xiong, T.1
Bi, J.2
Rao, B.3
Cherkassky, V.4
-
27
-
-
33846487387
-
Multitask learning for classification with Dirichlet process priors
-
Xue, Y., Liao, X., Carin, L., and Krishnapuram, B. Multitask learning for classification with Dirichlet process priors. J. Mach. Learn. Res., 8:35-63, 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 35-63
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krishnapuram, B.4
-
28
-
-
55149096818
-
Flexible latent variable models for multi-task learning
-
Zhang, J., Ghahramani, Z., and Yang, Y. Flexible latent variable models for multi-task learning. Machine Learning, 73:221-242, 2008.
-
(2008)
Machine Learning
, vol.73
, pp. 221-242
-
-
Zhang, J.1
Ghahramani, Z.2
Yang, Y.3
|