메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-231

Sparse Modeling: Theory, Algorithms, and Applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85051039341     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17758     Document Type: Book
Times cited : (155)

References (338)
  • 1
    • 79956267709 scopus 로고    scopus 로고
    • Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling
    • Adamczak, R., Litvak, A., Pajor, A., Tomczak-Jaegermann, N., 2011. Restricted isometry property of matrices with independent columns and neighborly polytopes by random sampling. Constructive Approximation 34 (1), 61-88.
    • (2011) Constructive Approximation , vol.34 , Issue.1 , pp. 61-88
    • Adamczak, R.1    Litvak, A.2    Pajor, A.3    Tomczak-Jaegermann, N.4
  • 2
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Aharon, M., Elad, M., Bruckstein, A., 2006a. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54 (11), 4311-4322.
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 3
    • 33646712150 scopus 로고    scopus 로고
    • On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them
    • Aharon, M., Elad, M., Bruckstein, A., 2006b. On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. Linear algebra and its applications 416 (1), 48-67.
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 48-67
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 7
    • 84857771457 scopus 로고    scopus 로고
    • Boolean compressed sensing and noisy group testing
    • March
    • Atia, G., Saligrama, V., March 2012. Boolean compressed sensing and noisy group testing. IEEE Transactions on Information Theory 58 (3), 1880-1901.
    • (2012) IEEE Transactions on Information Theory , vol.58 , Issue.3 , pp. 1880-1901
    • Atia, G.1    Saligrama, V.2
  • 10
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group Lasso and multiple kernel learning
    • Bach, F., 2008b. Consistency of the group Lasso and multiple kernel learning. Journal of Machine Learning Research 9, 1179-1225.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.1
  • 11
    • 46249124832 scopus 로고    scopus 로고
    • Consistency of trace norm minimization
    • June c
    • Bach, F., June 2008c. Consistency of trace norm minimization. Journal of Machine Learning Research 9, 1019-1048.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1019-1048
    • Bach, F.1
  • 12
    • 80555158386 scopus 로고    scopus 로고
    • Self-concordant analysis for logistic regression
    • Bach, F., 2010. Self-concordant analysis for logistic regression. Electronic Journal of Statistics 4, 384-414.
    • (2010) Electronic Journal of Statistics , vol.4 , pp. 384-414
    • Bach, F.1
  • 18
    • 61349094706 scopus 로고    scopus 로고
    • Parsing pain perception between nocicep-tive representation and magnitude estimation
    • Baliki, M., Geha, P., Apkarian, A., 2009. Parsing pain perception between nocicep-tive representation and magnitude estimation. Journal of Neurophysiology 101, 875-887.
    • (2009) Journal of Neurophysiology , vol.101 , pp. 875-887
    • Baliki, M.1    Geha, P.2    Apkarian, A.3
  • 19
    • 38949108996 scopus 로고    scopus 로고
    • Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics
    • Baliki, M., Geha, P., Apkarian, A., Chialvo, D., 2008. Beyond feeling: Chronic pain hurts the brain, disrupting the default-mode network dynamics. The Journal of Neuroscience 28 (6), 1398-1403.
    • (2008) The Journal of Neuroscience , vol.28 , Issue.6 , pp. 1398-1403
    • Baliki, M.1    Geha, P.2    Apkarian, A.3    Chialvo, D.4
  • 22
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • March
    • Banerjee, O., El Ghaoui, L., d’Aspremont, A., March 2008. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 9, 485-516.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D’Aspremont, A.3
  • 24
    • 55649115527 scopus 로고    scopus 로고
    • A simple proof of the restricted isometry property for random matrices
    • Baraniuk, R., Davenport, M., DeVore, R., Wakin, M., 2008. A simple proof of the restricted isometry property for random matrices. Constructive Approximation 28 (3), 253-263.
    • (2008) Constructive Approximation , vol.28 , Issue.3 , pp. 253-263
    • Baraniuk, R.1    Davenport, M.2    Devore, R.3    Wakin, M.4
  • 25
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck, A., Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sciences 2 (1), 183-202.
    • (2009) SIAM J. Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 27
    • 0016948909 scopus 로고
    • On the Goldstein-Levitin-Polyak gradient projection method
    • Bertsekas, D., 1976. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Transactions on Automatic Control 21 (2), 174-184.
    • (1976) IEEE Transactions on Automatic Control , vol.21 , Issue.2 , pp. 174-184
    • Bertsekas, D.1
  • 31
    • 50849132901 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n
    • December
    • Bickel, P., December 2007. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35 (6), 2352-2357.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2352-2357
    • Bickel, P.1
  • 32
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P., Ritov, Y., Tsybakov, A., 2009. Simultaneous analysis of Lasso and Dantzig selector. The Annals of Statistics 37 (4), 1705-1732.
    • (2009) The Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 33
    • 0032026262 scopus 로고    scopus 로고
    • Color TV: Total variation methods for restoration of vector-valued images
    • Blomgren, P., Chan, F., 1998. Color TV: total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing 7 (3), 304-309.
    • (1998) IEEE Transactions on Image Processing , vol.7 , Issue.3 , pp. 304-309
    • Blomgren, P.1    Chan, F.2
  • 38
    • 0040676062 scopus 로고
    • On the existence of maximum likelihood estimators for graphical Gaussian models
    • Buhl, S., 1993. On the existence of maximum likelihood estimators for graphical Gaussian models. Scandinavian Journal of Statistics 20 (3), 263-270.
    • (1993) Scandinavian Journal of Statistics , vol.20 , Issue.3 , pp. 263-270
    • Buhl, S.1
  • 42
    • 0001247848 scopus 로고
    • Loading and correlations in the interpretation of principle compenents
    • Cadima, J., Jolliffe, I., 1995. Loading and correlations in the interpretation of principle compenents. Journal of Applied Statistics 22 (2), 203-214.
    • (1995) Journal of Applied Statistics , vol.22 , Issue.2 , pp. 203-214
    • Cadima, J.1    Jolliffe, I.2
  • 44
    • 50849116760 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n
    • December
    • Cai, T., Lv, J., December 2007. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35 (6), 2365-2369.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2365-2369
    • Cai, T.1    Lv, J.2
  • 45
    • 42649140570 scopus 로고    scopus 로고
    • The restricted isometry property and its implications for compressed sensing
    • Candès, E., 2008. The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346 (9), 589-592.
    • (2008) Comptes Rendus Mathematique , vol.346 , Issue.9 , pp. 589-592
    • Candès, E.1
  • 46
    • 81255188959 scopus 로고    scopus 로고
    • A probabilistic and RIPless theory of compressed sensing
    • Candès, E., Plan, Y., 2011. A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory 57 (11), 7235-7254.
    • (2011) IEEE Transactions on Information Theory , vol.57 , Issue.11 , pp. 7235-7254
    • Candès, E.1    Plan, Y.2
  • 48
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • February a
    • Candès, E., Romberg, J., Tao, T., February 2006a. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. on Information Theory 52 (2), 489-509.
    • (2006) IEEE Trans. on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candès, E.1    Romberg, J.2    Tao, T.3
  • 50
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • December
    • Candès, E., Tao, T., December 2005. Decoding by linear programming. IEEE Trans. on Information Theory 51 (12), 4203-4215.
    • (2005) IEEE Trans. on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.1    Tao, T.2
  • 51
    • 33947416035 scopus 로고    scopus 로고
    • Near optimal signal recovery from random projections: Universal encoding strategies?
    • Candès, E., Tao, T., 2006. Near optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans. Inform. Theory 52 (12), 5406-5425.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candès, E.1    Tao, T.2
  • 52
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • Candès, E., Tao, T., 2007. The Dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics 35 (6), 2313-2351.
    • (2007) Annals of Statistics , vol.35 , Issue.6 , pp. 2313-2351
    • Candès, E.1    Tao, T.2
  • 53
    • 0001845750 scopus 로고
    • Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in banach spaces
    • Carl, B., 1985. Inequalities of Bernstein-Jackson-type and the degree of compactness of operators in banach spaces. Annales de l’institut Fourier 35 (3), 79-118.
    • (1985) Annales De l’institut Fourier , vol.35 , Issue.3 , pp. 79-118
    • Carl, B.1
  • 54
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • Carroll, M., Cecchi, G., Rish, I., Garg, R., Rao, A., 2009. Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 44 (1), 112- 122.
    • (2009) Neuroimage , vol.44 , Issue.1 , pp. 112-122
    • Carroll, M.1    Cecchi, G.2    Rish, I.3    Garg, R.4    Rao, A.5
  • 57
    • 85135669655 scopus 로고    scopus 로고
    • Interactions between compressed sensing, random matrices, and high dimensional geometry
    • Chafai, D., Guédon, O., Lecué, G., Pajor, A., 2012. Interactions between compressed sensing, random matrices, and high dimensional geometry. forthcoming book.
    • (2012) Forthcoming Book
    • Chafai, D.1    Guédon, O.2    Lecué, G.3    Pajor, A.4
  • 58
    • 42649129178 scopus 로고    scopus 로고
    • Image Processing and Analysis: Variational, Pde, Wavelet, and Stochastic Methods
    • Philadelphia, PA, USA
    • Chan, T., Shen, J., 2005. Image Processing and Analysis: Variational, Pde, Wavelet, and Stochastic Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
    • (2005) Society for Industrial and Applied Mathematics
    • Chan, T.1    Shen, J.2
  • 61
    • 84890842924 scopus 로고    scopus 로고
    • Restricted isometry of Fourier matrices and list decodability of random linear codes
    • Cheraghchi, M., Guruswami, V., Velingker, A., 2013. Restricted isometry of Fourier matrices and list decodability of random linear codes. SIAM Journal on Computing 42 (5), 1888-1914.
    • (2013) SIAM Journal on Computing , vol.42 , Issue.5 , pp. 1888-1914
    • Cheraghchi, M.1    Guruswami, V.2    Velingker, A.3
  • 68
    • 0003449595 scopus 로고    scopus 로고
    • Models, Analysis and Interpretation. Chapman and Hall
    • Cox, D., Wermuth, N., 1996. Multivariate Dependencies: Models, Analysis and Interpretation. Chapman and Hall.
    • (1996) Multivariate Dependencies
    • Cox, D.1    Wermuth, N.2
  • 69
    • 65749110333 scopus 로고    scopus 로고
    • Subspace pursuit for compressive sensing reconstruction
    • Dai, W., Milenkovic, O., 2009. Subspace pursuit for compressive sensing reconstruction. IEEE Trans. Inform. Theory 55 (5), 2230-2249.
    • (2009) IEEE Trans. Inform. Theory , vol.55 , Issue.5 , pp. 2230-2249
    • Dai, W.1    Milenkovic, O.2
  • 71
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • d’Aspremont, A., Ghaoui, L. E., Jordan, M. I., Lanckriet, G. R. G., 2007. A direct formulation for sparse PCA using semidefinite programming. SIAM Review 49 (3), 434-448.
    • (2007) SIAM Review , vol.49 , Issue.3 , pp. 434-448
    • D’Aspremont, A.1    Ghaoui, L.E.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 72
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • Daubechies, I., Defrise, M., Mol, C. D., 2004. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on Pure and Applied Mathematics 57, 1413-1457.
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 73
    • 0001038826 scopus 로고
    • Covariance selection
    • March
    • Dempster, A. P., March 1972. Covariance selection. Biometrics 28 (1), 157-175.
    • (1972) Biometrics , vol.28 , Issue.1 , pp. 157-175
    • Dempster, A.P.1
  • 74
    • 85162555612 scopus 로고    scopus 로고
    • Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation
    • Dikmen, O., Févotte, C., 2011. Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation. In: Proc. of Neural Information Processing Systems (NIPS). pp. 2267-2275.
    • (2011) Proc. of Neural Information Processing Systems (NIPS) , pp. 2267-2275
    • Dikmen, O.1    Févotte, C.2
  • 76
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • April a
    • Donoho, D., April 2006a. Compressed sensing. IEEE Trans. on Information Theory 52 (4), 1289-1306.
    • (2006) IEEE Trans. on Information Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 77
    • 33744552752 scopus 로고    scopus 로고
    • 1-norm near-solution approximates the sparsest near-solution
    • July b
    • 1-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics 59 (7), 907-934.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.7 , pp. 907-934
    • Donoho, D.1
  • 79
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • 1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 (6), 797-829.
    • (2006) Comm. Pure Appl. Math. , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.1
  • 81
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • Donoho, D., Elad, M., Temlyakov, V., 2006. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52 (1), 6-18.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.1    Elad, M.2    Temlyakov, V.3
  • 82
    • 0035504028 scopus 로고    scopus 로고
    • Uncertainty principles and ideal atomic decomposition
    • Donoho, D., Huo, X., 2001. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47, 2845-2862.
    • (2001) IEEE Trans. Inform. Theory , vol.47 , pp. 2845-2862
    • Donoho, D.1    Huo, X.2
  • 83
    • 0001616908 scopus 로고
    • Uncertainty principles and signal recovery
    • Donoho, D., Stark, P., 1989. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906-931.
    • (1989) SIAM J. Appl. Math. , vol.49 , pp. 906-931
    • Donoho, D.1    Stark, P.2
  • 84
    • 73149095252 scopus 로고    scopus 로고
    • Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing
    • Donoho, D., Tanner, J., 2009. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 367 (1906), 4273-4293.
    • (2009) Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , vol.367 , Issue.1906 , pp. 4273-4293
    • Donoho, D.1    Tanner, J.2
  • 85
    • 84856938223 scopus 로고    scopus 로고
    • Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit
    • Donoho, D., Tsaig, Y., Drori, I., Starck, J., 2012. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory 58 (2), 1094-1121.
    • (2012) IEEE Transactions on Information Theory , vol.58 , Issue.2 , pp. 1094-1121
    • Donoho, D.1    Tsaig, Y.2    Drori, I.3    Starck, J.4
  • 86
    • 0001243071 scopus 로고
    • The detection of defective members of large populations
    • Dorfman, R., 1943. The detection of defective members of large populations. The Annals of Mathematical Statistics 14 (4), 436-440.
    • (1943) The Annals of Mathematical Statistics , vol.14 , Issue.4 , pp. 436-440
    • Dorfman, R.1
  • 92
    • 50849131900 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n
    • December
    • Efron, B., Hastie, T., Tibshirani, R., December 2007. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35 (6), 2358-2364.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2358-2364
    • Efron, B.1    Hastie, T.2    Tibshirani, R.3
  • 93
    • 33947361050 scopus 로고    scopus 로고
    • Why simple shrinkage is still relevant for redundant representations?
    • Elad, M., 2006. Why simple shrinkage is still relevant for redundant representations? IEEE Transactions on Information Theory 52, 5559-5569.
    • (2006) IEEE Transactions on Information Theory , vol.52 , pp. 5559-5569
    • Elad, M.1
  • 95
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Elad, M., Aharon, M., 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing 15 (12), 3736-3745.
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 99
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., Li, R., 2005. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348-1360.
    • (2005) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 100
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • Fazel, M., Hindi, H., Boyd, S., 2001. A rank minimization heuristic with application to minimum order system approximation. In: Proc. of the 2001 American Control Conference. Vol. 6. IEEE, pp. 4734-4739.
    • (2001) Proc. of the 2001 American Control Conference , vol.6 , pp. 4734-4739
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 101
    • 0142200827 scopus 로고    scopus 로고
    • An EM algorithm for wavelet-based image restoration
    • Figueiredo, M., Nowak, R., 2003. An EM algorithm for wavelet-based image restoration. IEEE. Trans. Image Process. 12, 906-916.
    • (2003) IEEE. Trans. Image Process. , vol.12 , pp. 906-916
    • Figueiredo, M.1    Nowak, R.2
  • 105
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • Frank, I., Friedman, J., 1993. A statistical view of some chemometrics regression tools. Technometrics 35 (2), 109-148.
    • (1993) Technometrics , vol.35 , Issue.2 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 106
    • 50849101382 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n
    • December
    • Friedlander, M., Saunders, M., December 2007. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35 (6), 2385-2391.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2385-2391
    • Friedlander, M.1    Saunders, M.2
  • 108
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical Lasso
    • Friedman, J., Hastie, T., Tibshirani, R., 2007b. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics.
    • (2007) Biostatistics
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 112
    • 26844461512 scopus 로고    scopus 로고
    • Recovery of exact sparse representations in the presence of bounded noise
    • Fuchs, J., 2005. Recovery of exact sparse representations in the presence of bounded noise. IEEE Trans. Information Theory 51 (10), 3601-3608.
    • (2005) IEEE Trans. Information Theory , vol.51 , Issue.10 , pp. 3601-3608
    • Fuchs, J.1
  • 114
    • 85135670983 scopus 로고
    • The widths of a Euclidean ball. Dokl. Akad. Nauk USSR 277, 1048-1052, english transl
    • Garnaev, A., Gluskin, E., 1984. The widths of a Euclidean ball. Dokl. Akad. Nauk USSR 277, 1048-1052, english transl. Soviet Math. Dokl. 30 (200-204).
    • (1984) Soviet Math. Dokl , vol.30 , Issue.200-204
    • Garnaev, A.1    Gluskin, E.2
  • 118
    • 34548060068 scopus 로고    scopus 로고
    • Group testing in statistical signal recovery
    • Gilbert, A., Strauss, M., 2007. Group testing in statistical signal recovery. Technometrics 49 (3), 346-356.
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 346-356
    • Gilbert, A.1    Strauss, M.2
  • 120
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A reweighted norm minimization algorithm
    • Gorodnitsky, F., Rao, B., 1997. Sparse signal reconstruction from limited data using FOCUSS: A reweighted norm minimization algorithm. IEEE Trans. Signal Proc. 45, 600-616.
    • (1997) IEEE Trans. Signal Proc. , vol.45 , pp. 600-616
    • Gorodnitsky, F.1    Rao, B.2
  • 121
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • Greenshtein, E., Ritov, Y., 2004. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 (6), 971-988.
    • (2004) Bernoulli , vol.10 , Issue.6 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 123
    • 0347968052 scopus 로고    scopus 로고
    • Sparse representations in unions of bases
    • Gribonval, R., Nielsen, M., 2003. Sparse representations in unions of bases. IEEE Trans. Inform. Theory 49 (12), 3320-3325.
    • (2003) IEEE Trans. Inform. Theory , vol.49 , Issue.12 , pp. 3320-3325
    • Gribonval, R.1    Nielsen, M.2
  • 125
    • 23044534893 scopus 로고    scopus 로고
    • Non-negative matrix factorization for face recognition
    • Springer
    • Guillamet, D., Vitrià, J., 2002. Non-negative matrix factorization for face recognition. In: Topics in Artificial Intelligence. Springer, pp. 336-344.
    • (2002) Topics in Artificial Intelligence , pp. 336-344
    • Guillamet, D.1    Vitrià, J.2
  • 128
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and overlapping representations of faces and objects in ventral temporal cortex
    • Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P., 2001. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293 (5539), 2425-2430.
    • (2001) Science , vol.293 , Issue.5539 , pp. 2425-2430
    • Haxby, J.1    Gobbini, M.2    Furey, M.3    Ishai, A.4    Schouten, J.5    Pietrini, P.6
  • 132
    • 0343494519 scopus 로고
    • Ridge regression. Encyclopedia of
    • Hoerl, A., Kennard, R., 1988. Ridge regression. Encyclopedia of Statistical Sciences 8 (2), 129-136.
    • (1988) Statistical Sciences , vol.8 , Issue.2 , pp. 129-136
    • Hoerl, A.1    Kennard, R.2
  • 133
    • 84888160007 scopus 로고    scopus 로고
    • Inverse covariance estimation for high-dimensional data in linear time and space: Spectral methods for Riccati and sparse models
    • Honorio, J., Jaakkola, T., 2013. Inverse covariance estimation for high-dimensional data in linear time and space: Spectral methods for Riccati and sparse models. In: Proc. of Uncertainty in Artificial Intelligence (UAI).
    • (2013) Proc. of Uncertainty in Artificial Intelligence (UAI)
    • Honorio, J.1    Jaakkola, T.2
  • 136
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Hoyer, P., 2004. Non-negative matrix factorization with sparseness constraints. Journal of Machine Learning Research 5, 1457-1469.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 139
    • 84885013182 scopus 로고    scopus 로고
    • The Alzheimer’s Disease Neuroimaging Initiative, 2013. A sparse structure learning algorithm for gaussian bayesian network identification from high-dimensional data
    • Huang, S., Li, J., Ye, J., Fleisher, A., Chen, K., Wu, T., Reiman, E., 2013. The Alzheimer’s Disease Neuroimaging Initiative, 2013. A sparse structure learning algorithm for gaussian bayesian network identification from high-dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence 35 (6), 1328- 1342.
    • (2013) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.35 , Issue.6 , pp. 1328-1342
    • Huang, S.1    Li, J.2    Ye, J.3    Fleisher, A.4    Chen, K.5    Wu, T.6    Reiman, E.7
  • 140
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber, P., 1964. Robust estimation of a location parameter. The Annals of Mathematical Statistics 35 (1), 73-101.
    • (1964) The Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 73-101
    • Huber, P.1
  • 141
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran, H., Rao, J., 2005. Spike and slab variable selection: Frequentist and Bayesian strategies. Ann. Statist. 33 (2), 730-773.
    • (2005) Ann. Statist. , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.2
  • 151
    • 0001654702 scopus 로고
    • Extensions of Lipschitz mappings into a Hilbert space
    • Amer. Math. Soc., Providence, RI
    • Johnson, W., Lindenstrauss, J., 1984. Extensions of Lipschitz mappings into a Hilbert space. In: Conf. in Modern Analysis and Probability. Vol. 26. Amer. Math. Soc., Providence, RI, pp. 189-206.
    • (1984) Conf. in Modern Analysis and Probability , vol.26 , pp. 189-206
    • Johnson, W.1    Lindenstrauss, J.2
  • 156
  • 158
    • 34547844077 scopus 로고    scopus 로고
    • Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis
    • Kim, H., Park, H., 2007. Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis. Bioinfor-matics 23 (12), 1495-1502.
    • (2007) Bioinfor-Matics , vol.23 , Issue.12 , pp. 1495-1502
    • Kim, H.1    Park, H.2
  • 161
    • 0015000439 scopus 로고
    • Some results on Tchebycheffian spline function
    • Kimeldorf, G., Wahba, G., 1971. Some results on Tchebycheffian spline function. J. Math. Anal. Applications 33, 82-95.
    • (1971) J. Math. Anal. Applications , vol.33 , pp. 82-95
    • Kimeldorf, G.1    Wahba, G.2
  • 163
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • Knight, K., Fu, W., 2000. Asymptotics for Lasso-type estimators. Ann. Statist. 28 (5), 1356-1378.
    • (2000) Ann. Statist. , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 165
    • 72249100613 scopus 로고    scopus 로고
    • The Dantzig selector and sparsity oracle inequalities
    • Koltchinskii, V., 2009. The Dantzig selector and sparsity oracle inequalities. Bernoulli 15 (3), 799-828.
    • (2009) Bernoulli , vol.15 , Issue.3 , pp. 799-828
    • Koltchinskii, V.1
  • 166
    • 0342623858 scopus 로고
    • On the transmission capacity of ether and wire in electric communications
    • in Russian
    • Kotelnikov, V., 1933. On the transmission capacity of ether and wire in electric communications. Izd. Red. Upr. Svyazi RKKA (in Russian).
    • (1933) Izd. Red. Upr. Svyazi RKKA
    • Kotelnikov, V.1
  • 167
    • 33751344074 scopus 로고    scopus 로고
    • On the transmission capacity of ether and wire in electric communications (1933)
    • Kotelnikov, V., 2006. On the transmission capacity of ether and wire in electric communications (1933). Physics-Uspekhi 49 (7), 736-744.
    • (2006) Physics-Uspekhi , vol.49 , Issue.7 , pp. 736-744
    • Kotelnikov, V.1
  • 169
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • Kruskal, J., 1977. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear algebra and its applications 18 (2), 95-138.
    • (1977) Linear Algebra and Its Applications , vol.18 , Issue.2 , pp. 95-138
    • Kruskal, J.1
  • 172
    • 72249110121 scopus 로고
    • Self modeling curve resolution
    • Lawton, W., Sylvestre, E., 1971. Self modeling curve resolution. Technometrics 13 (3), 617-633.
    • (1971) Technometrics , vol.13 , Issue.3 , pp. 617-633
    • Lawton, W.1    Sylvestre, E.2
  • 175
    • 0043206138 scopus 로고    scopus 로고
    • Abnormal brain activation to visual stimulation in cocaine abusers
    • Lee, J., Telang, F., Springer, C., Volkow, N., 2003. Abnormal brain activation to visual stimulation in cocaine abusers. Life Sciences.
    • (2003) Life Sciences
    • Lee, J.1    Telang, F.2    Springer, C.3    Volkow, N.4
  • 179
    • 0034133184 scopus 로고    scopus 로고
    • Learning overcomplete representations
    • Lewicki, M., Sejnowski, T., 2000. Learning overcomplete representations. Neural Computation 12, 337-365.
    • (2000) Neural Computation , vol.12 , pp. 337-365
    • Lewicki, M.1    Sejnowski, T.2
  • 182
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in smoothing spline analysis of variance models
    • Lin, Y., Zhang, H., 2006. Component selection and smoothing in smoothing spline analysis of variance models. Annals of Statistics 34, 2272-2297.
    • (2006) Annals of Statistics , vol.34 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.2
  • 184
    • 0000345334 scopus 로고
    • Splitting algorithms for the sum of two nonlinear operators
    • Lions, P., Mercier, B., 1979. Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16 (6), 964-979.
    • (1979) SIAM Journal on Numerical Analysis , vol.16 , Issue.6 , pp. 964-979
    • Lions, P.1    Mercier, B.2
  • 190
    • 70450200096 scopus 로고    scopus 로고
    • Smooth optimization approach for sparse covariance selection
    • Lu, Z., 2009. Smooth optimization approach for sparse covariance selection. SIAM Journal on Optimization 19 (4), 1807-1827.
    • (2009) SIAM Journal on Optimization , vol.19 , Issue.4 , pp. 1807-1827
    • Lu, Z.1
  • 191
    • 69949175557 scopus 로고    scopus 로고
    • A unified approach to model selection and sparse recovery using regularized least squares
    • Lv, J., Fan, Y., 2009. A unified approach to model selection and sparse recovery using regularized least squares. The Annals of Statistics 37 (6A), 3498-3528.
    • (2009) The Annals of Statistics , vol.37 , Issue.6 , pp. 3498-3528
    • Lv, J.1    Fan, Y.2
  • 195
    • 25444450079 scopus 로고    scopus 로고
    • A sparse signal reconstruction perspective for source localization with sensor arrays
    • Malioutov, D., Çetin, M., Willsky, A., 2005. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing 53 (8), 3010-3022.
    • (2005) IEEE Transactions on Signal Processing , vol.53 , Issue.8 , pp. 3010-3022
    • Malioutov, D.1    Çetin, M.2    Willsky, A.3
  • 197
  • 205
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N., Bühlmann, P., 2006. High dimensional graphs and variable selection with the Lasso. Annals of Statistics 34(3), 1436-1462.
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 207
    • 50849120401 scopus 로고    scopus 로고
    • Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig
    • Meinshausen, N., Rocha, G., Yu, B., 2007. Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig. The Annals of Statistics, 2373-2384.
    • (2007) The Annals of Statistics , pp. 2373-2384
    • Meinshausen, N.1    Rocha, G.2    Yu, B.3
  • 208
    • 0002904748 scopus 로고
    • Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space
    • Milman, V., Pajor, A., 1989. Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. Geometric aspects of functional analysis, 64-104.
    • (1989) Geometric Aspects of Functional Analysis , pp. 64-104
    • Milman, V.1    Pajor, A.2
  • 215
    • 34250415938 scopus 로고
    • Gibbs and Markov systems with constraints
    • Moussouris, J., 1974. Gibbs and Markov systems with constraints. Journal of statistical physics 10, 11-33.
    • (1974) Journal of Statistical Physics , vol.10 , pp. 11-33
    • Moussouris, J.1
  • 217
    • 77949526376 scopus 로고    scopus 로고
    • On the asymptotic properties of the group Lasso estimator for linear models
    • Nardi, Y., Rinaldo, A., 2008. On the asymptotic properties of the group Lasso estimator for linear models. Electronic Journal of Statistics 2, 605-633.
    • (2008) Electronic Journal of Statistics , vol.2 , pp. 605-633
    • Nardi, Y.1    Rinaldo, A.2
  • 218
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • Natarajan, K., 1995. Sparse approximate solutions to linear systems. SIAM J. Comput. 24, 227-234.
    • (1995) SIAM J. Comput. , vol.24 , pp. 227-234
    • Natarajan, K.1
  • 219
    • 62749175137 scopus 로고    scopus 로고
    • Iterative signal recovery from incomplete and inaccurate samples
    • Needell, D., Tropp, J. A., 2008. Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26, 301-321.
    • (2008) Appl. Comput. Harmon. Anal. , vol.26 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 220
    • 64749092799 scopus 로고    scopus 로고
    • Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit
    • Needell, D., Vershynin, R., 2009. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics 9, 317-334.
    • (2009) Foundations of Computational Mathematics , vol.9 , pp. 317-334
    • Needell, D.1    Vershynin, R.2
  • 222
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
    • Negahban, S., Ravikumar, P., Wainwright, M., Yu, B., 2012. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Statistical Science 27 (4), 438-557.
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 438-557
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.3    Yu, B.4
  • 223
    • 79952934740 scopus 로고    scopus 로고
    • Estimation of (near) low-rank matrices with noise and high-dimensional scaling
    • Negahban, S., Wainwright, M., 2011. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. The Annals of Statistics 39 (2), 1069-1097.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 1069-1097
    • Negahban, S.1    Wainwright, M.2
  • 226
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov, Y., 2005. Smooth minimization of non-smooth functions. Mathematical programming 103 (1), 127-152.
    • (2005) Mathematical Programming , vol.103 , Issue.1 , pp. 127-152
    • Nesterov, Y.1
  • 229
    • 79957590676 scopus 로고
    • Certain topics in telegraph transmission theory
    • Nyquist, H., 1928. Certain topics in telegraph transmission theory. Transactions of the AIEE 47, 617-644.
    • (1928) Transactions of the AIEE , vol.47 , pp. 617-644
    • Nyquist, H.1
  • 231
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • Obozinski, G., Taskar, B., Jordan, M., 2010. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing 20 (2), 231-252.
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.3
  • 233
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B., Field, D., 1996. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (6583), 607-609.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.1    Field, D.2
  • 234
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Olshausen, B., Field, D., 1997. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research 37, 3311-3325.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.1    Field, D.2
  • 235
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M., Presnell, B., Turlach, B., 2000a. A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis 20 (3), 389-403.
    • (2000) IMA Journal of Numerical Analysis , vol.20 , Issue.3 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 237
    • 34547849507 scopus 로고    scopus 로고
    • An l1 regularization-path algorithm for generalized linear models
    • Park, M., Hastie, T., 2007. An l1 regularization-path algorithm for generalized linear models. JRSSB 69 (4), 659-677.
    • (2007) JRSSB , vol.69 , Issue.4 , pp. 659-677
    • Park, M.1    Hastie, T.2
  • 239
  • 242
    • 0002885754 scopus 로고
    • Graphoids: A graph based logic for reasoning about relevance relations
    • Pearl, J., Paz, A., 1987. Graphoids: A graph based logic for reasoning about relevance relations. Advances in Artificial Intelligence II, 357-363.
    • (1987) Advances in Artificial Intelligence , vol.2 , pp. 357-363
    • Pearl, J.1    Paz, A.2
  • 243
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2 (11), 559-572.
    • (1901) Philosophical Magazine , vol.2 , Issue.11 , pp. 559-572
    • Pearson, K.1
  • 244
    • 84874160706 scopus 로고    scopus 로고
    • Pittsburgh EBC Group, 2007. PBAIC Homepage: http://www.ebc.pitt.edu/2007/competition.html.
    • (2007) PBAIC Homepage
  • 245
    • 0000622770 scopus 로고
    • Generalized Gibbs states and Markov random fields
    • Preston, C. J., 1973. Generalized Gibbs states and Markov random fields. Advances in Applied Probability 5 (2), 242-261.
    • (1973) Advances in Applied Probability , vol.5 , Issue.2 , pp. 242-261
    • Preston, C.J.1
  • 247
    • 57349155099 scopus 로고    scopus 로고
    • Stability results for random sampling of sparse trigonometric polynomials
    • Rauhut, H., 2008. Stability results for random sampling of sparse trigonometric polynomials. IEEE Transactions on Information Theory 54 (12), 5661-5670.
    • (2008) IEEE Transactions on Information Theory , vol.54 , Issue.12 , pp. 5661-5670
    • Rauhut, H.1
  • 250
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
    • Recht, B., Fazel, M., Parrilo, P., 2010. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review 52 (3), 471-501.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.3
  • 251
    • 85135678058 scopus 로고    scopus 로고
    • Resources, C. S., 2010. http://dsp.rice.edu/cs.
    • (2010)
    • Resources, C.S.1
  • 253
    • 78249245401 scopus 로고    scopus 로고
    • Sparse regression models of pain perception
    • Springer
    • Rish, I., Cecchi, G., Baliki, M., Apkarian, A., 2010. Sparse regression models of pain perception. In: Brain Informatics. Springer, pp. 212-223.
    • (2010) Brain Informatics , pp. 212-223
    • Rish, I.1    Cecchi, G.2    Baliki, M.3    Apkarian, A.4
  • 255
    • 84860778158 scopus 로고    scopus 로고
    • Schizophrenia classification using fMRI-based functional network features
    • February 2012a
    • Rish, I., Cecchi, G. A., Heuton, K., February 2012a. Schizophrenia classification using fMRI-based functional network features. In: Proc. of SPIE Medical Imaging.
    • Proc. of SPIE Medical Imaging
    • Rish, I.1    Cecchi, G.A.2    Heuton, K.3
  • 257
    • 77949642178 scopus 로고    scopus 로고
    • Sparse signal recovery with exponential-family noise. In: Proc. of the 47th Annual Allerton Conference on Communication, Control
    • Rish, I., Grabarnik, G., 2009. Sparse signal recovery with exponential-family noise. In: Proc. of the 47th Annual Allerton Conference on Communication, Control, and Computing. pp. 60-66.
    • (2009) Computing , pp. 60-66
    • Rish, I.1    Grabarnik, G.2
  • 259
    • 50849105751 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n
    • December
    • Ritov, Y., December 2007. Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics 35 (6), 2370-2372.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2370-2372
    • Ritov, Y.1
  • 262
    • 79952902758 scopus 로고    scopus 로고
    • Estimation of high-dimensional low-rank matrices
    • April
    • Rohde, A., Tsybakov, A., April 2011. Estimation of high-dimensional low-rank matrices. The Annals of Statistics 39 (2), 887-930.
    • (2011) The Annals of Statistics , vol.39 , Issue.2 , pp. 887-930
    • Rohde, A.1    Tsybakov, A.2
  • 263
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • Rosset, S., Zhu, J., 2007. Piecewise linear regularized solution paths. Annals of Statistics 35 (3).
    • (2007) Annals of Statistics , vol.35 , Issue.3
    • Rosset, S.1    Zhu, J.2
  • 266
    • 0033541884 scopus 로고    scopus 로고
    • Random vectors in the isotropic position
    • Rudelson, M., 1999. Random vectors in the isotropic position. Journal of Functional Analysis 164 (1), 60-72.
    • (1999) Journal of Functional Analysis , vol.164 , Issue.1 , pp. 60-72
    • Rudelson, M.1
  • 269
  • 270
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin, L., Osher, S., Fatemi, E., 1992. Nonlinear total variation based noise removal algorithms. Physica D 60, 259-268.
    • (1992) Physica D , vol.60 , pp. 259-268
    • Rudin, L.1    Osher, S.2    Fatemi, E.3
  • 273
    • 85135655727 scopus 로고    scopus 로고
    • Sparse MRF learning with priors on regularization parameters. Tech. Rep. RC24812, IBM T.J
    • Scheinberg, K., Asadi, N. B., Rish, I., 2009. Sparse MRF learning with priors on regularization parameters. Tech. Rep. RC24812, IBM T.J. Watson Research Center.
    • (2009) Watson Research Center
    • Scheinberg, K.1    Asadi, N.B.2    Rish, I.3
  • 274
    • 85014963073 scopus 로고    scopus 로고
    • Optimization methods for sparse inverse covariance selection
    • Sra, S., Nowozin, S., Wright, S. J. (Eds.), MIT Press
    • Scheinberg, K., Ma, S., 2011. Optimization methods for sparse inverse covariance selection. In: Sra, S., Nowozin, S., Wright, S. J. (Eds.), Optimization for Machine Learning. MIT Press.
    • (2011) Optimization for Machine Learning
    • Scheinberg, K.1    Ma, S.2
  • 276
    • 77958041597 scopus 로고    scopus 로고
    • Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach
    • Springer
    • Scheinberg, K., Rish, I., 2010. Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach. In: Machine Learning and Knowledge Discovery in Databases. Springer, pp. 196-212.
    • (2010) Machine Learning and Knowledge Discovery in Databases , pp. 196-212
    • Scheinberg, K.1    Rish, I.2
  • 284
    • 84911837213 scopus 로고
    • Communication in the presence of noise
    • January
    • Shannon, C. E., January 1949. Communication in the presence of noise. Proc. Institute of Radio Engineers 37 (1), 10-21.
    • (1949) Proc. Institute of Radio Engineers , vol.37 , Issue.1 , pp. 10-21
    • Shannon, C.E.1
  • 288
    • 0016068330 scopus 로고
    • The fourier reconstruction of a head section
    • Shepp, L., Logan, B., 1974. The fourier reconstruction of a head section. IEEE Transactions on Nuclear Science 21 (3), 21-43.
    • (1974) IEEE Transactions on Nuclear Science , vol.21 , Issue.3 , pp. 21-43
    • Shepp, L.1    Logan, B.2
  • 289
    • 51249191081 scopus 로고
    • Markov random fields and Gibbs random fields
    • Sherman, S., 1973. Markov random fields and Gibbs random fields. Israel Journal of Mathematics 14 (1), 92-103.
    • (1973) Israel Journal of Mathematics , vol.14 , Issue.1 , pp. 92-103
    • Sherman, S.1
  • 290
    • 80052287499 scopus 로고    scopus 로고
    • LARS, the elastic net and SPCA
    • Sjöstrand, K. 2005. Matlab implementation of LASSO, LARS, the elastic net and SPCA: http://www2.imm.dtu.dk/pubdb/views/publicationdetails.php?id=3897.
    • (2005) Matlab Implementation of LASSO
    • Sjöstrand, K.1
  • 291
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • Skretting, K., Engan, K., 2010. Recursive least squares dictionary learning algorithm. IEEE Transactions on Signal Processing 58 (4), 2121-2130.
    • (2010) IEEE Transactions on Signal Processing , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2
  • 293
    • 0037316980 scopus 로고    scopus 로고
    • Astronomical image representation by the curvelet transform
    • Starck, J.-L., Donoho, D., Candès, E., 2003a. Astronomical image representation by the curvelet transform. Astronomy and Astrophysics 398 (2), 785-800.
    • (2003) Astronomy and Astrophysics , vol.398 , Issue.2 , pp. 785-800
    • Starck, J.-L.1    Donoho, D.2    Candès, E.3
  • 294
    • 0043265073 scopus 로고    scopus 로고
    • Wavelets and curvelets for image deconvolution: A combined approach
    • Starck, J.-L., Nguyen, M., Murtagh, F., 2003b. Wavelets and curvelets for image deconvolution: A combined approach. Signal Processing 83, 2279-2283.
    • (2003) Signal Processing , vol.83 , pp. 2279-2283
    • Starck, J.-L.1    Nguyen, M.2    Murtagh, F.3
  • 295
    • 0242323185 scopus 로고    scopus 로고
    • Grassmannian frames with applications to coding and communication
    • Strohmer, T., Heath, R., 2003. Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis 14 (3), 257-275.
    • (2003) Applied and Computational Harmonic Analysis , vol.14 , Issue.3 , pp. 257-275
    • Strohmer, T.1    Heath, R.2
  • 298
    • 0030369277 scopus 로고    scopus 로고
    • Majorizing measures: The generic chaining
    • Talagrand, M., 1996. Majorizing measures: The generic chaining. The Annals of Probability 24 (3), 1049-1103.
    • (1996) The Annals of Probability , vol.24 , Issue.3 , pp. 1049-1103
    • Talagrand, M.1
  • 302
    • 37249032736 scopus 로고    scopus 로고
    • Spatial smoothing and hot spot detection for CGH data using the fused Lasso
    • Tibshirani, R., Wang, P., 2008. Spatial smoothing and hot spot detection for CGH data using the fused Lasso. Biostatistics 9 (1), 18-29.
    • (2008) Biostatistics , vol.9 , Issue.1 , pp. 18-29
    • Tibshirani, R.1    Wang, P.2
  • 303
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the Relevance Vector Machine
    • Tipping, M., 2001. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research 1, 211-244.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M.1
  • 305
    • 78049448383 scopus 로고    scopus 로고
    • An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems
    • Toh, K.-C., Yun, S., 2010. An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems. Pacific J. Optim. 6, 615-640.
    • (2010) Pacific J. Optim. , vol.6 , pp. 615-640
    • Toh, K.-C.1    Yun, S.2
  • 306
    • 85032751780 scopus 로고    scopus 로고
    • Dictionary learning: What is the right representation for my signal?
    • Tosic, I., Frossard, P., 2011. Dictionary learning: What is the right representation for my signal? IEEE Signal Proc. Magazine 28 (2), 27-38.
    • (2011) IEEE Signal Proc. Magazine , vol.28 , Issue.2 , pp. 27-38
    • Tosic, I.1    Frossard, P.2
  • 307
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for subset slection and sparse approximation
    • Tropp, A., 2006. Just relax: Convex programming methods for subset slection and sparse approximation. IEEE Trans. Inform. Theory 51 (3), 1030-1051.
    • (2006) IEEE Trans. Inform. Theory , vol.51 , Issue.3 , pp. 1030-1051
    • Tropp, A.1
  • 308
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Tseng, P., Yun, S., 2009. A coordinate gradient descent method for nonsmooth separable minimization. Mathematical Programming 117 (1), 387-423.
    • (2009) Mathematical Programming , vol.117 , Issue.1 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 309
    • 23844431650 scopus 로고    scopus 로고
    • Simultaneous variable selection
    • Turlach, B., Venables, W., Wright, S., 2005. Simultaneous variable selection. Technometrics 47 (3), 349-363.
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 349-363
    • Turlach, B.1    Venables, W.2    Wright, S.3
  • 310
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • van de Geer, S., 2008. High-dimensional generalized linear models and the Lasso. Ann. Statist. 36, 614-645.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 311
    • 0032397913 scopus 로고    scopus 로고
    • Determinant maximization with linear matrix inequality constraints
    • Vandenberghe, L., Boyd, S., Wu, S., 1998. Determinant maximization with linear matrix inequality constraints. SIAM J. Matrix Anal. Appl. 19 (2), 499-533.
    • (1998) SIAM J. Matrix Anal. Appl. , vol.19 , Issue.2 , pp. 499-533
    • Vandenberghe, L.1    Boyd, S.2    Wu, S.3
  • 312
    • 0001073106 scopus 로고    scopus 로고
    • Network tomography: Estimating source-destination traffic intensities from link data
    • Vardi, Y., 1996. Network tomography: Estimating source-destination traffic intensities from link data. J. Amer. Statist. Assoc. 91, 365-377.
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 365-377
    • Vardi, Y.1
  • 313
    • 84938533326 scopus 로고    scopus 로고
    • Introduction to the non-asymptotic analysis of random matrices
    • Eldar, Y., Kutyniok, G. (Eds.), Cambridge University Press
    • Vershynin, R., 2012. Introduction to the non-asymptotic analysis of random matrices. In: Eldar, Y., Kutyniok, G. (Eds.), Compressed Sensing, Theory and Application. Cambridge University Press, pp. 210-268.
    • (2012) Compressed Sensing, Theory and Application , pp. 210-268
    • Vershynin, R.1
  • 317
    • 0016060859 scopus 로고
    • Lower bounds on the maximum cross correlation of signals (cor-resp.)
    • Welch, L., 1974. Lower bounds on the maximum cross correlation of signals (cor-resp.). IEEE Transactions on Information Theory 20 (3), 397-399.
    • (1974) IEEE Transactions on Information Theory , vol.20 , Issue.3 , pp. 397-399
    • Welch, L.1
  • 318
    • 0001693842 scopus 로고
    • On the functions which are represented by the expansion of interpolating theory
    • Whittaker, E., 1915. On the functions which are represented by the expansion of interpolating theory. Proc. R. Soc. Edinburgh 35, 181-194.
    • (1915) Proc. R. Soc. Edinburgh , vol.35 , pp. 181-194
    • Whittaker, E.1
  • 319
    • 84959600837 scopus 로고
    • The Fourier theory of the cardinal functions
    • Whittaker, J., 1929. The Fourier theory of the cardinal functions. Proc. Math. Soc. Edinburgh 1, 169-176.
    • (1929) Proc. Math. Soc. Edinburgh , vol.1 , pp. 169-176
    • Whittaker, J.1
  • 321
    • 3543103176 scopus 로고    scopus 로고
    • Sparse Bayesian learning for basis selection
    • August
    • Wipf, D., Rao, B., August 2004. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing 52 (8), 2153-2164.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2153-2164
    • Wipf, D.1    Rao, B.2
  • 322
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse canonical correlation analysis and principal components
    • Witten, D., Tibshirani, R., Hastie, T., 2009. A penalized matrix decomposition, with applications to sparse canonical correlation analysis and principal components. Biostatistics 10 (3), 515-534.
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 515-534
    • Witten, D.1    Tibshirani, R.2    Hastie, T.3
  • 323
    • 84899032594 scopus 로고    scopus 로고
    • A* Lasso for learning a sparse Bayesian network structure for continuous variables
    • Xiang, J., Kim, S., 2013. A* Lasso for learning a sparse Bayesian network structure for continuous variables. In: Proceedings of Neural Information Processing Systems (NIPS). pp. 2418-2426.
    • (2013) Proceedings of Neural Information Processing Systems (NIPS) , pp. 2418-2426
    • Xiang, J.1    Kim, S.2
  • 324
    • 85162409960 scopus 로고    scopus 로고
    • Learning sparse representations of high dimensional data on large scale dictionaries
    • Xiang, Z., Xu, H., Ramadge, P., 2011. Learning sparse representations of high dimensional data on large scale dictionaries. In: Proc. of Neural Information Processing Systems (NIPS). Vol. 24. pp. 900-908.
    • (2011) Proc. of Neural Information Processing Systems (NIPS) , vol.24 , pp. 900-908
    • Xiang, Z.1    Xu, H.2    Ramadge, P.3
  • 326
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • Yaghoobi, M., Blumensath, T., Davies, M., 2009. Dictionary learning for sparse approximations with the majorization method. IEEE Transactions on Signal Processing 57 (6), 2178-2191.
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1    Blumensath, T.2    Davies, M.3
  • 327
    • 77956916683 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation via linear programming
    • Yuan, M., 2010. Sparse inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research 11, 2261-2286.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 329
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y., 2006. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49-67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 330
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan, M., Lin, Y., 2007. Model selection and estimation in the Gaussian graphical model. Biometrika 94(1), 19-35.
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 331
    • 69949155103 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • Zhao, P., Rocha, G., Yu, B., 2009. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics 37 (6A), 3468-3497.
    • (2009) Annals of Statistics , vol.37 , Issue.6 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 332
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • November
    • Zhao, P., Yu, B., November 2006. On model selection consistency of Lasso. J. Machine Learning Research 7, 2541-2567.
    • (2006) J. Machine Learning Research , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 336
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou, H., 2006. The adaptive Lasso and its oracle properties. Journal of the American Statistical Association 101 (476), 1418-1429.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.