-
1
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird, "Learning from noisy examples," Mach. Learn., vol. 2, no. 4, pp. 343-370, 1988.
-
(1988)
Mach. Learn.
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, no. 11, pp. 1134-1142, 1984.
-
(1984)
Commun. ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
3
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns, "Efficient noise-tolerant learning from statistical queries," J. ACM, vol. 45, no. 6, pp. 983-1006, 1998.
-
(1998)
J. ACM
, vol.45
, Issue.6
, pp. 983-1006
-
-
Kearns, M.1
-
4
-
-
1242341002
-
Estimating a kernel Fisher discriminant in the presence of label noise
-
N. D. Lawrence and B. Schölkopf, "Estimating a kernel Fisher discriminant in the presence of label noise," in Proc. 8th Int. Conf. Mach. Learn., 2001, pp. 306-313.
-
(2001)
Proc. 8th Int. Conf. Mach. Learn.
, pp. 306-313
-
-
Lawrence, N.D.1
Schölkopf, B.2
-
5
-
-
84867112504
-
Support vector machines under adversarial label noise
-
B. Biggio, B. Nelson, and P. Laskov, "Support vector machines under adversarial label noise," in Proc. Asian Conf. Mach. Learn., 2011, pp. 97-112.
-
(2011)
Proc. Asian Conf. Mach. Learn.
, pp. 97-112
-
-
Biggio, B.1
Nelson, B.2
Laskov, P.3
-
6
-
-
84867135321
-
Multiple kernel learning from noisy labels by stochastic programming
-
T. Yang, M. Mahdavi, R. Jin, L. Zhang, and Y. Zhou, "Multiple kernel learning from noisy labels by stochastic programming," in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 233-240.
-
(2012)
Proc. 29th Int. Conf. Mach. Learn.
, pp. 233-240
-
-
Yang, T.1
Mahdavi, M.2
Jin, R.3
Zhang, L.4
Zhou, Y.5
-
7
-
-
84899651693
-
Classification in the presence of label noise: A survey
-
May
-
B. Frenay and M. Verleysen, "Classification in the presence of label noise: A survey," IEEE Trans. Neural Netw. Learn. Syst., vol. 25, no. 5, pp. 845-869, May 2014.
-
(2014)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.25
, Issue.5
, pp. 845-869
-
-
Frenay, B.1
Verleysen, M.2
-
8
-
-
0013360743
-
On the sample complexity of noise-tolerant learning
-
J. A. Aslam and S. E. Decatur, "On the sample complexity of noise-tolerant learning," Inf. Process. Lett., vol. 57, no. 4, pp. 189-195, 1996.
-
(1996)
Inf. Process. Lett.
, vol.57
, Issue.4
, pp. 189-195
-
-
Aslam, J.A.1
Decatur, S.E.2
-
9
-
-
84890431307
-
Noise tolerance under risk minimization
-
Jun.
-
N. Manwani and P. Sastry, "Noise tolerance under risk minimization," IEEE Trans. Cybern., vol. 43, no. 3, pp. 1146-1151, Jun. 2013.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, Issue.3
, pp. 1146-1151
-
-
Manwani, N.1
Sastry, P.2
-
10
-
-
84898932626
-
Learning with noisy labels
-
N. Natarajan, I. Dhillon, P. Ravikumar, and A. Tewari, "Learning with noisy labels," in Proc. Neural Inf. Process. Syst., 2013, pp. 1196-1204.
-
(2013)
Proc. Neural Inf. Process. Syst.
, pp. 1196-1204
-
-
Natarajan, N.1
Dhillon, I.2
Ravikumar, P.3
Tewari, A.4
-
11
-
-
33645505792
-
Convexity, classification, and risk bounds
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, "Convexity, classification, and risk bounds," J. Am. Statist. Assoc., vol. 101, no. 473, pp. 138-156, 2006.
-
(2006)
J. Am. Statist. Assoc.
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
12
-
-
84875390122
-
Calibrated asymmetric surrogate losses
-
C. Scott, "Calibrated asymmetric surrogate losses," Electron. J. Statist., vol. 6, pp. 958-992, 2012.
-
(2012)
Electron. J. Statist.
, vol.6
, pp. 958-992
-
-
Scott, C.1
-
13
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from labeled and unlabeled examples," J. Mach. Learn. Res., vol. 7, pp. 2399-2434, 2006.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
14
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
H. Zou and T. Hastie, "Regularization and variable selection via the elastic net," J. Roy. Statist. Soc.: Series B (Statist. Methodol.), vol. 67, no. 2, pp. 301-320, 2005.
-
(2005)
J. Roy. Statist. Soc.: Series B (Statist. Methodol.)
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
15
-
-
79251515185
-
Trace norm regularization: Reformulations, algorithms, and multi-task learning
-
T. K. Pong, P. Tseng, S. Ji, and J. Ye, "Trace norm regularization: reformulations, algorithms, and multi-task learning," SIAM J. Optim., vol. 20, no. 6, pp. 3465-3489, 2010.
-
(2010)
SIAM J. Optim.
, vol.20
, Issue.6
, pp. 3465-3489
-
-
Pong, T.K.1
Tseng, P.2
Ji, S.3
Ye, J.4
-
16
-
-
17444406259
-
Smooth minimization of non-smooth functions
-
Y. Nesterov, "Smooth minimization of non-smooth functions," Math. Program., vol. 103, no. 1, pp. 127-152, 2005.
-
(2005)
Math. Program.
, vol.103
, Issue.1
, pp. 127-152
-
-
Nesterov, Y.1
-
17
-
-
84897545592
-
A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems
-
P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye, "A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems," in Proc. Int. Conf. Mach. Learn., 2013, pp. 37-45.
-
(2013)
Proc. Int. Conf. Mach. Learn.
, pp. 37-45
-
-
Gong, P.1
Zhang, C.2
Lu, Z.3
Huang, J.4
Ye, J.5
-
18
-
-
0027640858
-
Learning in the presence of malicious errors
-
M. Kearns and M. Li, "Learning in the presence of malicious errors," SIAM J. Comput., vol. 22, no. 4, pp. 807-837, 1993.
-
(1993)
SIAM J. Comput.
, vol.22
, Issue.4
, pp. 807-837
-
-
Kearns, M.1
Li, M.2
-
19
-
-
0010572906
-
Sample-efficient strategies for learning in the presence of noise
-
N. Cesa-Bianchi, E. Dichterman, P. Fischer, E. Shamir, and H. U. Simon, "Sample-efficient strategies for learning in the presence of noise," J. ACM, vol. 46, no. 5, pp. 684-719, 1999.
-
(1999)
J. ACM
, vol.46
, Issue.5
, pp. 684-719
-
-
Cesa-Bianchi, N.1
Dichterman, E.2
Fischer, P.3
Shamir, E.4
Simon, H.U.5
-
20
-
-
0037120728
-
PAC learning with nasty noise
-
N. H. Bshouty, N. Eiron, and E. Kushilevitz, "PAC learning with nasty noise," Theoretical Comput. Sci., vol. 288, no. 2, pp. 255-275, 2002.
-
(2002)
Theoretical Comput. Sci.
, vol.288
, Issue.2
, pp. 255-275
-
-
Bshouty, N.H.1
Eiron, N.2
Kushilevitz, E.3
-
22
-
-
75249095624
-
Learning halfspaces with malicious noise
-
A. R. Klivans, P. M. Long, and R. A. Servedio, "Learning halfspaces with malicious noise," J. Mach. Learn. Res., vol. 10, pp. 2715-2740, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2715-2740
-
-
Klivans, A.R.1
Long, P.M.2
Servedio, R.A.3
-
23
-
-
83255166616
-
Online learning of noisy data
-
N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir, "Online learning of noisy data," IEEE Trans. Inf. Theory, vol. 57, no. 12, pp. 7907-7931, 2011.
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.12
, pp. 7907-7931
-
-
Cesa-Bianchi, N.1
Shalev-Shwartz, S.2
Shamir, O.3
-
24
-
-
85016179756
-
Learning linear threshold functions in the presence of classification noise
-
T. Bylander, "Learning linear threshold functions in the presence of classification noise," in Proc. 7th Annu. Conf. Comput. Learn. Theory, 1994, pp. 340-347.
-
(1994)
Proc. 7th Annu. Conf. Comput. Learn. Theory
, pp. 340-347
-
-
Bylander, T.1
-
25
-
-
0031331853
-
Learning noisy perceptrons by a perceptron in polynomial time
-
E. Cohen, "Learning noisy perceptrons by a perceptron in polynomial time," in Proc. 38th Annu. Symp. Found. Comput. Sci., 1997, pp. 514-523.
-
(1997)
Proc. 38th Annu. Symp. Found. Comput. Sci.
, pp. 514-523
-
-
Cohen, E.1
-
26
-
-
0001926474
-
A polynomialtime algorithm for learning noisy linear threshold functions
-
A. Blum, A. Frieze, R. Kannan, and S. Vempala, "A polynomialtime algorithm for learning noisy linear threshold functions," Algorithmica, vol. 22, no. 1-2, pp. 35-52, 1998.
-
(1998)
Algorithmica
, vol.22
, Issue.1-2
, pp. 35-52
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
28
-
-
33847123284
-
Noise tolerant variants of the perceptron algorithm
-
R. Khardon and G. Wachman, "Noise tolerant variants of the perceptron algorithm," J. Mach. Learn. Res., vol. 8, pp. 227-248, 2007.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 227-248
-
-
Khardon, R.1
Wachman, G.2
-
30
-
-
36249029853
-
Correntropy: Properties and applications in non-Gaussian signal processing
-
Nov.
-
W. Liu, P. P. Pokharel, and J. C. Prncipe, "Correntropy: Properties and applications in non-Gaussian signal processing," IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5286-5298, Nov. 2007.
-
(2007)
IEEE Trans. Signal Process.
, vol.55
, Issue.11
, pp. 5286-5298
-
-
Liu, W.1
Pokharel, P.P.2
Prncipe, J.C.3
-
31
-
-
79959526388
-
Maximum correntropy criterion for robust face recognition
-
Aug.
-
R. He, W. Zheng, and B. Hu, "Maximum correntropy criterion for robust face recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 8, pp. 1561-1576, Aug. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.8
, pp. 1561-1576
-
-
He, R.1
Zheng, W.2
Hu, B.3
-
33
-
-
84898040500
-
Classification with asymmetric label noise: Consistency and maximal denoising
-
C. Scott, G. Blanchard, and G. Handy, "Classification with asymmetric label noise: Consistency and maximal denoising," in Proc. Conf. Learn. Theory, 2013, pp. 489-511.
-
(2013)
Proc. Conf. Learn. Theory
, pp. 489-511
-
-
Scott, C.1
Blanchard, G.2
Handy, G.3
-
34
-
-
79551494881
-
Semi-supervised novelty detection
-
G. Blanchard, G. Lee, and C. Scott, "Semi-supervised novelty detection," J. Mach. Learn. Res., vol. 11, pp. 2973-3009, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2973-3009
-
-
Blanchard, G.1
Lee, G.2
Scott, C.3
-
35
-
-
84954321380
-
A rate of convergence for mixture proportion estimation, with application to learning from noisy labels
-
C. Scott, "A rate of convergence for mixture proportion estimation, with application to learning from noisy labels," in Proc. 18th Int. Conf. Artif. Intell. Statist., 2015, pp. 838-846.
-
(2015)
Proc. 18th Int. Conf. Artif. Intell. Statist.
, pp. 838-846
-
-
Scott, C.1
-
38
-
-
77949852900
-
Domain adaptation problems: A DASVM classification technique and a circular validation strategy
-
May
-
L. Bruzzone and M. Marconcini, "Domain adaptation problems: A DASVM classification technique and a circular validation strategy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 5, pp. 770-787, May 2010.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.5
, pp. 770-787
-
-
Bruzzone, L.1
Marconcini, M.2
-
39
-
-
70349847999
-
Covariate shift by kernel mean matching
-
J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Eds. Cambridge, MA, USA: MIT Press, ch. 8
-
A. Gretton, A. Smola, J. Huang, M. Schmittfull, K. Borgwardt, and B. Schölkopf, "Covariate shift by kernel mean matching," in Dataset Shift in Machine Learning, J. Quiñonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Eds. Cambridge, MA, USA: MIT Press, 2009, ch. 8, pp. 131-160.
-
(2009)
Dataset Shift in Machine Learning
, pp. 131-160
-
-
Gretton, A.1
Smola, A.2
Huang, J.3
Schmittfull, M.4
Borgwardt, K.5
Schölkopf, B.6
-
40
-
-
84877770961
-
-
Cambridge, MA, USA: MIT Press
-
M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. Cambridge, MA, USA: MIT Press, 2012.
-
(2012)
Foundations of Machine Learning
-
-
Mohri, M.1
Rostamizadeh, A.2
Talwalkar, A.3
-
41
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson, "Rademacher and Gaussian complexities: Risk bounds and structural results," J. Mach. Learn. Res., vol. 3, pp. 463-482, 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
42
-
-
26444592981
-
Local Rademacher complexities
-
P. L. Bartlett, O. Bousquet, and S. Mendelson, "Local Rademacher complexities," The Ann. Statist., vol. 33, no. 4, pp. 1497-1537, 2005.
-
(2005)
The Ann. Statist.
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
43
-
-
0036749277
-
Support vector machines are universally consistent
-
I. Steinwart, "Support vector machines are universally consistent," J. Complexity, vol. 18, no. 3, pp. 768-791, 2002.
-
(2002)
J. Complexity
, vol.18
, Issue.3
, pp. 768-791
-
-
Steinwart, I.1
-
44
-
-
85162457791
-
Relative density-ratio estimation for robust distribution comparison
-
M. Yamada, T. Suzuki, T. Kanamori, H. Hachiya, and M. Sugiyama, "Relative density-ratio estimation for robust distribution comparison," in Proc. Adv. Neural Inf. Process. Syst. 24, 2011, pp. 594-602.
-
(2011)
Proc. Adv. Neural Inf. Process. Syst.
, vol.24
, pp. 594-602
-
-
Yamada, M.1
Suzuki, T.2
Kanamori, T.3
Hachiya, H.4
Sugiyama, M.5
-
46
-
-
79251621795
-
-
RIMSKokyuroku., Kyoto University Press
-
M. Sugiyama, T. Suzuki, and T. Kanamori, "Density ratio estimation: Acomprehensive review," RIMSKokyuroku., Kyoto University Press, 2010, pp. 10-31.
-
(2010)
Density Ratio Estimation: Acomprehensive Review
, pp. 10-31
-
-
Sugiyama, M.1
Suzuki, T.2
Kanamori, T.3
-
47
-
-
77950856653
-
Theoretical analysis of density ratio estimation
-
T. Kanamori, T. Suzuki, and M. Sugiyama, "Theoretical analysis of density ratio estimation," IEICE Trans. Fundam. Electron., Commun. Comput. Sci., vol. 93, no. 4, pp. 787-798, 2010.
-
(2010)
IEICE Trans. Fundam. Electron., Commun. Comput. Sci.
, vol.93
, Issue.4
, pp. 787-798
-
-
Kanamori, T.1
Suzuki, T.2
Sugiyama, M.3
-
48
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola, "Correcting sample selection bias by unlabeled data," in Proc. Adv. Neural Inf. Process. Syst. 19, 2006, pp. 601-608.
-
(2006)
Proc. Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 601-608
-
-
Huang, J.1
Gretton, A.2
Borgwardt, K.M.3
Schölkopf, B.4
Smola, A.J.5
-
49
-
-
68949141755
-
A least-squares approach to direct importance estimation
-
T. Kanamori, S. Hido, and M. Sugiyama, "A least-squares approach to direct importance estimation," J. Mach. Learn. Res., vol. 10, pp. 1391-1445, 2009.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1391-1445
-
-
Kanamori, T.1
Hido, S.2
Sugiyama, M.3
-
50
-
-
85162355574
-
A twostage weighting framework for multi-source domain adaptation
-
Q. Sun, R. Chattopadhyay, S. Panchanathan, and J. Ye, "A twostage weighting framework for multi-source domain adaptation," in Proc. Adv. Neural Inf. Process. Syst. 24, 2011, pp. 505-513.
-
(2011)
Proc. Adv. Neural Inf. Process. Syst.
, vol.24
, pp. 505-513
-
-
Sun, Q.1
Chattopadhyay, R.2
Panchanathan, S.3
Ye, J.4
-
51
-
-
70349847835
-
Bregman divergences and surrogates for learning
-
Nov.
-
R. Nock and F. Nielsen, "Bregman divergences and surrogates for learning," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 11, pp. 2048-2059, Nov. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.11
, pp. 2048-2059
-
-
Nock, R.1
Nielsen, F.2
-
52
-
-
85161964516
-
Direct importance estimation with model selection and its application to covariate shift adaptation
-
M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe, "Direct importance estimation with model selection and its application to covariate shift adaptation," in Proc. Adv. Neural Inf. Process. Syst. 20, 2008, pp. 1433-1440.
-
(2008)
Proc. Adv. Neural Inf. Process. Syst.
, vol.20
, pp. 1433-1440
-
-
Sugiyama, M.1
Nakajima, S.2
Kashima, H.3
Buenau, P.V.4
Kawanabe, M.5
|