-
1
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, volume 14, pages 585-591, 2001.
-
(2001)
NIPS
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
2
-
-
0035923521
-
Classification of human lung carcinomas by MRNA expression profiling reveals distinct adenocarcinoma subclasses
-
A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, et al. Classification of human lung carcinomas by MRNA expression profiling reveals distinct adenocarcinoma subclasses. National Academy of Sciences (NAS), 98(24):13790-13795, 2001.
-
(2001)
National Academy of Sciences (NAS)
, vol.98
, Issue.24
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
Li, C.4
Monti, S.5
Vasa, P.6
Ladd, C.7
Beheshti, J.8
Bueno, R.9
Gillette, M.10
-
3
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, and X. He. Unsupervised feature selection for multi-cluster data. In KDD, pages 333-342, 2010.
-
(2010)
KDD
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
4
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix factorization and spectral clustering. In SDM, volume 5, pages 606-610, 2005.
-
(2005)
SDM
, vol.5
, pp. 606-610
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
5
-
-
33749575326
-
Orthogonal nonnegative matrix t-factorizations for clustering
-
C. Ding, T. Li,W. Peng, and H. Park. Orthogonal nonnegative matrix t-factorizations for clustering. In KDD, pages 126-135, 2006.
-
(2006)
KDD
, pp. 126-135
-
-
Ding, C.1
Li, T.2
Peng, W.3
Park, H.4
-
7
-
-
0002516752
-
Spoken letter recognition
-
M. A. Fanty and R. Cole. Spoken letter recognition. In NIPS, page 220, 1990.
-
(1990)
NIPS
, pp. 220
-
-
Fanty, M.A.1
Cole, R.2
-
8
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. S. Georghiades, P. N. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(6):643-660, 2001.
-
(2001)
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.S.1
Belhumeur, P.N.2
Kriegman, D.3
-
10
-
-
0001576029
-
Characterising virtual eigensignatures for general purpose face recognition
-
D. B. Graham and N. M. Allinson. Characterising virtual eigensignatures for general purpose face recognition. In Face Recognition, pages 446-456. 1998.
-
(1998)
Face Recognition
, pp. 446-456
-
-
Graham, D.B.1
Allinson, N.M.2
-
11
-
-
77951187342
-
Local learning regularized nonnegative matrix factorization
-
Q. Gu and J. Zhou. Local learning regularized nonnegative matrix factorization. In IJCAI, 2009.
-
(2009)
IJCAI
-
-
Gu, Q.1
Zhou, J.2
-
12
-
-
84866674130
-
L2,1 regularized correntropy for robust feature selection
-
R. He, T. Tan, L. Wang, and W.-S. Zheng. l2,1 regularized correntropy for robust feature selection. In CVPR, pages 2504-2511, 2012.
-
(2012)
CVPR
, pp. 2504-2511
-
-
He, R.1
Tan, T.2
Wang, L.3
Zheng, W.-S.4
-
13
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In NIPS, pages 507-514, 2005.
-
(2005)
NIPS
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
16
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization. In NIPS, pages 556-562, 2001.
-
(2001)
NIPS
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
17
-
-
77951094313
-
Nonnegative matrix factorization on orthogonal subspace
-
Z. Li, X. Wu, and H. Peng. Nonnegative matrix factorization on orthogonal subspace. Pattern Recognition Letters, 31(9):905-911, 2010.
-
(2010)
Pattern Recognition Letters
, vol.31
, Issue.9
, pp. 905-911
-
-
Li, Z.1
Wu, X.2
Peng, H.3
-
18
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu. Unsupervised feature selection using nonnegative spectral analysis. In AAAI, pages 1026-1032, 2012.
-
(2012)
AAAI
, pp. 1026-1032
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
20
-
-
85135939782
-
Efficient and robust feature selection via joint l2,1-norms minimization
-
F. Nie, H. Huang, X. Cai, and C. H. Ding. Efficient and robust feature selection via joint l2,1-norms minimization. In NIPS, pages 1813-1821, 2010.
-
(2010)
NIPS
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.4
-
21
-
-
57749182885
-
Trace ratio criterion for feature selection
-
F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan. Trace ratio criterion for feature selection. In AAAI, pages 671-676, 2008.
-
(2008)
AAAI
, pp. 671-676
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
22
-
-
0026243152
-
A parallel algorithm for the unbalanced orthogonal procrustes problem
-
H. Park. A parallel algorithm for the unbalanced orthogonal procrustes problem. Parallel Computing, 17(8):913-923, 1991.
-
(1991)
Parallel Computing
, vol.17
, Issue.8
, pp. 913-923
-
-
Park, H.1
-
23
-
-
84896063375
-
Robust unsupervised feature selection
-
M. Qian and C. Zhai. Robust unsupervised feature selection. In IJCAI, pages 1621-1627, 2013.
-
(2013)
IJCAI
, pp. 1621-1627
-
-
Qian, M.1
Zhai, C.2
-
24
-
-
3943113604
-
Theoretical comparison between the gini index and information gain criteria
-
L. E. Raileanu and K. Stoffel. Theoretical comparison between the gini index and information gain criteria. Annals of Mathematics and Artificial Intelligence, 41(1):77-93, 2004.
-
(2004)
Annals of Mathematics and Artificial Intelligence
, vol.41
, Issue.1
, pp. 77-93
-
-
Raileanu, L.E.1
Stoffel, K.2
-
26
-
-
0000988974
-
A generalized solution of the orthogonal procrustes problem
-
P. H. Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika, 31(1):1-10, 1966.
-
(1966)
Psychometrika
, vol.31
, Issue.1
, pp. 1-10
-
-
Schönemann, P.H.1
-
28
-
-
84907015633
-
Unsupervised feature selection via unified trace ratio formulation and k-means clustering (track)
-
D. Wang, F. Nie, and H. Huang. Unsupervised feature selection via unified trace ratio formulation and k-means clustering (track). In ECML PKDD, pages 306-321. 2014.
-
(2014)
ECML PKDD
, pp. 306-321
-
-
Wang, D.1
Nie, F.2
Huang, H.3
-
29
-
-
1542347778
-
Document clustering based on nonnegative matrix factorization
-
W. Xu, X. Liu, and Y. Gong. Document clustering based on nonnegative matrix factorization. In SIGIR, pages 267-273, 2003.
-
(2003)
SIGIR
, pp. 267-273
-
-
Xu, W.1
Liu, X.2
Gong, Y.3
-
30
-
-
84881041271
-
L2,1-norm regularized discriminative feature selection for unsupervised learning
-
Y. Yang, H. T. Shen, Z. Ma, Z. Huang, and X. Zhou. l2,1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI, pages 1589-1594, 2011.
-
(2011)
IJCAI
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
-
31
-
-
58049111238
-
Orthogonal nonnegative matrix factorization: Multiplicative updates on stiefel manifolds
-
J. Yoo and S. Choi. Orthogonal nonnegative matrix factorization: Multiplicative updates on stiefel manifolds. In Intelligent Data Engineering and Automated Learning, pages 140-147. 2008.
-
(2008)
Intelligent Data Engineering and Automated Learning
, pp. 140-147
-
-
Yoo, J.1
Choi, S.2
-
32
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Z. Zhao and H. Liu. Spectral feature selection for supervised and unsupervised learning. In ICML, pages 1151-1157, 2007.
-
(2007)
ICML
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
|