메뉴 건너뛰기




Volumn , Issue , 2011, Pages 91-100

Multi-class ℓ 2,1-norm support vector machine

Author keywords

Feature selection; Multi class feature selection; Support vector machine

Indexed keywords

BIOINFORMATICS DATA; DATA MINING TECHNIQUES; EFFICIENT ALGORITHM; EFFICIENT FEATURE SELECTIONS; ESSENTIAL COMPONENT; GLOBAL CONVERGENCE; HEURISTIC STRATEGY; MULTI-CLASS; MULTIPLE CLASS; NUMBER OF DATUM; OPTIMIZATION PROBLEMS; SUPPORT VECTOR;

EID: 84863167108     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2011.105     Document Type: Conference Paper
Times cited : (71)

References (31)
  • 1
    • 57749097129 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task structure learning. In NIPS, 2007.
    • (2007) NIPS
    • Argyriou, A.1    Micchelli, C.A.2    Pontil, M.3    Ying, Y.4
  • 3
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In ICML, pages 82-90, 1998.
    • (1998) ICML , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0010442827 scopus 로고    scopus 로고
    • On the algorithmic implementation of multiclass kernel-based vector machines
    • K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 265-292
    • Crammer, K.1    Singer, Y.2
  • 9
    • 0030822569 scopus 로고    scopus 로고
    • Massively parallel genomics
    • S. Fodor. Massively parallel genomics. Science(Washington), 277(5324):393-395, 1997.
    • (1997) Science(Washington) , vol.277 , Issue.5324 , pp. 393-395
    • Fodor, S.1
  • 10
    • 70349254646 scopus 로고    scopus 로고
    • Extremely fast text feature extraction for classification and indexing
    • G. Forman and E. Kirshenbaum. Extremely fast text feature extraction for classification and indexing. In CIKM, pages 1221-1230, 2008.
    • (2008) CIKM , pp. 1221-1230
    • Forman, G.1    Kirshenbaum, E.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 0000364411 scopus 로고
    • Selection of variables in discriminant analysis by F-statistic and error rate
    • J. Habbema and J. Hermans. Selection of variables in discriminant analysis by F-statistic and error rate. Technometrics, 19(4):487-493, 1977.
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 487-493
    • Habbema, J.1    Hermans, J.2
  • 13
    • 4043059226 scopus 로고    scopus 로고
    • Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper
    • M. A. Hall and L. A. Smith. Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In FLAIRS Conference, pages 235-239, 1999.
    • (1999) FLAIRS Conference , pp. 235-239
    • Hall, M.A.1    Smith, L.A.2
  • 14
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • K. Kira and L. A. Rendell. A practical approach to feature selection. In ML, pages 249-256, 1992.
    • (1992) ML , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273-324, 1997.
    • (1997) Artif. Intell. , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • I. Kononenko. Estimating attributes: Analysis and extensions of relief. In ECML, pages 171-182, 1994.
    • (1994) ECML , pp. 171-182
    • Kononenko, I.1
  • 19
    • 57749182885 scopus 로고    scopus 로고
    • Trace ratio criterion for feature selection
    • F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan. Trace ratio criterion for feature selection. In AAAI, 2008.
    • (2008) AAAI
    • Nie, F.1    Xiang, S.2    Jia, Y.3    Zhang, C.4    Yan, S.5
  • 22
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy
    • H. Peng, F. Long, and C. H. Q. Ding. Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1226-1238, 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.H.Q.3
  • 23
    • 37349073894 scopus 로고    scopus 로고
    • Random forests for multiclass classification: Random multinomial logit
    • A. Prinzie and D. V. den Poel. Random forests for multiclass classification: Random multinomial logit. Expert Syst. Appl., 34(3):1721-1732, 2008.
    • (2008) Expert Syst. Appl. , vol.34 , Issue.3 , pp. 1721-1732
    • Prinzie, A.1    Den Poel, D.V.2
  • 24
    • 3943113604 scopus 로고    scopus 로고
    • Theoretical comparison between the gini index and information gain criteria
    • L. E. Raileanu and K. Stoffel. Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell., 41(1):77-93, 2004.
    • (2004) Ann. Math. Artif. Intell. , vol.41 , Issue.1 , pp. 77-93
    • Raileanu, L.E.1    Stoffel, K.2
  • 25
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 28
    • 34547983091 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification
    • L.Wang, J. Zhu, and H. Zou. Hybrid huberized support vector machines for microarray classification. In ICML, pages 983-990, 2007.
    • (2007) ICML , pp. 983-990
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 30
    • 49449088902 scopus 로고    scopus 로고
    • Learning a mahalanobis distance metric for data clustering and classification
    • S. Xiang, F. Nie, and C. Zhang. Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41(12):3600-3612, 2008.
    • (2008) Pattern Recognition , vol.41 , Issue.12 , pp. 3600-3612
    • Xiang, S.1    Nie, F.2    Zhang, C.3
  • 31
    • 34249855141 scopus 로고    scopus 로고
    • Msvm-rfe: Extensions of svmrfe for multiclass gene selection on dna microarray data
    • X. Zhou and D. P. Tuck. Msvm-rfe: extensions of svmrfe for multiclass gene selection on dna microarray data. Bioinformatics, 23(9):1106-1114, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1106-1114
    • Zhou, X.1    Tuck, D.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.