-
1
-
-
57749097129
-
A spectral regularization framework for multi-task structure learning
-
A. Argyriou, C. A. Micchelli, M. Pontil, and Y. Ying. A spectral regularization framework for multi-task structure learning. In NIPS, 2007.
-
(2007)
NIPS
-
-
Argyriou, A.1
Micchelli, C.A.2
Pontil, M.3
Ying, Y.4
-
2
-
-
18544375333
-
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
-
S. Armstrong, J. Staunton, L. Silverman, R. Pieters, M. den Boer, M. Minden, S. Sallan, E. Lander, T. Golub, and S. Korsmeyer. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature genetics, 30(1):41-47, 2001.
-
(2001)
Nature Genetics
, vol.30
, Issue.1
, pp. 41-47
-
-
Armstrong, S.1
Staunton, J.2
Silverman, L.3
Pieters, R.4
Den Boer, M.5
Minden, M.6
Sallan, S.7
Lander, E.8
Golub, T.9
Korsmeyer, S.10
-
3
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In ICML, pages 82-90, 1998.
-
(1998)
ICML
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
4
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
0010442827
-
On the algorithmic implementation of multiclass kernel-based vector machines
-
K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2:265-292, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 265-292
-
-
Crammer, K.1
Singer, Y.2
-
8
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. Liblinear: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
9
-
-
0030822569
-
Massively parallel genomics
-
S. Fodor. Massively parallel genomics. Science(Washington), 277(5324):393-395, 1997.
-
(1997)
Science(Washington)
, vol.277
, Issue.5324
, pp. 393-395
-
-
Fodor, S.1
-
10
-
-
70349254646
-
Extremely fast text feature extraction for classification and indexing
-
G. Forman and E. Kirshenbaum. Extremely fast text feature extraction for classification and indexing. In CIKM, pages 1221-1230, 2008.
-
(2008)
CIKM
, pp. 1221-1230
-
-
Forman, G.1
Kirshenbaum, E.2
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
12
-
-
0000364411
-
Selection of variables in discriminant analysis by F-statistic and error rate
-
J. Habbema and J. Hermans. Selection of variables in discriminant analysis by F-statistic and error rate. Technometrics, 19(4):487-493, 1977.
-
(1977)
Technometrics
, vol.19
, Issue.4
, pp. 487-493
-
-
Habbema, J.1
Hermans, J.2
-
13
-
-
4043059226
-
Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper
-
M. A. Hall and L. A. Smith. Feature selection for machine learning: Comparing a correlation-based filter approach to the wrapper. In FLAIRS Conference, pages 235-239, 1999.
-
(1999)
FLAIRS Conference
, pp. 235-239
-
-
Hall, M.A.1
Smith, L.A.2
-
14
-
-
85146422424
-
A practical approach to feature selection
-
K. Kira and L. A. Rendell. A practical approach to feature selection. In ML, pages 249-256, 1992.
-
(1992)
ML
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
15
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273-324, 1997.
-
(1997)
Artif. Intell.
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
16
-
-
84992726552
-
Estimating attributes: Analysis and extensions of relief
-
I. Kononenko. Estimating attributes: Analysis and extensions of relief. In ECML, pages 171-182, 1994.
-
(1994)
ECML
, pp. 171-182
-
-
Kononenko, I.1
-
18
-
-
85135939782
-
2,1- norms minimization
-
Vancouver, Canada December
-
2,1-norms minimization. In Neural Information Processing Systems (NIPS), Vancouver, Canada, December 2010.
-
(2010)
Neural Information Processing Systems (NIPS)
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.4
-
19
-
-
57749182885
-
Trace ratio criterion for feature selection
-
F. Nie, S. Xiang, Y. Jia, C. Zhang, and S. Yan. Trace ratio criterion for feature selection. In AAAI, 2008.
-
(2008)
AAAI
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
20
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
C. Nutt, D. Mani, R. Betensky, P. Tamayo, J. Cairncross, C. Ladd, U. Pohl, C. Hartmann, M. McLaughlin, T. Batchelor, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Research, 63(7):1602, 2003.
-
(2003)
Cancer Research
, vol.63
, Issue.7
, pp. 1602
-
-
Nutt, C.1
Mani, D.2
Betensky, R.3
Tamayo, P.4
Cairncross, J.5
Ladd, C.6
Pohl, U.7
Hartmann, C.8
McLaughlin, M.9
Batchelor, T.10
-
22
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy
-
H. Peng, F. Long, and C. H. Q. Ding. Feature selection based on mutual information: Criteria of max-dependency, maxrelevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell., 27(8):1226-1238, 2005.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.H.Q.3
-
23
-
-
37349073894
-
Random forests for multiclass classification: Random multinomial logit
-
A. Prinzie and D. V. den Poel. Random forests for multiclass classification: Random multinomial logit. Expert Syst. Appl., 34(3):1721-1732, 2008.
-
(2008)
Expert Syst. Appl.
, vol.34
, Issue.3
, pp. 1721-1732
-
-
Prinzie, A.1
Den Poel, D.V.2
-
24
-
-
3943113604
-
Theoretical comparison between the gini index and information gain criteria
-
L. E. Raileanu and K. Stoffel. Theoretical comparison between the gini index and information gain criteria. Ann. Math. Artif. Intell., 41(1):77-93, 2004.
-
(2004)
Ann. Math. Artif. Intell.
, vol.41
, Issue.1
, pp. 77-93
-
-
Raileanu, L.E.1
Stoffel, K.2
-
25
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507-2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
26
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
D. Singh, P. Febbo, K. Ross, D. Jackson, J. Manola, C. Ladd, P. Tamayo, A. Renshaw, A. D'Amico, J. Richie, et al. Gene expression correlates of clinical prostate cancer behavior. Cancer cell, 1(2):203-209, 2002.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.2
Ross, K.3
Jackson, D.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.8
D'amico, A.9
Richie, J.10
-
27
-
-
0035887459
-
Molecular classification of human carcinomas by use of gene expression signatures
-
A. Su, J. Welsh, L. Sapinoso, S. Kern, P. Dimitrov, H. Lapp, P. Schultz, S. Powell, C. Moskaluk, H. Frierson, et al. Molecular classification of human carcinomas by use of gene expression signatures. Cancer Research, 61(20):7388, 2001.
-
(2001)
Cancer Research
, vol.61
, Issue.20
, pp. 7388
-
-
Su, A.1
Welsh, J.2
Sapinoso, L.3
Kern, S.4
Dimitrov, P.5
Lapp, H.6
Schultz, P.7
Powell, S.8
Moskaluk, C.9
Frierson, H.10
-
28
-
-
34547983091
-
Hybrid huberized support vector machines for microarray classification
-
L.Wang, J. Zhu, and H. Zou. Hybrid huberized support vector machines for microarray classification. In ICML, pages 983-990, 2007.
-
(2007)
ICML
, pp. 983-990
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
30
-
-
49449088902
-
Learning a mahalanobis distance metric for data clustering and classification
-
S. Xiang, F. Nie, and C. Zhang. Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition, 41(12):3600-3612, 2008.
-
(2008)
Pattern Recognition
, vol.41
, Issue.12
, pp. 3600-3612
-
-
Xiang, S.1
Nie, F.2
Zhang, C.3
-
31
-
-
34249855141
-
Msvm-rfe: Extensions of svmrfe for multiclass gene selection on dna microarray data
-
X. Zhou and D. P. Tuck. Msvm-rfe: extensions of svmrfe for multiclass gene selection on dna microarray data. Bioinformatics, 23(9):1106-1114, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.9
, pp. 1106-1114
-
-
Zhou, X.1
Tuck, D.P.2
|