메뉴 건너뛰기




Volumn , Issue , 2008, Pages

Structure learning in random fields for heart motion abnormality detection

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC WAVES; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; EDUCATION; FEATURE EXTRACTION; IMAGE ENHANCEMENT; IMAGE PROCESSING; PATTERN RECOGNITION; ULTRASONIC APPLICATIONS; ULTRASONIC IMAGING; ULTRASONICS;

EID: 51949118201     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2008.4587367     Document Type: Conference Paper
Times cited : (96)

References (38)
  • 1
    • 73549088698 scopus 로고    scopus 로고
    • Scalable training of L1-regularized log-linear models
    • G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In ICML, 2007.
    • (2007) ICML
    • Andrew, G.1    Gao, J.2
  • 2
    • 84966275544 scopus 로고
    • Minimization of functions having Lipschitz-continuous first partial derivatives
    • L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific J. of Mathematics, 16:1-3, 1966.
    • (1966) Pacific J. of Mathematics , vol.16 , pp. 1-3
    • Armijo, L.1
  • 3
    • 10044235634 scopus 로고    scopus 로고
    • Thin junction trees
    • F. Bach and M. Jordan. Thin junction trees. In NIPS, 2001.
    • (2001) NIPS
    • Bach, F.1    Jordan, M.2
  • 4
    • 0001531895 scopus 로고    scopus 로고
    • J. Barzilai and J. Borwein. Two point step size gradient methods. IMA J. of Numerical Analysis, 8:141-148, 1988.
    • J. Barzilai and J. Borwein. Two point step size gradient methods. IMA J. of Numerical Analysis, 8:141-148, 1988.
  • 5
    • 0017751656 scopus 로고
    • Efficiency of pseudo-likelihood estimation for simple Gaussian fields
    • J. Besag. Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika, 64:616-618, 1977.
    • (1977) Biometrika , vol.64 , pp. 616-618
    • Besag, J.1
  • 6
    • 0034345420 scopus 로고    scopus 로고
    • Nonmonotone spectral projected gradient methods on convex sets
    • E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. on Optimization, 10(4):1196-1211, 2000.
    • (2000) SIAM J. on Optimization , vol.10 , Issue.4 , pp. 1196-1211
    • Birgin, E.G.1    Martinez, J.M.2    Raydan, M.3
  • 7
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D. M. Chickering. Optimal structure identification with greedy search. JMLR, 3:507-554, 2002.
    • (2002) JMLR , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 8
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14:462-67, 1968.
    • (1968) IEEE Trans. on Info. Theory , vol.14 , pp. 462-467
    • Chow, C.K.1    Liu, C.N.2
  • 9
    • 14344256569 scopus 로고    scopus 로고
    • Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
    • D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood. In ICML, 2004.
    • (2004) ICML
    • Grossman, D.1    Domingos, P.2
  • 10
    • 85066517390 scopus 로고    scopus 로고
    • Discriminative Model Selection for Belief Net Structures
    • Y. Guo and R. Greiner. Discriminative Model Selection for Belief Net Structures. In AAAI, 2005.
    • (2005) AAAI
    • Guo, Y.1    Greiner, R.2
  • 11
    • 80053189931 scopus 로고    scopus 로고
    • Y. Guo and D. Schuurmans. Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. In UAI, 2006.
    • Y. Guo and D. Schuurmans. Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. In UAI, 2006.
  • 12
    • 0002123103 scopus 로고    scopus 로고
    • Dependency networks for density estimation, collaborative filtering, and data visualization
    • D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for density estimation, collaborative filtering, and data visualization. JMLR, 1:49-75, 2000.
    • (2000) JMLR , vol.1 , pp. 49-75
    • Heckerman, D.1    Chickering, D.2    Meek, C.3    Rounthwaite, R.4    Kadie, C.5
  • 13
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, M.3
  • 14
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. Hinton. Training products of experts by minimizing contrastive divergence. N. Comput., 14:1771-1800, 2002.
    • (2002) N. Comput , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 16
    • 33746126624 scopus 로고    scopus 로고
    • Blockwise sparse regression
    • Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375-390, 2006.
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 375-390
    • Kim, Y.1    Kim, J.2    Kim, Y.3
  • 17
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. JMLR, 5:549-573, 2004.
    • (2004) JMLR , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 18
    • 31844432693 scopus 로고    scopus 로고
    • Learning the Structure of Markov Logic Networks
    • S. Kok and P. Domingos. Learning the Structure of Markov Logic Networks. In ICML, 2005.
    • (2005) ICML
    • Kok, S.1    Domingos, P.2
  • 19
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. In IEEE Conf. on Computer Vision and Pattern Recognition, 2003.
    • (2003) IEEE Conf. on Computer Vision and Pattern Recognition
    • Kumar, S.1    Hebert, M.2
  • 20
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 21
    • 34547966875 scopus 로고    scopus 로고
    • Efficient L1 Regularized Logistic Regression
    • S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient L1 Regularized Logistic Regression. In AAAI, 2006.
    • (2006) AAAI
    • Lee, S.1    Lee, H.2    Abbeel, P.3    Ng, A.4
  • 22
    • 85142829716 scopus 로고    scopus 로고
    • Efficient structure learning of Markov networks using L1-regularization
    • S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using L1-regularization. In NIPS, 2006.
    • (2006) NIPS
    • Lee, S.-I.1    Ganapathi, V.2    Koller, D.3
  • 23
    • 0000747663 scopus 로고    scopus 로고
    • Maximum Entropy Markov Models for Information Extraction and Segmentation
    • A. McCallum, D. Freitag, and F. Pereira. Maximum Entropy Markov Models for Information Extraction and Segmentation. In ICML, 2000.
    • (2000) ICML
    • McCallum, A.1    Freitag, D.2    Pereira, F.3
  • 24
    • 51949116173 scopus 로고    scopus 로고
    • The group lasso for logistic regression
    • Technical Report 131, ETH Seminar fur Statistik, 2006
    • L. Meier, S. van de Geer, and P. Buhlmann. The group lasso for logistic regression. Technical Report 131, ETH Seminar fur Statistik, 2006.
    • Meier, L.1    van de Geer, S.2    Buhlmann, P.3
  • 25
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34:1436-1462, 2006.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 26
    • 85131710450 scopus 로고    scopus 로고
    • M. Narasimhan and J. Bilmes. A Supermodular-Submodular Procedure with Applications to Discriminative Structure Learning. In UAI, 2005.
    • M. Narasimhan and J. Bilmes. A Supermodular-Submodular Procedure with Applications to Discriminative Structure Learning. In UAI, 2005.
  • 27
    • 51949113821 scopus 로고    scopus 로고
    • Structure learning in Markov Random Fields
    • S. Parise and M. Welling. Structure learning in Markov Random Fields. In NIPS, 2006.
    • (2006) NIPS
    • Parise, S.1    Welling, M.2
  • 28
    • 40749099614 scopus 로고    scopus 로고
    • Regularization path algorithms for detecting gene interactions
    • Technical report, Stanford
    • M. Y. Park and T. Hastie. Regularization path algorithms for detecting gene interactions. Technical report, Stanford, 2006.
    • (2006)
    • Park, M.Y.1    Hastie, T.2
  • 29
    • 31844434495 scopus 로고    scopus 로고
    • Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers
    • F. Pernkopf and J. Bilmes. Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers. In ICML, 2005.
    • (2005) ICML
    • Pernkopf, F.1    Bilmes, J.2
  • 31
    • 0031542191 scopus 로고    scopus 로고
    • The barzilai and borwein gradient method for the large scale unconstrained minimization problem
    • M. Raydan. The barzilai and borwein gradient method for the large scale unconstrained minimization problem. SIAM J. on Optimization, 7(1):26-33, 1997.
    • (1997) SIAM J. on Optimization , vol.7 , Issue.1 , pp. 26-33
    • Raydan, M.1
  • 32
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc. HLT-NAACL, 2003.
    • (2003) Proc. HLT-NAACL
    • Sha, F.1    Pereira, F.2
  • 33
  • 34
    • 36348929435 scopus 로고    scopus 로고
    • Ordering-based search: A simple and effective algorithm for learning bayesian networks
    • M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In UAI, pages 584-590, 2005.
    • (2005) UAI , pp. 584-590
    • Teyssier, M.1    Koller, D.2
  • 35
    • 23844431650 scopus 로고    scopus 로고
    • Simultaneous variable selection
    • B. Turlach, W. Venables, and S. Wright. Simultaneous variable selection. Technometrics, 47(3):349-363, 2005.
    • (2005) Technometrics , vol.47 , Issue.3 , pp. 349-363
    • Turlach, B.1    Venables, W.2    Wright, S.3
  • 37
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Royal Statistical Society, Series B, 68(1):49-67, 2006.
    • (2006) J. Royal Statistical Society, Series B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 38
    • 13344249749 scopus 로고    scopus 로고
    • An information fusion framework for robust shape tracking
    • January
    • X. S. Zhou, D. Comaniciu, and A. Gupta. An information fusion framework for robust shape tracking. TPAMI, 27, NO. 1:115-129, January 2005.
    • (2005) TPAMI , vol.27 , Issue.1 , pp. 115-129
    • Zhou, X.S.1    Comaniciu, D.2    Gupta, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.