-
1
-
-
73549088698
-
Scalable training of L1-regularized log-linear models
-
G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In ICML, 2007.
-
(2007)
ICML
-
-
Andrew, G.1
Gao, J.2
-
2
-
-
84966275544
-
Minimization of functions having Lipschitz-continuous first partial derivatives
-
L. Armijo. Minimization of functions having Lipschitz-continuous first partial derivatives. Pacific J. of Mathematics, 16:1-3, 1966.
-
(1966)
Pacific J. of Mathematics
, vol.16
, pp. 1-3
-
-
Armijo, L.1
-
3
-
-
10044235634
-
Thin junction trees
-
F. Bach and M. Jordan. Thin junction trees. In NIPS, 2001.
-
(2001)
NIPS
-
-
Bach, F.1
Jordan, M.2
-
4
-
-
0001531895
-
-
J. Barzilai and J. Borwein. Two point step size gradient methods. IMA J. of Numerical Analysis, 8:141-148, 1988.
-
J. Barzilai and J. Borwein. Two point step size gradient methods. IMA J. of Numerical Analysis, 8:141-148, 1988.
-
-
-
-
5
-
-
0017751656
-
Efficiency of pseudo-likelihood estimation for simple Gaussian fields
-
J. Besag. Efficiency of pseudo-likelihood estimation for simple Gaussian fields. Biometrika, 64:616-618, 1977.
-
(1977)
Biometrika
, vol.64
, pp. 616-618
-
-
Besag, J.1
-
6
-
-
0034345420
-
Nonmonotone spectral projected gradient methods on convex sets
-
E. G. Birgin, J. M. Martinez, and M. Raydan. Nonmonotone spectral projected gradient methods on convex sets. SIAM J. on Optimization, 10(4):1196-1211, 2000.
-
(2000)
SIAM J. on Optimization
, vol.10
, Issue.4
, pp. 1196-1211
-
-
Birgin, E.G.1
Martinez, J.M.2
Raydan, M.3
-
7
-
-
0042967741
-
Optimal structure identification with greedy search
-
D. M. Chickering. Optimal structure identification with greedy search. JMLR, 3:507-554, 2002.
-
(2002)
JMLR
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
8
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Trans. on Info. Theory, 14:462-67, 1968.
-
(1968)
IEEE Trans. on Info. Theory
, vol.14
, pp. 462-467
-
-
Chow, C.K.1
Liu, C.N.2
-
9
-
-
14344256569
-
Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
-
D. Grossman and P. Domingos. Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood. In ICML, 2004.
-
(2004)
ICML
-
-
Grossman, D.1
Domingos, P.2
-
10
-
-
85066517390
-
Discriminative Model Selection for Belief Net Structures
-
Y. Guo and R. Greiner. Discriminative Model Selection for Belief Net Structures. In AAAI, 2005.
-
(2005)
AAAI
-
-
Guo, Y.1
Greiner, R.2
-
11
-
-
80053189931
-
-
Y. Guo and D. Schuurmans. Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. In UAI, 2006.
-
Y. Guo and D. Schuurmans. Convex Structure Learning for Bayesian Networks: Polynomial Feature Selection and Approximate Ordering. In UAI, 2006.
-
-
-
-
12
-
-
0002123103
-
Dependency networks for density estimation, collaborative filtering, and data visualization
-
D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for density estimation, collaborative filtering, and data visualization. JMLR, 1:49-75, 2000.
-
(2000)
JMLR
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
13
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and M. Chickering. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, M.3
-
14
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. Hinton. Training products of experts by minimizing contrastive divergence. N. Comput., 14:1771-1800, 2002.
-
(2002)
N. Comput
, vol.14
, pp. 1771-1800
-
-
Hinton, G.1
-
16
-
-
33746126624
-
Blockwise sparse regression
-
Y. Kim, J. Kim, and Y. Kim. Blockwise sparse regression. Statistica Sinica, 16(2):375-390, 2006.
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 375-390
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
17
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
M. Koivisto and K. Sood. Exact Bayesian structure discovery in Bayesian networks. JMLR, 5:549-573, 2004.
-
(2004)
JMLR
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
18
-
-
31844432693
-
Learning the Structure of Markov Logic Networks
-
S. Kok and P. Domingos. Learning the Structure of Markov Logic Networks. In ICML, 2005.
-
(2005)
ICML
-
-
Kok, S.1
Domingos, P.2
-
19
-
-
0344120654
-
Discriminative random fields: A discriminative framework for contextual interaction in classification
-
S. Kumar and M. Hebert. Discriminative random fields: A discriminative framework for contextual interaction in classification. In IEEE Conf. on Computer Vision and Pattern Recognition, 2003.
-
(2003)
IEEE Conf. on Computer Vision and Pattern Recognition
-
-
Kumar, S.1
Hebert, M.2
-
20
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.3
-
21
-
-
34547966875
-
Efficient L1 Regularized Logistic Regression
-
S. Lee, H. Lee, P. Abbeel, and A. Ng. Efficient L1 Regularized Logistic Regression. In AAAI, 2006.
-
(2006)
AAAI
-
-
Lee, S.1
Lee, H.2
Abbeel, P.3
Ng, A.4
-
22
-
-
85142829716
-
Efficient structure learning of Markov networks using L1-regularization
-
S.-I. Lee, V. Ganapathi, and D. Koller. Efficient structure learning of Markov networks using L1-regularization. In NIPS, 2006.
-
(2006)
NIPS
-
-
Lee, S.-I.1
Ganapathi, V.2
Koller, D.3
-
23
-
-
0000747663
-
Maximum Entropy Markov Models for Information Extraction and Segmentation
-
A. McCallum, D. Freitag, and F. Pereira. Maximum Entropy Markov Models for Information Extraction and Segmentation. In ICML, 2000.
-
(2000)
ICML
-
-
McCallum, A.1
Freitag, D.2
Pereira, F.3
-
24
-
-
51949116173
-
The group lasso for logistic regression
-
Technical Report 131, ETH Seminar fur Statistik, 2006
-
L. Meier, S. van de Geer, and P. Buhlmann. The group lasso for logistic regression. Technical Report 131, ETH Seminar fur Statistik, 2006.
-
-
-
Meier, L.1
van de Geer, S.2
Buhlmann, P.3
-
25
-
-
33747163541
-
High dimensional graphs and variable selection with the lasso
-
N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection with the lasso. The Annals of Statistics, 34:1436-1462, 2006.
-
(2006)
The Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
26
-
-
85131710450
-
-
M. Narasimhan and J. Bilmes. A Supermodular-Submodular Procedure with Applications to Discriminative Structure Learning. In UAI, 2005.
-
M. Narasimhan and J. Bilmes. A Supermodular-Submodular Procedure with Applications to Discriminative Structure Learning. In UAI, 2005.
-
-
-
-
27
-
-
51949113821
-
Structure learning in Markov Random Fields
-
S. Parise and M. Welling. Structure learning in Markov Random Fields. In NIPS, 2006.
-
(2006)
NIPS
-
-
Parise, S.1
Welling, M.2
-
28
-
-
40749099614
-
Regularization path algorithms for detecting gene interactions
-
Technical report, Stanford
-
M. Y. Park and T. Hastie. Regularization path algorithms for detecting gene interactions. Technical report, Stanford, 2006.
-
(2006)
-
-
Park, M.Y.1
Hastie, T.2
-
29
-
-
31844434495
-
Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers
-
F. Pernkopf and J. Bilmes. Discriminative versus Generative Parameter and Structure Learning of Bayesian Network Classifiers. In ICML, 2005.
-
(2005)
ICML
-
-
Pernkopf, F.1
Bilmes, J.2
-
30
-
-
58849103803
-
Automated Heart Wall Motion Abnormality Detection from Ultrasound Images Using Bayesian Networks
-
M. Qazi, G. Fung, S. Krishnan, R. Rosales, H. Steck, B. Rao, and D. Poldermans. Automated Heart Wall Motion Abnormality Detection from Ultrasound Images Using Bayesian Networks. In Intl. Joint Conf. on AI, 2007.
-
(2007)
Intl. Joint Conf. on AI
-
-
Qazi, M.1
Fung, G.2
Krishnan, S.3
Rosales, R.4
Steck, H.5
Rao, B.6
Poldermans, D.7
-
31
-
-
0031542191
-
The barzilai and borwein gradient method for the large scale unconstrained minimization problem
-
M. Raydan. The barzilai and borwein gradient method for the large scale unconstrained minimization problem. SIAM J. on Optimization, 7(1):26-33, 1997.
-
(1997)
SIAM J. on Optimization
, vol.7
, Issue.1
, pp. 26-33
-
-
Raydan, M.1
-
32
-
-
85043116988
-
Shallow parsing with conditional random fields
-
F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proc. HLT-NAACL, 2003.
-
(2003)
Proc. HLT-NAACL
-
-
Sha, F.1
Pereira, F.2
-
34
-
-
36348929435
-
Ordering-based search: A simple and effective algorithm for learning bayesian networks
-
M. Teyssier and D. Koller. Ordering-based search: A simple and effective algorithm for learning bayesian networks. In UAI, pages 584-590, 2005.
-
(2005)
UAI
, pp. 584-590
-
-
Teyssier, M.1
Koller, D.2
-
35
-
-
23844431650
-
Simultaneous variable selection
-
B. Turlach, W. Venables, and S. Wright. Simultaneous variable selection. Technometrics, 47(3):349-363, 2005.
-
(2005)
Technometrics
, vol.47
, Issue.3
, pp. 349-363
-
-
Turlach, B.1
Venables, W.2
Wright, S.3
-
37
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. Royal Statistical Society, Series B, 68(1):49-67, 2006.
-
(2006)
J. Royal Statistical Society, Series B
, vol.68
, Issue.1
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
38
-
-
13344249749
-
An information fusion framework for robust shape tracking
-
January
-
X. S. Zhou, D. Comaniciu, and A. Gupta. An information fusion framework for robust shape tracking. TPAMI, 27, NO. 1:115-129, January 2005.
-
(2005)
TPAMI
, vol.27
, Issue.1
, pp. 115-129
-
-
Zhou, X.S.1
Comaniciu, D.2
Gupta, A.3
|