메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1389-1397

Multi-view clustering and feature learning via structured sparsity

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); DATA FUSION;

EID: 84897568262     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (88)

References (30)
  • 1
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, Andreas, Evgeniou, Theodoros, and Pontil, Massimiliano. Convex multi-task feature learning. Machine Learning, 73(3):243-272, 2008.
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 2
    • 14344252374 scopus 로고    scopus 로고
    • Multiple Kernel Learning, Conic Duality, and the SMO Algorithm
    • Bach, F., Lanckriet, G.R.G., and Jordan, M.I. Multiple Kernel Learning, Conic Duality, and the SMO Algorithm. ICML, 2004.
    • (2004) ICML
    • Bach, F.1    Lanckriet, G.R.G.2    Jordan, M.I.3
  • 3
    • 36448962045 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M, Niyogi, P, and Sindhwani, V. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. JMLR, 1:1-48, 2006.
    • (2006) JMLR , vol.1 , pp. 1-48
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 6
    • 80052877826 scopus 로고    scopus 로고
    • Heterogeneous image feature integration via multi-modal spectral clustering
    • Cai, X., Nie, F., Huang, H., and Kamangar, F. Heterogeneous image feature integration via multi-modal spectral clustering. In CVPR, 2011.
    • (2011) CVPR
    • Cai, X.1    Nie, F.2    Huang, H.3    Kamangar, F.4
  • 8
    • 0031102203 scopus 로고    scopus 로고
    • Sparse signal reconstruction from limited data using FOCUSS: A re-weighted minimum norm algorithm
    • Gorodnitsky, I.F. and Rao, B.D. Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm. Signal Processing, IEEE Transactions on, 45(3):600-616, 1997. (Pubitemid 127765947)
    • (1997) IEEE Transactions on Signal Processing , vol.45 , Issue.3 , pp. 600-616
    • Gorodnitsky, I.F.1    Rao, B.D.2
  • 11
    • 85162436778 scopus 로고    scopus 로고
    • Co-regularized multi-view spectral clustering
    • Kumar, A., Rai, P., and Daumé III, H. Co-regularized multi-view spectral clustering. In NIPS, 2011.
    • (2011) NIPS
    • Kumar, A.1    Rai, P.2    Daumé III, H.3
  • 12
    • 8844278523 scopus 로고    scopus 로고
    • Learning the kernel matrix with semidefinite programming
    • ISSN 1532-4435
    • Lanckriet, G.R.G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M.I. Learning the kernel matrix with semidefinite programming. JMLR, 5:27-72, 2004a. ISSN 1532-4435.
    • (2004) JMLR , vol.5 , pp. 27-72
    • Lanckriet, G.R.G.1    Cristianini, N.2    Bartlett, P.3    Ghaoui, L.E.4    Jordan, M.I.5
  • 14
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • Ng, Andrew Y., Jordan, Michael I., and Weiss, Yair. On spectral clustering: Analysis and an algorithm. In NIPS, pp. 849-856, 2001.
    • (2001) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 15
    • 78049383727 scopus 로고    scopus 로고
    • Spectral embedded clustering
    • Nie, Feiping, Xu, Dong, Tsang, Ivor W., and Zhang, Changshui. Spectral embedded clustering. In IJCAI, pp. 1181-1186, 2009.
    • (2009) IJCAI , pp. 1181-1186
    • Nie, F.1    Xu, D.2    Tsang, I.W.3    Zhang, C.4
  • 16
    • 77953322499 scopus 로고    scopus 로고
    • Joint covariate selection and joint subspace selection for multiple classification problems
    • Obozinski, Guillaume, Taskar, Ben, and Jordan, Michael I. Joint covariate selection and joint subspace selection for multiple classification problems. Statistics and Computing, 20:231-252, 2010.
    • (2010) Statistics and Computing , vol.20 , pp. 231-252
    • Obozinski, G.1    Taskar, B.2    Jordan, M.I.3
  • 17
    • 84859947224 scopus 로고    scopus 로고
    • Cross-language text classification using structural correspondence learning
    • Prettenhofer, P. and Stein, B. Cross-language text classification using structural correspondence learning. In ACL, 2010.
    • (2010) ACL
    • Prettenhofer, P.1    Stein, B.2
  • 19
    • 33745776113 scopus 로고    scopus 로고
    • Large scale multiple kernel learning
    • ISSN 1532-4435
    • Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B. Large scale multiple kernel learning. JMLR, 7:1531-1565, 2006. ISSN 1532-4435.
    • (2006) JMLR , vol.7 , pp. 1531-1565
    • Sonnenburg, S.1    Rätsch, G.2    Schäfer, C.3    Schölkopf, B.4
  • 21
    • 82255164574 scopus 로고    scopus 로고
    • Identifying adsensitive and cognition-relevant imaging biomarkers via joint classification and regression
    • Springer
    • Wang, Hua, Nie, Feiping, Huang, Heng, Risacher, Shannon, Saykin, Andrew J, and Shen, Li. Identifying adsensitive and cognition-relevant imaging biomarkers via joint classification and regression. In MICCAI 2011, pp. 115-123. Springer, 2011.
    • (2011) MICCAI 2011 , pp. 115-123
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.4    Saykin, A.J.5    Shen, L.6
  • 22
    • 84862970066 scopus 로고    scopus 로고
    • Identifying quantitative trait loci via group-sparse multitask regression and feature selection: An imaging genetics study of the adni cohort
    • Wang, Hua, Nie, Feiping, Huang, Heng, Kim, Sungeun, Nho, Kwangsik, Risacher, Shannon L, Saykin, Andrew J, Shen, Li, et al. Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the adni cohort. Bioinformatics, 28(2):229-237, 2012a.
    • (2012) Bioinformatics , vol.28 , Issue.2 , pp. 229-237
    • Wang, H.1    Nie, F.2    Huang, H.3    Kim, S.4    Nho, K.5    Risacher, S.L.6    Saykin, A.J.7    Shen, L.8
  • 23
    • 84863509119 scopus 로고    scopus 로고
    • Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning
    • Wang, Hua, Nie, Feiping, Huang, Heng, Risacher, Shannon L, Saykin, Andrew J, Shen, Li, et al. Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics, 28(12):i127-i136, 2012b.
    • (2012) Bioinformatics , vol.28 , Issue.12
    • Wang, H.1    Nie, F.2    Huang, H.3    Risacher, S.L.4    Saykin, A.J.5    Shen, L.6
  • 24
    • 84866458870 scopus 로고    scopus 로고
    • From phenotype to genotype: An association study of longitudinal phenotypic markers to alzheimer's disease relevant snps
    • for the Alzheimer's Disease Neuroimaging Initiative
    • Wang, Hua, Nie, Feiping, Huang, Heng, Yan, Jingwen, Kim, Sungeun, Nho, Kwangsik, Risacher, Shannon L., Saykin, Andrew J., Shen, Li, and for the Alzheimer's Disease Neuroimaging Initiative. From phenotype to genotype: an association study of longitudinal phenotypic markers to alzheimer's disease relevant snps. Bioinformatics, 28(18):i619-i625, 2012c.
    • (2012) Bioinformatics , vol.28 , Issue.18
    • Wang, H.1    Nie, F.2    Huang, H.3    Yan, J.4    Kim, S.5    Nho, K.6    Risacher, S.L.7    Saykin, A.J.8    Shen, L.9
  • 25
    • 84877779785 scopus 로고    scopus 로고
    • High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer's disease progression prediction
    • Wang, Hua, Nie, Feiping, Huang, Heng, Yan, Jingwen, Kim, Sungeun, Risacher, Shannon, Saykin, Andrew, and Shen, Li. High-order multi-task feature learning to identify longitudinal phenotypic markers for alzheimer's disease progression prediction. In NIPS, 2012d.
    • (2012) NIPS
    • Wang, H.1    Nie, F.2    Huang, H.3    Yan, J.4    Kim, S.5    Risacher, S.6    Saykin, A.7    Shen, L.8
  • 26
    • 84887363909 scopus 로고    scopus 로고
    • Heterogeneous Visual Features Fusion via Sparse Multimodal Machine
    • Wang, Hua, Nie, Feiping, Huang, Heng, and Ding, Chris. Heterogeneous Visual Features Fusion via Sparse Multimodal Machine. In CVPR 2013, 2013.
    • (2013) CVPR 2013
    • Wang, H.1    Nie, F.2    Huang, H.3    Ding, C.4
  • 27
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • ISSN 1532-4435
    • Ye, J., Ji, S., and Chen, J. Multi-class discriminant kernel learning via convex programming. JMLR, 9:719-758, 2008a. ISSN 1532-4435.
    • (2008) JMLR , vol.9 , pp. 719-758
    • Ye, J.1    Ji, S.2    Chen, J.3
  • 28
    • 85162001583 scopus 로고    scopus 로고
    • Discriminative k-means for clustering
    • Ye, Jieping, Zhao, Zheng, and Wu, Mingrui. Discriminative k-means for clustering. In NIPS, pp. 1649-1656, 2008b.
    • (2008) NIPS , pp. 1649-1656
    • Ye, J.1    Zhao, Z.2    Wu, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.